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Abstract 

The development of scoring functions is of great importance to protein docking.  Here we 
present a new scoring function for the initial stage of unbound docking.  It combines our recently 
developed pairwise shape complementarity with desolvation and electrostatics.  We compare this 
scoring function with three other functions on a large benchmark of 49 non-redundant test cases, 
and demonstrate its superior performance, especially for the antibody/antigen category of test 
cases.  For 44 test cases (90% of the benchmark), we can retain at least one near-native structures 
within the top 2000 predictions at the 6° rotational sampling density, with an average of 52 near-
native structures per test case. The remaining five difficult test cases can be explained by a 
combination of poor binding affinity, large backbone conformational changes and our 
algorithm’s strong tendency for identifying large concave binding pockets.   All four scoring 
functions have been integrated into our Fast Fourier Transform based docking algorithm 
ZDOCK, which is freely available to academic users at http://zlab.bu.edu/~rong/dock. 
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Introduction 

Protein docking is the prediction of the 3-dimensional (3-D) structure of a protein-protein 
complex from the coordinates of its component structures. It is classified as bound docking or 
unbound docking. For the former, a protein complex is pulled apart and re-assembled. For the 
latter, individually crystallized component structures are used.  Unbound docking is of more 
interest to us and is the focus of this work.  It has long been recognized that proteins undergo 
conformational changes upon binding, especially their surface side chains.  This complicates 
unbound docking tremendously. With current computing power, it is infeasible to perform 
extensive conformational searches during docking, unless the binding site is known. Thus, a 
number of groups have adopted the two-stage approach1,2: in the initial stage, the receptor and 
ligand are treated as rigid bodies and the 6-D rotational and translational degrees of freedom are 
fully explored with scoring functions that are tolerant to conformational changes3-10 ; in the 
refinement stage, a small number (tens to thousands) of structures obtained in the initial stage is 
refined and re-ranked using more detailed energy functions that take into account conformational 
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changes11-15.  Frequently, conformational searches using side-chain rotamers and energy 
minimizations are performed in the refinement stage. 
 
In this paper, we focus on the initial-stage of unbound docking. A number of algorithms have 
been developed for this goal, described in several reviews1,2,16-20. FTDock searches the grid-
based shape complementarity (GSC) and electrostatics using a Fast Fourier Transform (FFT) 
algorithm3. DOT is another FFT based method that computes Poisson-Boltzmann electrostatics4. 
HEX evaluates overlapping surface skins and electrostatic complementarity with Fourier 
correlation5. GRAMM focuses on low resolution docking, evaluating GSC with FFT6. PPD 
matches critical points using geometric hashing7. BiGGER searches maximal surface mapping 
and favorable amino acid contacts using a bit-mapping method8. DARWIN9 calculates molecular 
mechanics energies defined according to CHARMM21 using a genetic algorithm. 
 
We have developed an initial-stage docking algorithm called ZDOCK10, which optimizes 
desolvation, GSC and electrostatics using FFT. A layer of grid points that surround the receptor 
is identified, and the total number of grid points in this layer that overlap any grid points 
corresponding to ligand atoms, minus a clash penalty, is the GSC score. We showed that the 
desolvation component of our scoring function was the key to ZDOCK’s competitive 
performance, compared with several other algorithms with a similar goal10.  Subsequently, we 
discovered a novel pairwise shape complementarity function (PSC), which computes the total 
number of receptor-ligand atom pairs within a distance cutoff, minus a clash penalty.  When 
tested on a benchmark with 49 non-redundant test cases22, PSC consistently identified more near-
native structures and ranked them higher than GSC, and this superior performance was observed 
across all classes of complexes and at all prediction levels23. 
 
