
Intel® Math Kernel Library
for the Linux* OS
User’s Guide

October 2007

Document Number: 314774-005US

World Wide Web: http://developer.intel.com

http://developer.intel.com/software/products/perflib/index.htm

ii

Version Version Information Date

-001 Original issue. Documents Intel® Math Kernel Library (Intel® MKL) 9.0 gold
release.

September 2006

-002 Documents Intel® MKL 9.1 beta release. “Getting Started”, “LINPACK and MP
LINPACK Benchmarks” chapters and “Support for Third-Party and Removed
Interfaces” appendix added. Existing chapters extended. Document restruc-
tured. List of examples added.

January 2007

-003 Documents Intel® MKL 9.1 gold release. Existing chapters extended. Docu-
ment restructured. More aspects of ILP64 interface discussed. Section “Config-
uring Eclipse CDT to Link with Intel MKL” added to chapter 3. Cluster content is
organized into one separate chapter 9 “Working with Intel® Math Kernel
Library Cluster Software” and restructured, appropriate links added.

June 2007

-004 Documents Intel® MKL 10.0 Beta release. Layered design model has been
described in chapter 3 and the content of the entire book adjusted to the
model. Automation of setting environment variables at startup has been
described in chapter 4. New Intel MKL threading controls have been described
in chapter 6. The User’s Guide for Intel MKL merged with the one for Intel MKL
Cluster Edition to reflect consolidation of the respective products.

September 2007

-005 Documents Intel® MKL 10.0 Gold release. Configuring of Eclipse CDT 4.0 to
link with Intel MKL has been described in chapter 3. Intel® Compatibility

OpenMP* run-time compiler library (libiomp) has been described.

October 2007

iii

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY
APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR
DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be
obtained by calling 1-800-548-4725, or by visiting Intel's Web Site.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor
family, not across different processor families. See http://www.intel.com/products/processor_number for details.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Atom Inside, Centrino Inside, Centrino logo, Core
Inside, FlashFile, i960, InstantIP, Intel, Intel logo, Intel386, Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Atom
Inside, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge,
Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, IPLink, Itanium,
Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium Inside, skoool, Sound Mark, The Journey Inside,
VTune, Xeon, and Xeon Inside are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2006 - 2008, Intel Corporation. All rights reserved.

http://www.intel.com/

iv

Contents

Chapter 1 Overview
Technical Support ... 1-1
About This Document .. 1-1

Purpose... 1-2
Audience ... 1-2
Document Organization ... 1-2
Term and Notational Conventions.. 1-4

Chapter 2 Getting Started
Checking Your Installation.. 2-1
Obtaining Version Information .. 2-2
Compiler Support ... 2-2
Before You Begin Using Intel MKL ... 2-2

Chapter 3 Intel® Math Kernel Library Structure
High-level Directory Structure .. 3-1
Layered Model Concept.. 3-2

Layers... 3-3
Sequential Version of the Library .. 3-4
Support for ILP64 Programming.. 3-5
Intel® MKL Versions ... 3-11
Directory Structure in Detail... 3-11

Dummy Libraries .. 3-19
Accessing the Intel® Math Kernel Library Documentation............... 3-19

Contents of the Documentation Directory................................. 3-20

v

Intel® Math Kernel Library User’s Guide

Accessing Man Pages .. 3-20

Chapter 4 Configuring Your Development Environment
Setting Environment Variables.. 4-1

Automating the Process... 4-1
 Configuring Eclipse CDT to Link with Intel MKL 4-2

Configuring Eclipse CDT 4.0 ... 4-2
Configuring Eclipse CDT 3.x ... 4-3

Customizing the Library Using the Configuration File 4-4
Note on the Configuration file for Out-of-Core (OOC) PARDISO*

Solver... 4-5

Chapter 5 Linking Your Application with Intel® Math Kernel Library
Selecting Between Linkage Models.. 5-1

Static Linking... 5-1
Dynamic Linking... 5-2
Making the Choice .. 5-2
Intel MKL-specific Linking Recommendations 5-3

Link Command Syntax .. 5-3
Selecting Libraries to Link.. 5-6

Linking Examples ... 5-7
Linking with Interface Libraries... 5-9
Linking with Threading Libraries ... 5-9
Notes on Linking .. 5-11

Building Custom Shared Objects... 5-11
Intel MKL Custom Shared Object Builder.................................. 5-11

Specifying Makefile Parameters .. 5-12
Specifying List of Functions.. 5-12

Chapter 6 Managing Performance and Memory
Using Intel® MKL Parallelism ... 6-1

Techniques to Set the Number of Threads 6-3
Avoiding Conflicts in the Execution Environment 6-3
Setting the Number of Threads Using OpenMP* Environment

Variable .. 6-4

Contents

vi

Changing the Number of Threads at Run Time............................ 6-5
Using Additional Threading Control ... 6-8

Tips and Techniques to Improve Performance 6-13
Coding Techniques... 6-13
Hardware Configuration Tips ... 6-14
Managing Multi-core Performance .. 6-15
Operating on Denormals... 6-16
FFT Optimized Radices ... 6-16

Using Intel® MKL Memory Management 6-16
Redefining Memory Functions.. 6-17

Chapter 7 Language-specific Usage Options
Using Language-Specific Interfaces with Intel® MKL 7-1
Mixed-language programming with Intel® MKL 7-4

Calling LAPACK, BLAS, and CBLAS Routines from C Language
Environments .. 7-4

Calling BLAS Functions That Return the Complex Values in C/C++
Code .. 7-6

Invoking Intel® MKL Functions from Java Applications 7-9

Chapter 8 Coding Tips
Aligning Data for Numerical Stability ... 8-1

Chapter 9 Working with Intel® Math Kernel Library Cluster Software
Linking with ScaLAPACK and Cluster FFTs 9-1
Setting the Number of Threads .. 9-2
Using Shared Libraries .. 9-3

ScaLAPACK Tests.. 9-3
Examples for Linking with ScaLAPACK and Cluster FFT 9-3

Examples for C Module.. 9-3
Examples for Fortran Module.. 9-4

Chapter 10 LINPACK and MP LINPACK Benchmarks
Intel® Optimized LINPACK Benchmark for Linux OS* 10-1

Contents .. 10-1
Running the Software .. 10-2

vii

Intel® Math Kernel Library User’s Guide

Known Limitations .. 10-3
Intel® Optimized MP LINPACK Benchmark for Clusters 10-4

Contents ... 10-5
Building MP LINPACK .. 10-6
New Features... 10-7
Benchmarking a Cluster .. 10-7

Appendix A Intel® Math Kernel Library Language Interfaces Support

Appendix B Support for Third-Party Interfaces
GMP* Functions ... B-1
FFTW Interface Support .. B-1

Index

List of Tables
Table 1-1 Notational conventions ... 1-4

Table 2-1 What you need to know before you get started 2-3

Table 3-1 High-level directory structure .. 3-1

Table 3-2 Intel® MKL ILP64 concept .. 3-7

Table 3-3 Compiler options for the ILP64 interface 3-8

Table 3-4 Integer types .. 3-9

Table 3-5 Intel® MKL include files.. 3-9

Table 3-6 ILP64 support in Intel® MKL 3-10

Table 3-7 Detailed directory structure... 3-12

Table 3-8 Contents of the doc directory 3-20

Table 5-1 Quick comparison of Intel® MKL linkage models 5-2

Table 5-2 Interface layer library for linking with the Absoft compilers 5-9

Table 5-3 Selecting the Threading Layer 5-10

Table 6-1 How to avoid conflicts in the execution environment for
your threading model... 6-4

Table 6-2 Intel® MKL environment variables for threading controls .. 6-8

Table 6-3 Interpretation of MKL_DOMAIN_NUM_THREADS values... 6-11

Contents

viii

Table 7-1 Interface libraries and modules 7-1

Table 10-1 Contents of the LINPACK Benchmark 10-2

Table 10-2 Contents of the MP LINPACK Benchmark 10-5

List of Examples
Example 4-1 Intel® MKL configuration file 4-4

Example 4-2 Redefining library names using the configuration file.... 4-5

Example 6-1 Changing the number of processors for threading........ 6-5

Example 6-2 Setting the number of threads to one 6-9

Example 6-3 Setting an affinity mask by operating system means
using an Intel® compiler... 6-15

Example 6-4 Redefining memory functions 6-18

Example 7-1 Calling a complex BLAS Level 1 function from C 7-7

Example 7-2 Calling a complex BLAS Level 1 function from C++...... 7-8

Example 7-3 Using CBLAS interface instead of calling BLAS directly
from C ... 7-9

Example 8-1 Aligning addresses at 16-byte boundaries 8-2

1-1

Overview 1
Intel® Math Kernel Library (Intel® MKL) offers highly optimized, thread-safe math
routines for science, engineering, and financial applications that require maximum
performance.

Technical Support
Intel provides a support web site, which contains a rich repository of self help information,
including getting started tips, known product issues, product errata, license information,
user forums, and more. Visit the Intel® MKL support website at
http://www.intel.com/software/products/support/ .

About This Document
To succeed in developing applications with Intel MKL, information of two kinds is basically
required. Reference information covers routine functionality, parameter descriptions,
interfaces and calling syntax as well as return values. To get this information, see Intel MKL
Reference Manual first. However, a lot of questions not answered in the Reference Manual
arise when you try to call Intel MKL routines from your applications. For example, you need
to know how the library is organized, how to configure Intel MKL for your particular
platform and problems you are solving, how to compile and link your applications with Intel
MKL. You also need understanding of how to obtain best performance, take advantage of
Intel MKL threading and memory management. Other questions may deal with specifics of
routine calls, for example, passing parameters in different programming languages or
coding inter-language routine calls. You may be interested in the ways of estimating and
improving computation accuracy. These and similar issues make up Intel MKL usage
information.

This document focuses on the usage information needed to call Intel MKL routines from
user's applications running on the Linux* OS. Linux usage of Intel MKL has its particular
features, which are described in this guide, along with those that do not depend upon a
particular OS.

http://www.intel.com/software/products/support/

1-2

1 Intel® Math Kernel Library User’s Guide

This guide contains usage information for Intel MKL routines and functions comprised in
the function domains listed in Table A-1 (in Appendix A).

It is assumed that you use this document after the installation of Intel MKL is complete on
your machine. If you have not installed the product yet, use Intel MKL Installation Guide
(file Install.txt) for assistance.

The user’s guide should be used in conjunction with the latest version of the Intel® Math
Kernel Library for Linux* Release Notes document to reference how to use the library in
your application.

Purpose
Intel® Math Kernel Library for Linux* User’s Guide is intended to assist in mastering the
usage of the Intel MKL on Linux. In particular, it

• Helps you start using the library by describing the steps you need to perform after the
installation of the product

• Shows you how to configure the library and your development environment to use the
library

• Acquaints you with the library structure

• Explains in detail how to link your application to the library and provides simple usage
scenarios

• Describes various details of how to code, compile, and run your application with Intel
MKL for Linux.

Audience
The guide is intended for Linux programmers whose software development experience may
vary from beginner to advanced.

Document Organization
The document contains the following chapters and appendices.

Chapter 1 Overview. Introduces the concept of the Intel MKL usage
information, describes the document’s purpose and organization as
well as explains notational conventions.

Chapter 2 Getting Started. Describes necessary steps and gives basic
information needed to start using Intel MKL after its installation.