In this paper, we integrate PSC with desolvation (DE) and electrostatics (ELEC) to create a much 
more powerful scoring function PSC+DE+ELEC.  The resulting scoring function is tested on the 
same benchmark22 and proves superior to PSC alone23 and the GSC+DE+ELEC scoring function 
in our previous study10. For 44 test cases (90% of the benchmark), ZDOCK with 
PSC+DE+ELEC can retain at least one near-native prediction (also called a hit) within the top 
2000 predictions at a rotational sampling interval of 6°, with an average of 52 hits per test case.  
The improvement of PSC+DE+ELEC over GSC+DE+ELEC is most apparent in the 
antibody/antigen category of test cases, with the former producing more hits and better rankings 
for hits on practically all test cases.  We also carefully examine the five test cases which ZDOCK 
has difficulty with, and discuss the potential applications of different scoring functions for the 
initial stage of unbound docking. 

Scoring Functions 

The basic search algorithm of ZDOCK has been described in detail10.  In this paper, we focus on 
the comparison of different scoring functions. Our goal is to identify the scoring function that 
performs best for the initial stage of unbound docking, which entails ranking as many near-native 
structures as possible in the top few thousand predictions.  We consider four scoring functions: 
combining grid-based shape complementarity GSC with desolvation and electrostatics 
(GSC+DE+ELEC), pairwise shape complementarity (PSC), combining PSC with desolvation 
(PSC+DE), combining PSC with desolvation and electrostatics (PSC+DE+ELEC). Two of these 

 2



target functions have been described previously: GSC+DE+ELEC10 and PSC23.  The remaining 
two, PSC+DE and PSC+DE+ELEC, are described as follows. 
 
PSC+DE 
 
We use the Atomic Contact Energy (ACE)24 to estimate desolvation (DE).  ACE is defined as the 
free energy change of breaking two protein-atom/water contacts and forming a protein-
atom/protein-atom contact and a water-water contact.  ACE scores were derived from the 
observed protein-atom/protein-atom contacts in 90 high-resolution crystal structures for all pairs 
of 18 atom types.  The total desolvation score of a complex is simply the sum of the ACE scores 
of all receptor-ligand atom pairs within a distance cutoff of 6 Å.  In order to improve the 
computational speed using an FFT-based search algorithm, we use 18 non-pairwise ACE scores 
(the ei scores in Table 3 of 24), representing the score between one protein atom of a specific type 
and another protein atom of an “averaged” type.  Previously we combined this desolvation term 
with the grid based shape complementarity function GSC and showed a drastic improvement on 
docking performance10. 
  
PSC is composed of a favorable term and a penalty term. The favorable term calculates the total 
number of atom pairs between the receptor and the ligand within a distance cutoff (D plus the 
receptor atom radius).  It is similar to the above ACE-based desolvation energy, except that ACE 
assigns score eij to a pair of atoms of types i and j, and PSC assigns all atom pairs the same score 
regardless their types23.  The penalty term of PSC prevents clashes by assigning –81, –27 and –9 
to every core-core, surface-core and surface-surface grid point overlap respectively.   
 
The easiest way of combining PSC with ACE would be simply summing these two terms.  
However, positive PSC scores indicate good shape complementarity, with each atom pair 
receiving the score of 1, while ACE scores can be positive (unfavorable) or negative (favorable), 
ranging between 1.334 and -1.827.  In order to make these two scores compatible, we flip the 
signs of the PSC scores.  To keep the penalty term of PSC unaltered, we need to make the 
“favorable” component of the PSC+DE scoring function equal to or smaller than zero.  
Therefore, we decrease the PSC score for each atom pair from -1 to -1.334, to counter the most 
unfavorable ACE score.  Then the two terms are summed. Thus, a more negative score indicates 
a more favorable interaction energy. 
 
In order to compute PSC+DE efficiently using FFT, four discrete functions on an N N N× ×  
grid, PSCR , PSCL , DER  and DEL , are used to describe the shape and desolvation properties of the 
receptor and ligand, and the PSC+DE scoring function PSC DES +  is expressed as correlations of 
these four functions: 
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where PSCR  and PSCL  are real functions, and DER  and DEL  are complex functions.  Re[ ] and Im[ 
] denote the real and imaginary parts of a complex function.  If a protein atom has more than 1 
Å2 solvent accessible area, calculated using a water probe radius of 1.4 Å25, it is considered a 
surface atom. Otherwise, it is a core atom.  The “solvent excluding surface layer of the protein” 
is defined by the grid points corresponding to surface atoms.  All other grid points corresponding 
to core atoms are in the “protein core”.  “Nearby atoms” are atoms within the distance cutoff (D 
plus the receptor atom radius) of a grid point. Im[ ]DE DER Li  is divided by 2 since each atom pair 
has been counted twice.  
 
PSC+DE+ELEC 
 
Similar to our previous work10, we compute the electrostatics energy using the Coulombic 
formula, which is expressed as a function of the electrical potential generated by the receptor and 
the partial charges of ligand atoms.  We multiply the resulting electrostatics energy with a 
scaling factor β, and add it to PSC and DE scores.  In practice, this sum can be directly evaluated 
using the FFT search algorithm.  Two new discrete functions are involved: PSC ELECR +  and 

PSC ELECL + , in addition to DER  and DEL  defined in Equation [1].  
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In the above equation, the penalty component of PSC and ELEC have been assigned to the real 
and imaginary parts of PSC ELECR + , respectively. Thus, PSC+DE+ELEC has the same 
computational complexity as PSC+DE.  The PSC penalty is increased slightly to balance the 
increased favorable contribution by electrostatics. β is defaulted to 3, with no major impact on 
the performance when varied by 50-200%. The default β value does not indicate that the 
electrostatics energy contributes three times as much as PSC and DE do to the final scoring 
function.  In the original ACE publication, all ACE scores were multiplied by 1/21 to transform 
dimensionless contact energies into the kcal/mol unit24. Thus, the electrostatics energy 
contributes β/21=1/7 as much as PSC and DE.  This is consistent with the noisy nature of the 
Coulombic electrostatics.  In fact, FTDock could only use electrostatics as a filter and the authors 
indicated that it was too noisy to be a direct component of their scoring function3. 
 
Performance Evaluation 
 
We used version 0.0 of a benchmark developed in our lab22, which contained 23 
enzyme/inhibitor, 16 antibody/antigen and 10 other types of test cases.  For antibodies, we 
restricted the search to complementarity determining regions defined using only sequence 
information10.  For all other proteins, we assumed no binding site information and performed a 
full search.  The performance of different scoring functions is evaluated using success rate and 
hit count, as defined previously23. Given the number of predictions being evaluated for each test 
case (NP), success rate is the percentage of test cases in the benchmark, for which at least one 
near-native structure (hits) has been found, and hit count is the average number of hits per test 
case ranked within NP.  Hits are predictions with Root Mean Square Deviation (RMSD) below 
2.5 Å after superposition.  Superposition and RMSD calculation only involve the Cα atoms of 
interface residues, which are receptor (or ligand) residues with at least one atom within 10 Å of 
any atoms of the ligand (or receptor). 
 
Computational Implementation 
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ZDOCK is written in C, and parallelized using Message Passing Interface.  We have assigned 
different version numbers to the various scoring functions compared in this paper: ZDOCK1.3 
for GSC+DE+ELEC10, ZDOCK2.1 for PSC23, ZDOCK2.2 for PSC+DE (this work) and 
ZDOCK2.3 for PSC+DE+ELEC (this work).  The average computing time for ZDOCK2.2 or 
ZDOCK2.3 per complex on a 16 processor IBM-SP4 is 4 minutes. The program is freely 
available to academic researchers at http://zlab.bu.edu/~rong/dock. 

Results 

Performance Averaged over the Entire Benchmark 
 
For each test case, we obtain the number of hits ranked above some number of predictions being 
evaluated and the rank of the best ranked hit.  Table 1 contains the results for all four scoring 
functions at a 6° rotational sampling interval (∆=6°), corresponding to 54000 rotations.  The 
GSC+DE+ELEC results are not directly comparable with those in our previous paper10, since we 
have made 3 modifications: (1) Previously we rotate the ligand molecule evenly around the X-, 
Y-, and Z-axes; now we use a set of Euler angles corresponding to a uniformly distributed set of 
points on a projective sphere.  (2) We used to keep the top 10 translational orientations per 
rotation; now we only keep one, since we have discovered that the top 10 translations are usually 
extremely similar and keeping only the best one helps to remove false positives without affecting 
the ranking of the first hit.  (3) Now we randomly perturb all starting receptor and ligand 
orientations to avoid deliberately sampling a near-native orientation.  The calculation of PSC is 
the same as before, except that we previously reported the results for ∆=15° 23, and now we 
present the results for ∆=6° in Table 1. 
 