Overview 1

1-3

Chapter 3 Intel® Math Kernel Library Structure. Discusses the structure of
the Intel MKL directory after installation at different levels of detail
as well as the library versions and parts.

Chapter 4 Configuring Your Development Environment. Explains how to
configure Intel MKL and your development environment for the use
with the library.

Chapter 5 Linking Your Application with Intel® Math Kernel Library.
Compares static and dynamic linking models; describes the general
link line syntax to be used for linking with Intel MKL libraries;
explains which libraries should be linked with your application for
your particular platform and function domain; discusses how to
build custom dynamic libraries.

Chapter 6 Managing Performance and Memory. Discusses Intel MKL
threading; shows coding techniques and gives hardware
configuration tips for improving performance of the library;
explains features of the Intel MKL memory management and, in
particular, shows how to replace memory functions that the library
uses by default with your own ones.

Chapter 7 Language-specific Usage Options. Discusses mixed-language
programming and the use of language-specific interfaces.

Chapter 8 Coding Tips. Presents coding tips that may be helpful to meet
certain specific needs.

Chapter 9 Working with Intel® Math Kernel Library Cluster Software.
Discusses usage of ScaLAPACK and Cluster FFTs mainly describing
linking of your application with these function domains, including
C- and Fortran-specific linking examples; gives information on the
supported MPI.

Chapter 10 LINPACK and MP LINPACK Benchmarks. Describes the Intel®
Optimized LINPACK Benchmark for Linux* and Intel® Optimized
MP LINPACK Benchmark for Clusters.

Appendix A Intel® Math Kernel Library Language Interfaces Support.
Summarizes information on language interfaces that Intel MKL
provides for each function domain.

Appendix B Support for Third-Party Interfaces. Describes in brief certain
interfaces that Intel MKL supports.

The document also includes an Index.

1-4

1 Intel® Math Kernel Library User’s Guide

Term and Notational Conventions
The following term is used in the manual in reference to the operating system:

Linux* OS This term refers to information that is valid on all supported Linux*
operating systems.

The document employs the following font conventions and symbols:

Table 1-1 Notational conventions

Italic Italic is used for emphasis and also indicates document names in body text, for
example:
see Intel MKL Reference Manual

Monospace
lowercase

Indicates filenames, directory names and pathnames, for example:
 libmkl_core.a , /opt/intel/mkl/10.0.039

Monospace
lowercase mixed
with uppercase

Indicates commands and command-line options, for example:

icc myprog.c -L$MKLPATH -I$MKLINCLUDE -lmkl -lguide -lpthread ;

C/C++ code fragments, for example:

a = new double [SIZE*SIZE];

UPPERCASE
MONOSPACE

Indicates system variables, for example, $MKLPATH

Monospace italic Indicates a parameter in discussions: routine parameters, for example, lda;
makefile parameters, for example, functions_list; etc.
When enclosed in angle brackets, indicates a placeholder for an identifier, an
expression, a string, a symbol, or a value, for example, <mkl directory>.
Substitute one of these items for the placeholder.

[items] Square brackets indicate that the items enclosed in brackets are optional.

{ item | item } Braces indicate that only one of the items listed between braces should be
selected. A vertical bar (|) separates the items

2-1

Getting Started 2
This chapter helps you start using the Intel® Math Kernel Library (Intel® MKL) for the
Linux* OS by giving basic information you need to know and describing the necessary
steps you need to perform after the installation of the product.

Checking Your Installation
Once you complete the installation of Intel MKL, it is helpful to perform a basic verification
task that confirms proper installation and configuration of the library.

1. Check that the directory you chose for the installation has been created. The default
installation directory is /opt/intel/mkl/10.0.xxx, where xxx is the package
number, for example, /opt/intel/mkl/10.0.039

2. Update build scripts so that they point to the desired version of Intel MKL if you choose
to keep multiple versions installed on your computer. Note that you can have several
versions of Intel MKL installed on your computer, but when installing, you are required
to remove Beta versions of this software.

3. Check that the following six files are placed in the tools/environment directory:

mklvars32.sh

mklvarsem64t.sh

mklvars64.sh

mklvars32.csh

mklvarsem64t.csh

mklvars64.csh

You can use these files to set environmental variables, such as INCLUDE,
LD_LIBRARY_PATH, and MANPATH, in the current user shell.

2-2

2 Intel® Math Kernel Library User’s Guide

Obtaining Version Information
Intel MKL provides a facility by which you can obtain information about the library (for
example, the version number). Two methods are provided for extracting this information.
First, you may extract a version string using the function MKLGetVersionString. Or,
alternatively, you can use the MKLGetVersion function to obtain the MKLVersion
structure which contains the version information. See the Support Functions chapter in the
Intel MKL Reference Manual for the function descriptions and calling syntax. Sample
programs for extracting version information are provided in the examples/versionquery
directory. A makefile is also provided to automatically build the examples and output
summary files containing the version information for the current library.

Compiler Support
Intel supports Intel® MKL for use only with compilers identified in the Release Notes.
However, the library has been successfully used with other compilers as well.

When using the CBLAS interface, the header file mkl.h will simplify program development,
since it specifies enumerated values as well as prototypes for all the functions. The header
determines if the program is being compiled with a C++ compiler and, if it is, the included
file will be correct for use with C++ compilation.

Starting with Intel MKL 9.1, full support is provided for the GNU gfortran* compiler, which
differs from the Intel® Fortran Compiler in calling conventions for functions that return
complex data. Absoft Fortran compilers are supported as well. See Linking with the Absoft
compilers in chapter 5 on the usage specifics of the Absoft compilers.

Before You Begin Using Intel MKL
Before you get started using the Intel MKL, sorting out a few important basic concepts will
greatly help you get off to a good start.

The table below summarizes some important things to think of before you start using Intel
MKL.