The average performance over the entire benchmark is best illustrated using Success Rate and 
Hit Count vs. Number of Predictions graphs (Figure 1).  Here, the data correspond to ∆=15°.  
Success rate reflects the average ability of a scoring function for ranking a hit within some 
number of predictions being evaluated (NP).  For example, at NP=5 the success rate is 31% (or 15 
test cases) for PSC+DE+ELEC, indicating that this scoring function ranks one or more hits in the 
top 5 for 15 test cases.  Figure 1a indicates that at most NP values PSC+DE+ELEC performs 
better than PSC+DE, which outperforms PSC.  Compared to the PSC family of scoring 
functions, GSC+DE+ELEC performs the best at NP=1; it becomes worse than PSC+DE+ELEC 
for NP>1, also worse than PSC+DE for NP>10, and even worse than PSC for NP>200.  At a 
rotational sampling density of 6° (graph not shown), the above description remains largely valid 
except that GSC+DE+ELEC is the worst performer for NP=1 (Table 2).  Moreover, 
PSC+DE+ELEC is clearly the best, with a success rate higher than those of all other scoring 
functions by 13% (or 6 complexes) at NP=1000.   
 
Hit count indicates the average number of hits a target function can retain within some number of 
predictions being evaluated (Figure 1b).  For example, at NP=5, the hit count for 
PSC+DE+ELEC is 0.4, meaning that this target function retains on average 0.4 hits per test case.  
Figure 1b indicates that adding DE to PSC leads to more hits over all NP values, and adding 
ELEC leads to even more hits.  If 1000 predictions are evaluated for each test case, the hit count 
is 5.2, 6.7 and 7.3 for PSC, PSC+DE and PSC+DE+ELEC respectively.  GSC+DE+ELEC has 
comparable hit count to PSC+DE+ELEC at NP<100.  For NP>100, it has lower hit count than 
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PSC+DE+ELEC, but higher than or comparable to PSC+DE.  At ∆=6°, the relative performance 
of the PSC family of scoring functions remains similar to the above description (graph not 
shown).  GSC+DE+ELEC and PSC+DE+ELEC have comparable hit counts throughout the 
entire range of NP.  
 
Previously, we reported that on average, denser rotational sampling leads to worse success rate 
but much higher hit count for PSC23.  This is also true for other scoring functions.  For some test 
cases (such as 10 out of 49 test cases in the case of PSC+DE+ELEC), finer sampling can 
produce better rankings for the best ranked hits, simply because these hits were missed at coarser 
sampling.  However, for many test cases, since the highest ranked prediction is not a hit, finer 
sampling tends to extend the list of false positives and thus lead to a worse rank for the best 
ranked hit.  Since our goal here is to achieve the best performance in the initial stage of protein 
docking, it is important for a scoring function to retain at least one hit in a reasonably small NP 
for the majority of test cases.  Most post-processing methods can comfortably handle 1-2 
thousand predictions.  Our experience on post-processing indicates that it is best to compare 
scoring functions for the top 1000 predictions at ∆=15°, and for 2000 predictions at ∆=6°.  
Therefore, in Table 1 we have included the number of hits each scoring function can retain 
within the top 2000 predictions. 
 
Similar to other docking algorithms, ZDOCK performs best on the enzyme/inhibitor category of 
test cases, compared to antibody/antigen and others.  This applies to all four scoring functions 
discussed here.  Nonetheless, the improvement of PSC+DE over PSC, as well as the 
improvement of PSC+DE+ELEC over both PSC+DE and PSC, is consistently observed across 
all three categories of test cases.  Interestingly, the improvement of PSC+DE+ELEC over 
GSC+DE+ELEC differs among three categories of test cases.  For the rest of the Results section, 
we focus on the comparison of these two scoring functions category by category.  In Figure 2, 
we plot success rate and hit count in each category of test cases, for both 6° and 15° rotational 
sampling intervals. 
 
Antibody/Antigen  
 
The superior performance of PSC+DE+ELEC over GSC+DE+ELEC in Figure 1 can be largely 
attributed to the antibody/antigen category of test cases.  Figure 2a indicates that at ∆=15°, 
PSC+DE+ELEC has drastically higher success rates than GSC+DE+ELEC for all NP values 
except NP=1.  The exception is due to 1AHW, for which GSC+DE+ELEC ranks a hit as the 
number 1 prediction, while PSC+DE+ELEC only ranks a hit at 10 for this test case.  
Interestingly, the relative performance for these two scoring functions on 1AHW is quite 
different at ∆=6° (Table 1): the highest rank for a hit is only 11 for GSC+DE+ELEC, and 
PSC+DE+ELEC ranks a hit at 7, indicating that its poorer performance at ∆=15° was due to 
under-sampling.  At ∆=6°, PSC+DE+ELEC has higher success rates for all NP values (Figure 
2a).  Figure 2b indicates that at either sampling density, PSC+DE+ELEC produces 
approximately twice as many hits as GSC+DE+ELEC, across the entire NP range. 
 
A case-by-case comparison indicates that PSC+DE+ELEC beats GSC+DE+ELEC on almost all 
test cases, both in terms of the ranking of the first hit and in terms of the number of hits retained 
(Table 1).  Impressively, except for one test case (1DQJ, with 1415 and 9249 being the best rank 
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for a hit at ∆=15° and 6° respectively), PSC+DE+ELEC is able to produce at least one hit within 
some reasonable number of predictions (we use NP=1000 at ∆=15° and NP=2000 at ∆=6°) for all 
other 19 antibody/antigen test cases.  This represents a significant improvement over previous 
first-stage unbound docking algorithms, which either examined very few antibody/antigen, or 
reported much worse performance on this class of test cases. 
 
Enzyme/Inhibitor  
 
In Figure 2c, we show that PSC+DE+ELEC consistently achieves higher success rates than 
GSC+DE+ELEC at both rotational sampling densities.  The only exception is that at ∆=15°, 
GSC+DE+ELEC ranks a hit as the number 1 prediction for 9 test cases, while PSC+DE+ELEC 
only succeeds in doing so for 7 test cases.  Figure 2d indicates GSC+DE+ELEC on average 
produces more hits than PSC+DE+ELEC, especially at ∆=6°.  Upon close examination of 
individual test cases in Table 1, we discover that the elevated hit count for GSC+DE+ELEC is 
due to its ability to retain many hits for six test cases (2SNI, 2SIC, 1ACB, 1MAH, 1UGH and 
1STF).  PSC+DE+ELEC also performs very well for the last five test cases, with over a dozen 
hits within the top 1000 predictions for each test case.  2SNI seems to be the only 
enzyme/inhibitor test case, with which the PSC family of scoring functions has some difficulty.  
In contrast, at ∆=6°, GSC+DE+ELEC struggles with four test cases (2KAI, 1BRS, 1FSS and 
1TAB).  Especially for 1TAB, GSC+DE+ELEC is not able to retain a hit within the top 1000 
predictions at ∆=15°, nor within the top 2000 predictions at ∆=6°. 
 