Getting Started 2

2-3

Table 2-1 What you need to know before you get started

Target platform Identify the architecture of your target machine:
• IA-32
• Intel® 64
• IA-64 (Itanium® processor family)
Reason. Intel MKL libraries, which you should link with your application, are
located in directories corresponding to your particular architecture (see Intel® MKL
Versions). So, you should provide proper paths in your link lines (see Linking
Examples). To configure your development environment for the use with Intel MKL,
set your environment variables using the script corresponding to your architecture
(see Setting Environment Variables).

Mathematical
problem

Identify all Intel MKL function domains that problems you are solving require:
• BLAS
• Sparse BLAS
• LAPACK
• ScaLAPACK
• Sparse Solver routines
• Vector Mathematical Library functions
• Vector Statistical Library functions
• Fourier Transform functions (FFT)
• Cluster FFT
• Interval Solver routines
• Trigonometric Transform routines
• Poisson, Laplace, and Helmholtz Solver routines
• Optimization (Trust-Region) Solver routines
Reason. The function domain you intend to use narrows the search in the
Reference Manual for specific routines you need. Additionally, the link line that you
use to link your application with Intel MKL cluster software depends on the function
domains you intend to employ (see Working with Intel® Math Kernel Library Cluster
Software). Note also that coding tips may depend on the function domain (see Tips
and Techniques to Improve Performance).

Programming
language

Though Intel MKL provides support for both Fortran and C/C++ programming, not
all the function domains support a particular language environment, for example,
C/C++ or Fortran90/95. Identify the language interfaces that your function
domains support (see Intel® Math Kernel Library Language Interfaces Support).
Reason. In case your function domain does not directly support the needed
environment, you can use mixed-language programming. See Mixed-language
programming with Intel® MKL.
See also Using Language-Specific Interfaces with Intel® MKL for a list of
language-specific interface libraries and modules and an example how to generate
them.

2-4

2 Intel® Math Kernel Library User’s Guide

Threading model Select among the following options how you are going to thread your application:
• Your application is already threaded
• You may want to use the Intel® threading capability, that is, Legacy OpenMP*

run-time library (libguide) or Compatibility OpenMP* run-time library
(libiomp), or a threading capability provided by a third-party compiler

• You do not want to thread your application.
Reason. By default, the OpenMP* software sets the number of threads that Intel
MKL uses. If you need a different number, you have to set it yourself using one of
the available mechanisms. For more information, and especially, how to avoid
conflicts in the threaded execution environment, see Using Intel® MKL Parallelism.
Additionally, the compiler that you use to thread your application determines which
threading library you should link with your application (see Linking Examples),

Linking model Decide which linking model is appropriate for linking your application with Intel MKL
libraries:
• Static
• Dynamic
Reason. For information on the benefits of each linking model, link command
syntax and examples, link libraries as well as on other linking topics, like how to
save disk space by creating a custom dynamic library, see Linking Your Application
with Intel® Math Kernel Library.

MPI used Reason: To link your application with ScaLAPACK and/or Cluster FFT, the libraries
corresponding to your particular MPI should be included in the link line (see Working
with Intel® Math Kernel Library Cluster Software).

Table 2-1 What you need to know before you get started (continued)

3-1

Intel® Math Kernel Library
Structure 3

The chapter discusses the structure of the Intel® Math Kernel Library (Intel® MKL) and, in
particular, the structure of the Intel MKL directory after installation at different levels of
detail as well as the library versions and parts.

Starting with version 10.0, Intel MKL employs the layered model (see Layered Model
Concept for details), which is a drastic design change aimed to streamline the library
structure, reduce its size, and add usage flexibility.

High-level Directory Structure
Table 3-1 shows a high-level directory structure of Intel MKL after installation.

Table 3-1 High-level directory structure

Directory Comment

<mkl directory> Main directory; by default
"/opt/intel/mkl/10.0.xxx",
where xxx is the Intel MKL package number,
for example, "/opt/intel/mkl/10.0.039"

<mkl directory>/doc Documentation directory

<mkl directory>/man/man3 Contains man pages for Intel MKL functions

<mkl directory>/examples A source and data for examples

<mkl directory>/include Contains INCLUDE files for the library routines as well as
for test and example programs

<mkl directory>/interfaces/blas95 Contains Fortran 90 wrappers for BLAS and a makefile
to build the library

<mkl directory>/interfaces/lapack95 Contains Fortran 90 wrappers for LAPACK and a
makefile to build the library

3-2

3 Intel® Math Kernel Library User’s Guide

Layered Model Concept
The Intel Math Kernel Library has long had a structure that is not visible to the user except
for the 32-bit version for Windows* OS. In that case, two interface libraries are provided,
one of which the user needs to select at run time. Both libraries are relatively small and
independent of the specific IA-32 architecture based processor. The use of these files
makes it possible to support two different compiler interface standards without greatly
increasing the size of the library, as duplication of most of the library, which is independent
of the interface, is avoided.

<mkl directory>/interfaces/fftw2xc Contains wrappers for FFTW version 2.x (C interface) to
call Intel MKL FFTs

<mkl directory>/interfaces/fftw2xf Contains wrappers for FFTW version 2.x (Fortran
interface) to call Intel MKL FFTs

<mkl directory>/interfaces/fftw3xc Contains wrappers for FFTW version 3.x (C interface) to
call Intel MKL FFTs

<mkl directory>/interfaces/fftw3xf Contains wrappers for FFTW version 3.x (Fortran
interface) to call Intel MKL FFTs

<mkl directory>
/interfaces/fftw2x_cdft

Contains wrappers for MPI FFTW version 2.x to call the
Intel MKL Cluster FFT interface

<mkl directory>/tests A source and data for tests

<mkl directory>/lib/32 Contains static libraries and shared objects for IA-32
architecture

<mkl directory>/lib/em64t Contains static libraries and shared objects for Intel®
64 architecture (formerly, Intel® EM64T)

<mkl directory>/lib/64 Contains static libraries and shared objects for IA-64
architecture (Itanium® processor family)

<mkl directory>/benchmarks/linpack Contains the OMP version of the LINPACK benchmark

<mkl
directory>/benchmarks/mp_linpack

Contains the MPI version of the LINPACK benchmark

<mkl directory>/tools/builder Contains tools for creating custom dynamically linkable
libraries

<mkl directory>/tools/environment Contains shell scripts to set environmental variables in
the user shell

<mkl directory>/tools/support Contains a utility for reporting the package ID and
license key information to Intel® Premier Support

<mkl directory>/tools/plugins/

com.intel.mkl.help

Contains an Eclipse plug-in with Intel MKL Reference
Manual in WebHelp format. See Doc_Index.htm for
comments.

Table 3-1 High-level directory structure (continued)

Directory Comment

Intel® Math Kernel Library Structure 3

3-3

Starting with release 10.0, Intel MKL is extending this approach to support a richer set of
circumstances, compilers and threading in particular.

Interfaces. On Linux systems based on IA-64 architecture, the Intel® Fortran Compiler
returns complex values differently than gnu and certain other compilers do. Rather than
duplicate the library for these differences, separate interface libraries are provided, which
ease the support of differences between compilers while constraining the size of the library.
Similarly, LP64 can be supported on top of ILP64 through an interface. Moreover, certain
software vendors have requested support of legacy supercomputers where single precision
means 64-bit arithmetic. Again, an interface library provides the needed mapping.

Threading. Intel MKL has long employed function-level threading throughout the library,
choosing to avoid loop-level threading for efficiency reasons. Consequently, all the
threading can be constrained to a relatively small set of functions and collected into a
library. All references to compiler-specific run-time libraries are generated in these
functions. Compiling them with different compilers and providing a threading library layer
for each supported compiler permits Intel MKL to work in programs threaded with
supported threading compilers other than compilers from Intel. As all threading is provided
through OpenMP, but compiling this layer with threading is turned off, a non-threaded
version of the library can also be provided through a layer without threading.

Computation. For any given processor family (processors based on IA-32, IA-64, or Intel®
64 architecture), a single computational library is used for all interfaces and threading
layers, as there is no parallelism in the computational layer.

Run-time library (RTL). The last layer provides RTL support. Not all RTLs are delivered with
Intel MKL. The only RTLs provided, except those that are relevant to the Intel MKL cluster
software, are Intel® compiler based RTLs: Intel® Legacy OpenMP* run-time compiler
library (libguide) and Intel® Compatibility OpenMP* run-time compiler library
(libiomp). To thread using threading compilers other than those from Intel, you can
employ Threading layer libraries or use the Compatibility library in the appropriate
circumstances.

Layers
There are four essential parts of the library:

1. Interface layer.

2. Threading layer.

3. Computational layer.

4. Compiler Support RTL layer (RTL layer, for brevity).

3-4

3 Intel® Math Kernel Library User’s Guide

Interface Layer. The layer essentially provides matching between the compiled code of your
application and the threading and/or computational parts of the library. This layer may
allow for matching like these:

• Provides LP64 interface to Intel MKL ILP64 software
(see Support for ILP64 Programming for details)

• Provides means to deal with the way different compilers return function values

• For those software vendors that use Cray-style names, provides mapping of
single-precision names to double-precision ones in applications that employ ILP64.

Threading Layer. This layer provides a way for threaded Intel MKL to share supported
compiler threading. The layer also provides for a sequential version of the library. What
was internal to the library previously, now is essentially exposed in the threading layer by
being compiled for different environments (threaded or sequential) and compilers (Intel,
gnu, and so on).

Computational Layer. It is the heart of Intel MKL and has only one variant for any
processor/operating system family, such as 32-bit Intel® processors on a 32-bit operating
system. The computational layer can accommodate multiple architectures through
identification of the architecture or architectural feature and choose the appropriate binary
code at execution. Intel MKL may be thought of as the large computational layer that is
unaffected by different computational environments. Then, as it has no RTL requirements,
RTLs refer not to the computational layer but to one of the layers above it, that is, the
interface layer or the threading layer. The most likely case is matching the threading layer
with the RTL layer.

Compiler Support RTL Layer. This layer has run-time library support functions. For example,
libguide and libiomp are RTLs providing threading support for the OpenMP* threading
in Intel MKL.

See also the “Linking Examples” section in chapter 5.

Sequential Version of the Library
Starting with release 9.1, the Intel MKL package provides support for sequential, that is,
non-threaded, version of the library. It requires no Compiler Support RTL layer, that is, no
Legacy OpenMP* or Compatibility OpenMP* run-time libraries, and does not respond to the
environment variable OMP_NUM_THREADS (see the Using Intel® MKL Parallelism section in
chapter 6 for details). This version of Intel MKL runs unthreaded code. However, it is
thread-safe, which means that you can use it in a parallel region from your own OpenMP
code. You should use sequential version only if you have a particular reason not to use Intel
MKL threading. The sequential version (layer) may be helpful when using Intel MKL with
programs threaded with non-Intel compilers or in other situations where you may, for
various reasons, need a non-threaded version of the library. For more information, see
section Avoiding Conflicts in the Execution Environment in chapter 6.

Intel® Math Kernel Library Structure 3

3-5

To obtain sequential version of Intel MKL, in the Threading layer, choose the
sequential. library to link (see Directory Structure in Detail).

Note that the sequential library depends on the POSIX threads library (pthread), which is
used to make Intel MKL software thread-safe and should be included in the link line (see
Linking Examples in chapter 5).