Others 
 
Figure 2e indicates that PSC+DE+ELEC prevails in the low NP range, while GSC+DE+ELEC 
takes over at larger NP.  Figure 2f indicates PSC+DE+ELEC produces many more hits than 
GSC+DE+ELEC at ∆=6°, while they perform comparably at ∆=15°.  Since test cases in this 
category are diverse, close examination of individual ones is important.  All scoring functions 
have failed on 1AVZ and 1MDA.  In addition, GSC+DE+ELEC fails on 1IGC.  PSC+DE+ELEC 
cannot find any hits for this test case at ∆=15° due to under-sampling.  The particular random 
starting orientation happens to produce poor results.  We have rerun the program at ∆=15° with 
10 random starting orientations, and obtained at least one hit in the top 1000 predictions for 8 
runs.  At ∆=6°, PSC+DE+ELEC successfully retains 3 hits in the top 2000 for 1IGC, with the 
best rank being 153.  However, PSC+DE+ELEC fails on two other test cases (2PCC and 1GLA), 
for which GSC+DE+ELEC performs well for both ∆ values.  For the remaining five test cases 
(1WQ1, 1ATN, 1SPB, 2BTF and 1A0O), PSC+DE+ELEC consistently performs better than 
GSC+DE+ELEC, indicated by a better rank for the first hit and/or more hits.  PSC+DE+ELEC 
generates a large number of hits for 1WQ1 at ∆=6°, which accounts for its high hit count in 
Figure 2f. 

Discussion 

We have developed a new scoring function PSC+DE+ELEC for the initial stage of unbound 
docking.  It combines our recently developed shape complementarity scoring function PSC23 
with desolvation and electrostatics.  We compared PSC+DE+ELEC with three other scoring 
functions – PSC, PSC+DE and GSC+DE+ELEC – on a large benchmark of test cases.  We have 
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implemented all of these scoring functions in our FFT-based docking algorithm ZDOCK.    Our 
results demonstrate that with PSC+DE+ELEC we are getting close to solving the initial stage of 
the unbound docking problem.  Out of 49 test cases, only three proved difficult for all scoring 
functions (1DQJ, 1AVZ and 1MDA).  The best scoring function PSC+DE+ELEC failed on two 
more test cases (2PCC and 1GLA).  Therefore, for 90% test cases, ZDOCK with 
PSC+DE+ELEC can retain at least one hit within the top 2000 predictions at ∆=6°, with an 
average of 52 hits per test case.   
 
The three most difficult test cases are: Hyhel-63 Fab / Lysozyme (1DQJ), HIV-1 NEF / FYN 
tyrosine kinase SH3 domain (1AVZ) and Methylamine dehydrogenase / Amicyanin (1MDA).  
The other two test cases that PSC+DE+ELEC had difficulty with were Cytochrome C Peroxidase 
/ Iso-1-Cytochrome C (2PCC) and Glycerol kinase / GSF III (1GLA).  The first possible 
explanation that comes to mind is that these are low affinity complexes.  Indeed, the binding free 
energy is -11.5 kcal/mol for 1DQJ26, -10.4 kcal/mol for 1AVZ27, -7.2 kcal/mol for 1MDA28, -
10.0 kcal/mol for 2PCC29 and -7.1 kcal/mol for 1GLA30, respectively.  These are all within the 
weaker half of the affinity range in the benchmark.   
 
Poor bound docking results on a test case can suggest explanations for the poor performance of 
unbound docking on the same test case.  Applying PSC+DE+ELEC with default parameters for 
unbound docking to the bound components of the crystal complexes in all 49 test cases, we were 
able to rank a hit as the number 1 prediction for 29 test cases, and at least one hit in the top 10 for 
11 additional test cases.  However, the best rank of a hit for 1MDA was 1377, much worse than 
all other test cases.  2PCC had the second worst rank at 658.  Both 1MDA and 2PCC are electron 
transfer complexes.  Close inspection of the crystal complexes reveals many cavities at the 
interface, perhaps important for the electron transfer function.   Therefore, we conclude that the 
poor performance for 1MDA and 2PCC is due to their weak binding affinities. 
 