Support for ILP64 Programming
The terms "LP64" and "ILP64" are used for certain historical reasons and due to the
programming models philosophy described here:
http ://www .unix.org/version2/whatsnew/lp64_wp.html .

Intel MKL ILP64 libraries do not completely follow the programming models philosophy.
However, the general idea is the same: use 64-bit integer type for indexing huge arrays,
that is, arrays with more than 231-1 elements.

It’s up to you to choose which interface to use. You should definitely choose LP64 interface
for compatibility with the previous Intel MKL versions, as "LP64" is just a new name for the
only interface that the Intel MKL versions lower than 9.1 provided. You should definitely
choose the ILP64 interface if your application uses Intel MKL for calculations with huge
data arrays (of more than 231-1 elements) or the library may be used so in future.

The LP64 and ILP64 interfaces are supported in the Interface layer. Once the appropriate
library in the Interface layer is selected (see Directory Structure in Detail), all libraries
below the Interface layer are compiled using the chosen interface.

As the differences between the ILP64 and LP64 interfaces are out of scope of the Intel MKL
Reference Manual, you are encouraged to browse the include files, examples, and tests for
the ILP64 interface details. To do this, see the following directories, respectively:

<mkl directory>/include

<mkl directory>/examples

<mkl directory>/tests

This section shows

• How the ILP64 concept is implemented specifically for Intel MKL

• How to compile your code for the ILP64 interface

• How to code for the ILP64 interface

• How to browse the Intel MKL include files for the ILP64 interface

This section also explains limitations of the ILP64 support.

3-6

3 Intel® Math Kernel Library User’s Guide

Concept

ILP64 interface is provided for the following two reasons:

• To support huge data arrays, that is, arrays with more than 2 billion elements

• To enable compiling your Fortran code with the -i8 compiler option.

The Intel® Fortran Compiler supports the -i8 option for changing behavior of the INTEGER
type. By default the standard INTEGER type is 4-byte. The -i8 option makes the compiler
treat INTEGER constants, variables, function and subroutine parameters as 8-byte.

The ILP64 binary interface uses 8-byte integers for function parameters that define array
sizes, indices, strides, etc. At the language level, that is, in the *.f90 and *.fi files
located in the Intel MKL include directory, such parameters are declared as INTEGER.

To bind your Fortran code with the ILP64 interface, you must compile your code with the
-i8 compiler option. And vice-versa, if your code is compiled with -i8, you can bind it only
with the ILP64 interface, as the LP64 binary interface requires the INTEGER type to be
4-byte.

Note that some Intel MKL functions and subroutines have scalar or array parameters of
type INTEGER*4 or INTEGER(KIND=4), which are always 4-byte, regardless of whether the
code is compiled with the -i8 option.

For the languages of C and C++, Intel MKL provides the MKL_INT type as a counterpart of
the INTEGER type for Fortran. MKL_INT is a macro defined as the standard C/C++ type int
by default. However, if the MKL_ILP64 macro is defined for the code compilation, MKL_INT
is defined as a 64-bit integer type. To define the MKL_ILP64 macro, you may call the
compiler with the -DMKL_ILP64 command-line option.

Intel MKL also defines the type MKL_LONG for maintaining ILP64 interface in the specific
case of FFT interface for C/C++. The MKL_LONG macro is defined as the standard C/C++
type long by default; and if the MKL_ILP64 macro is defined for the code compilation,
MKL_LONG is defined as a 64-bit integer type.

In the Intel MKL interface for the C or C++ languages, that is, in the *.h header files
located in the Intel MKL include directory, such function parameters as array sizes, indices,
strides, etc. are declared as MKL_INT.

The FFT interface for C/C++ is the specific case. The header file mkl_dfti.h uses the
MKL_LONG type for both explicit and implicit parameters of the interface functions.
Specifically, type of the explicit parameter dimension of the function

NOTE. The type int is 32-bit for the Intel® C++ compiler, as well as for
most of modern C/C++ compilers. The type long is 32- or 64-bit for the
Intel® C++ and compatible compilers, depending on the particular OS.

Intel® Math Kernel Library Structure 3

3-7

DftiCreateDescriptor() is MKL_LONG and type of the implicit parameter length is
MKL_LONG for a one-dimensional transform and MKL_LONG[] (that is, an array of numbers
having type MKL_LONG) for a multi-dimensional transform.

To bind your C or C++ code with the ILP64 interface, you must provide the -DMKL_ILP64
command-line option to the compiler to enforce MKL_INT and MKL_LONG being 64-bit. And
vice-versa, if your code is compiled with -DMKL_ILP64 option, you can bind it only with the
ILP64 interface, as the LP64 binary interface requires MKL_INT to be 32-bit and MKL_LONG
to be the standard long type.

Note that certain MKL functions have parameters explicitly declared as int or int[]. Such
integers are always 32-bit regardless of whether the code is compiled with the
-DMKL_ILP64 option.

Table 3-2 summarizes how the Intel MKL ILP64 concept is implemented:

Compiling for ILP64

The same copy of the Intel MKL include directory is used for both ILP64 and LP64
interfaces. So, the compilation for the ILP64 interface looks like this:

Fortran:

ifort -i8 -I<mkl drectory>/include …

C or C++:

icc -DMKL_ILP64 -I<mkl directory>/include …

Table 3-2 Intel® MKL ILP64 concept

Fortran C or C++

The same include directory for
ILP64 and LP64 interfaces

 <mkl directory>/include

Type used for parameters that
are always 32-bit

INTEGER*4 int

Type used for parameters that
are 64-bit integers for the
ILP64 interface and 32-bit
integers for LP64

INTEGER MKL_INT

Type used for all integer
parameters of the FFT
functions

INTEGER MKL_LONG

Command-line option to
control compiling for ILP64

-i8 -DMKL_ILP64

3-8

3 Intel® Math Kernel Library User’s Guide

To compile for the LP64 interface, just omit the -i8 or -DMKL_ILP64 option.
Notice that linking of the application compiled with the -i8 or -DMKL_ILP64 option to the
LP64 libraries may result in unpredictable consequences and erroneous output.