The second possible explanation is conformational flexibility, especially for the test cases that 
bound docking performs well on.   Bound docking on 1DQJ and 1AVZ produces the best ranked 
hits as the number 1 and 6 predictions, respectively.   Therefore, these two test cases are not 
inherently difficult.  Close inspection reveals significant backbone conformational changes for 
both of these two test cases: the RMSD between the bound and unbound conformations of 
residues 99-103 of lysozyme in 1DQJ is 3.35 Å.  After replacing these residues in the unbound 
structure with their bound conformations, PSC+DE+ELEC is able to identify one hit ranked at 
742.  The N-terminal tail of Nef in 1AVZ, which forms part of the binding site for the Fyn SH3 
domain, is highly flexible in the unbound state (residues 71-73 disordered and residues 74-78 
with RMSD of 1.78 Å compared to the bound structure).  After replacing these residues with 
their bound conformations, PSC+DE+ELEC was able to identify a hit ranked at 1667.  Both of 
the above two calculations were performed at ∆=6°. 
 
The poor performance on 1GLA is a bit puzzling. Unlike the four test cases described above, 
1GLA is an unbound/bound test case. Unbound docking had a rank for the first hit at 181, 
somewhat poor.  Its weak binding free energy (-7.1 kcal/mol) could take the blame. We have 
noticed that PSC is particularly capable of identifying large concave binding pockets23. Visual 
inspection indicates that numerous top ranked false positives form clusters at three large concave 
pockets of the glycerol kinase, with one of them being its deep funnel-like active site; 
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unfortunately none of these is the binding site for GSF-III.  Therefore, two reasons could account 
for 1GLA: poor binding affinity and the high tendency of PSC+DE+ELEC in docking molecules 
into large pockets. 
 
Ultimately, ZDOCK must be combined with a refinement method.  If the refinement method can 
handle 2000 predictions per test case, we recommend using the top 2000 predictions generated at 
∆=6°, since we observe under-sample at ∆=15° for some test cases.  The number of hits that each 
scoring function can retain within the top 2000 predictions at ∆=6° is 44 for PSC+DE+ELEC, 42 
for PSC, 40 for PSC+DE and 39 for GSC+DE+ELEC respectively (Table 1). The difference can 
be almost completely explained by the performance on the antibody/antigen category of test 
cases. Even though PSC+DE+ELEC is the best, the other three scoring functions are not too far 
behind at NP=2000. Since the performance of a refinement method can be heavily influenced by 
the type of false positives produced by ZDOCK, and the scoring functions discussed here 
generate different types of false positives, it is likely that a refinement method works best with 
PSC, and not with PSC+DE+ELEC. Therefore, we have made all four scoring functions 
available as different versions of ZDOCK. The top predictions for all test cases in the benchmark 
are also available at http://zlab.bu.edu/~rong/dock, and they should be helpful for the 
development of refinement methods. 
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 Table 1: Docking performance with 6° rotational sampling interval a 
GSC+DE+ELEC PSC PSC+DE PSC+DE+ELEC Test 

Caseb Hitsc Rankd Hitsc Rankd Hitsc Rankd Hitsc Rankd RMSDe

1CGI 77 3 54 4 77 7 77 4 2.41 
1CHO 93 22 66 1 82 1 99 3 1.57 
2PTC 62 65 2 1655 20 434 48 193 1.83 
1TGS 86 5 107 3 145 1 109 3 2.22 
2SNI 60 169 0 7434 1 1544 1 1262 2.22 
2SIC 115 2 24 241 53 46 52 11 2.37 
1CSE 87 3 3 1537 14 429 29 198 2.20 
2KAI 1 1772 3 1399 19 339 16 388 1.61 
1BRC 24 52 16 173 42 109 54 24 2.32 
1ACB 199 3 38 25 79 12 93 18 1.33 
1BRS 3 1019 34 61 28 67 21 65 2.13 
1JTG 72 1 69 3 76 3 82 1 1.52 
1MAH 58 9 6 849 23 97 28 24 1.29 
1UGH 58 14 4 305 28 6 20 8 2.25 
1DFJ 43 2 15 37 11 6 51 1 2.48 
1FSS 2 1066 5 731 11 204 15 50 1.52 
1AVW 2 704 28 45 29 12 52 3 2.07 
1PPE* 318 1 272 1 364 1 393 1 0.90 
1TAB* 
1UDI* 

0 10783 47 65 8 565 50 
35 

79 
5 

1.21 
41 198 16 31 34 2 1.19 

1STF* 152 1 42 1 87 1 83 1 0.88 
2TEC* 226 1 77 1 180 1 185 1 0.76 
4HTC* 73 2 54 1 62 3 57 3 2.46 

          
1MLC 16 134 3 1106 7 433 17 128 1.65 
1WEJ 1 1940 4 1396 0 2597 22 183 1.04 
1AHW 64 11 28 26 27 76 67 7 1.82 
1DQJ 0 46002 1 1341 0 6055 0 9249 2.37 
1BVK 0 40864 2 974 4 496 2 821 2.34 
1FBI* 3 561 2 1786 1 1827 5 642 2.03 
2JEL* 0 4296 62 112 42 91 35 233 1.46 
1BQL* 114 4 16 172 33 127 70 13 1.07 
1JHL* 0 4259 15 404 0 2275 12 333 1.37 
1NCA* 9 211 55 2 56 1 67 1 1.06 
1NMB* 3 1108 6 693 3 1473 9 135 0.98 
1MEL* 32 9 52 12 108 4 71 3 1.19 
2VIR* 0 3003 3 476 1 1896 3 1101 1.03 
1EO8* 0 8420 0 4366 0 5801 2 1497 0.96 
1QFU* 4 606 10 407 12 307 18 388 1.14 
1IAI* 3 905 0 2525 2 1151 3 997 1.70 

          
2PCC 6 702 0 - 0 - 0 22338 2.49 
1WQ1 10 131 26 5 24 28 54 15 1.31 
1AVZ 0 39047 0 - 0 - 0 53466 1.61 
1MDA 0 16183 0 33988 0 32051 0 18034 2.29 
1IGC* 0 5088 6 22 15 38 3 153 1.20 
1ATN* 47 13 1 360 9 118 24 7 0.80 
1GLA* 19 214 0 - 0 28601 0 9794 1.55 
1SPB* 106 1 75 1 103 1 112 1 0.61 
2BTF* 17 27 13 32 6 166 35 2 0.95 
1A0O* 9 619 2 833 0 7889 4 284 2.45 
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a For bolded test cases, PSC+DE+ELEC ranked at least one hit within the top 20 predictions. 
b 4-letter Protein Data Bank (PDB) code for the crystal complex of a test case.  
c Number of hits in the top 2000 predictions. Hits are defined as docked structures with interface 

RMSD ≤ 2.5 Å from the crystal complex; see Methods for more details. 
d Rank of the best ranked hit. “–” indicates that no hit was found in the first 54000 predictions. 
e RMSD for the best ranked hit. “–” indicates that no hit was found in the first 54000 predictions. 
* Unbound/bound complexes. 
 



Figure Captions 

 
Figure 1. The performance of PSC+DE+ELEC (  and solid orange line), PSC+DE ( and solid 
cyan line), PSC (  and dash black line) and GSC+D+E (  and solid red line) are compared 
according to success rate (a) and hit count (b). The rotational sampling interval used here is 15°. 
 
Figure 2. The performance of PSC+DE+ELEC (  and solid orange line for 15°, and dash 
blue line for 6°), and GSC+DE+ELEC (  and solid red line for 15°,  and dash black line for 
6°) are compared within 16 antibody/antigen test cases (a and b), 23 enzyme/inhibitor test cases 
(c and d) and 10 test cases in the others category (e and f).  The comparison is based on success 
rate for (a), (c) and (e), and based on hit count for (b), (d) and (f).  
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Figure 1a
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Figure 1b

0

1

2

3

4

5

6

7

8

0 200 400 600 800 1000
Number of Predictions(NP)

H
it 

C
ou

nt

PSC

GSC+DE+ELEC

PSC+DE+ELEC

PSC+DE



Figure 2a

Antibody / Antigen
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Figure 2b
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Figure 2c

Enzyme / Inhibitor
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Figure 2d

Enzyme / Inhibitor
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Figure 2e

Others
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Figure 2f
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