Table 3-3 summarizes the compiler options:

Coding for ILP64

Although the *.f90, *.fi, and *.h files in the Intel MKL include directory were changed to
meet requirements of the ILP64 interface, the LP64 interface was not changed. That is, all
function parameters that were 32-bit integers still remain to have the 32-bit integer type,
and all function parameters that were standard long integers still remain belonging to the
standard long type. So, you do not need to change a single line of the existing code if you
are not using the ILP64 interface.

To migrate to ILP64 or write new code for ILP64, you need to use appropriate types for
parameters of the Intel MKL functions and subroutines. For the parameters that must be
64-bit integers in ILP64, you are encouraged to use the universal integer types, namely,

• INTEGER for Fortran

• MKL_INT for C/C++

• MKL_LONG for the parameters of the C/C++ FFT interface.

This way you make your code universal for both ILP64 and LP64 interfaces.

You may alternatively use other 64-bit types for the integer parameters that must be
64-bit in ILP64. For example, with Intel® compilers, you may use types:

• INTEGER(KIND=8) for Fortran

• long long int for C or C++

Note however that your code written this way will not work for the LP64 interface.
Table 3-4 summarizes usage of the integer types.

Table 3-3 Compiler options for the ILP64 interface

Fortran C or C++

Compiling for the ILP64 interface ifort -i8 ... icc -DMKL_ILP64 ...

Compiling for the LP64 interface ifort ... icc ...

Intel® Math Kernel Library Structure 3

3-9

Browsing the Intel MKL include files

Given a function with integer parameters, the Reference Manual does not explain which
parameters become 64-bit and which remain 32-bit for ILP64.

To find out this information, you need to browse the include files, examples, or tests. You
are encouraged to start with browsing the include files, as they contain prototypes for all
Intel MKL functions. Then you may see the examples and tests for better understanding of
the function usage.

All include files are located in the <mkl directory>/include directory. Table 3-5 shows
the include files to browse:

Table 3-4 Integer types

Fortran C or C++

32-bit integers INTEGER*4
or
INTEGER(KIND=4)

int

Universal integers:
• 64-bit for ILP64
• 32-bit otherwise

INTEGER
without specifying KIND

MKL_INT

Universal type for the FFT
interface parameters

INTEGER
without specifying KIND

MKL_LONG

Table 3-5 Intel® MKL include files

Function domain Include files

Fortran C or C++

BLAS Routines mkl_blas.f90

mkl_blas.fi

mkl_blas.h

CBLAS Interface to BLAS mkl_cblas.h

Sparse BLAS Routines mkl_spblas.fi mkl_spblas.h

LAPACK Routines mkl_lapack.f90

mkl_lapack.fi

mkl_lapack.h

ScaLAPACK Routines mkl_scalapack.h

Sparse Solver Routines

• PARDISO mkl_pardiso.f77

mkl_pardiso.f90

mkl_pardiso.h

3-10

3 Intel® Math Kernel Library User’s Guide

Some function domains that support only Fortran interface according to Table A-1, anyway
provide header files for C or C++ in the include directory. Such *.h files enable using
Fortran binary interface from C or C++ code and so describe the C interface, including its
ILP64 aspect.

Limitations

Note that, not all components support the ILP64 feature. Table 3-6 shows which function
domains support ILP64 interface.

• DSS Interface mkl_dss.f77

mkl_dss.f90

mkl_dss.h

• RCI Iterative Solvers
• ILU Factorization

mkl_rci.fi mkl_rci.h

Optimization Solver Routines mkl_rci.fi mkl_rci.h

Vector Mathematical Functions mkl_vml.fi mkl_vml_functions.h

Vector Statistical Functions mkl_vsl.fi

mkl_vsl_subroutine.fi

mkl_vsl_functions.h

Fourier Transform Functions mkl_dfti.f90 mkl_dfti.h

Cluster Fourier Transform
Functions

mkl_cdft.f90 mkl_cdfti.h

Partial Differential Equations
Support Routines

• Trigonometric Transforms mkl_trig_transforms.f90 mkl_trig_transforms.h

• Poisson Solvers mkl_poisson.f90 mkl_poisson.h

Table 3-6 ILP64 support in Intel® MKL

Function domain Support for ILP64

BLAS Yes

Sparse BLAS Yes

LAPACK Yes

ScaLAPACK Yes

VML Yes

VSL Yes

Table 3-5 Intel® MKL include files (continued)

Function domain Include files

Fortran C or C++

Intel® Math Kernel Library Structure 3

3-11

Intel® MKL Versions
Intel MKL for the Linux* OS distinguishes the following versions:

• for IA-32 architecture; the version is located in the lib/32 directory.

• for Intel® 64 architecture; the version is located in the lib/em64t directory.

• for IA-64 architecture; the version is located in the lib/64 directory.

See detailed structure of these directories in Table 3-7.

Directory Structure in Detail
The information in the table below shows detailed structure of the architecture-specific
directories of the library. For the contents of the doc directory, see the Contents of the
Documentation Directory subsection. See chapter 10 for the contents of subdirectories of
the benchmarks directory.

PARDISO solvers Yes

DSS solvers Yes

ISS solvers Yes

Optimization (Trust-Region) solvers Yes

FFT Yes

FFTW No

Cluster FFT Yes

PDE support: Trigonometric Transforms Yes

PDE support: Poisson Solvers Yes

GMP No

Interval Arithmetic No

BLAS 95 Yes

LAPACK 95 Yes

Table 3-6 ILP64 support in Intel® MKL (continued)

Function domain Support for ILP64

3-12

3 Intel® Math Kernel Library User’s Guide

Table 3-7 Detailed directory structure

Directory/file Contents

lib/321 Contains all libraries for IA-32 architecture

Static Libraries

Interface layer

libmkl_intel.a Interface library for Intel® compiler

libmkl_gf.a Interface library for GNU Fortran compiler

Threading layer

libmkl_intel_thread.a Parallel drivers library supporting Intel compiler

libmkl_gnu_thread.a Parallel drivers library supporting GNU compiler

libmkl_sequential.a Sequential drivers library

Computational layer

libmkl_core.a Kernel library for IA-32 architecture

libmkl_ia32.a Dummy library. Contains references to Intel MKL libraries

libmkl_lapack.a Dummy library. Contains references to Intel MKL libraries

libmkl_solver.a Sparse Solver, Interval Solver, and GMP routines

libmkl_solver_
sequential.a

Sequential version of Sparse Solver, Interval Solver, and GMP
routines library

libmkl_scalapack.a Dummy library. Contains references to Intel MKL libraries

libmkl_scalapack_
core.a

ScaLAPACK routines

libmkl_cdft.a Dummy library. Contains references to Intel MKL libraries

libmkl_cdft_core.a Cluster version of FFTs

RTL layer

libguide.a Intel® Legacy OpenMP* run-time library for static linking

libiomp5.a Intel® Compatibility OpenMP* run-time library for static
linking

libmkl_blacs.a BLACS routines supporting the following MPICH versions:
• Myricom* MPICH version 1.2.5.10
• ANL* MPICH version 1.2.5.2

libmkl_blacs_
intelmpi.a

BLACS routines supporting Intel MPI 1.0

libmkl_blacs_
intelmpi20.a

BLACS routines supporting Intel MPI 2.0 and 3.0, and MPICH
2.0

Intel® Math Kernel Library Structure 3

3-13

libmkl_blacs_
openmpi.a

BLACS routines supporting OpenMPI.

Dynamic Libraries

Interface layer

libmkl_intel.so Interface library for Intel® compiler

libmkl_gf.so Interface library for GNU Fortran compiler

Threading layer

libmkl_intel_
thread.so

Parallel drivers library supporting Intel compiler

libmkl_gnu_thread.so Parallel drivers library supporting GNU compiler

libmkl_sequential.so Sequential drivers library

Computational layer

libmkl.so Dummy library. Contains references to Intel MKL libraries

libmkl_core.so Library dispatcher for dynamic load of processor-specific
kernel library

libmkl_def.so Default kernel library (Intel® Pentium®, Pentium® Pro, and
Pentium® II processors)

libmkl_p3.so Intel® Pentium® III processor kernel library

libmkl_p4.so Pentium® 4 processor kernel library

libmkl_p4p.so Kernel library for Intel® Pentium® 4 processor with
Streaming SIMD Extensions 3 (SSE3)

libmkl_p4m.so Kernel library for processors based on the Intel® Core™
microarchitecture (except Intel® Core™ Duo and Intel®
Core™ Solo processors, for which mkl_p4p.so is intended)

libmkl_lapack.so LAPACK routines and drivers

libmkl_ias.so Interval arithmetic routines

libmkl_vml_def.so VML/VSL part of default kernel for old Intel® Pentium® pro-
cessors

libmkl_vml_ia.so VML/VSL default kernel for newer Intel® architecure proces-
sors

libmkl_vml_p3.so VML/VSL part of Pentium® III processor kernel

libmkl_vml_p4.so VML/VSL part of Pentium® 4 processor kernel

libmkl_vml_p4p.so VML/VSL for Pentium® 4 processor with Streaming SIMD
Extensions 3 (SSE3)

libmkl_vml_p4m.so VML/VSL for processors based on the Intel® Core™
microarchitecture

Table 3-7 Detailed directory structure (continued)

Directory/file Contents

3-14

3 Intel® Math Kernel Library User’s Guide

libmkl_vml_p4m2.so VML/VSL for 45nm Hi-k Intel® Core™2 and Intel Xeon® pro-
cessor families

RTL layer

libguide.so Intel® Legacy OpenMP* run-time library for dynamic linking

libiomp5.so Intel® Compatibility OpenMP* run-time library for dynamic
linking

lib/em64t1 Contains all libraries for Intel® 64 architecture

Static Libraries

Interface layer

libmkl_intel_ilp64.a ILP64 interface library for Intel compiler

libmkl_intel_lp64.a LP64 interface library for Intel compiler

libmkl_intel_sp2dp.a SP2DP interface library for Intel compiler

libmkl_gf_ilp64.a ILP64 interface library for GNU Fortran compiler

libmkl_gf_lp64.a LP64 interface library for GNU Fortran compiler

Threading layer

libmkl_intel_thread.a Parallel drivers library supporting Intel compiler

libmkl_gnu_thread.a Parallel drivers library supporting GNU compiler

libmkl_sequential.a Sequential drivers library

Computational layer

libmkl_core.a Kernel library for Intel® 64 architecture

libmkl_em64t.a Dummy library. Contains references to Intel MKL libraries

libmkl_lapack.a Dummy library. Contains references to Intel MKL libraries

libmkl_solver.a Dummy library. Contains references to Intel MKL libraries

libmkl_solver_lp64.a Sparse Solver, Interval Solver, and GMP routines library
supporting LP64 interface

libmkl_solver_
ilp64.a

Sparse Solver routines library supporting ILP64 interface

libmkl_solver_lp64_
sequential.a

Sequential version of Sparse Solver, Interval Solver, and GMP
routines library supporting LP64 interface

libmkl_solver_ilp64_
sequential.a

Sequential version of Sparse Solver routines library support-
ing ILP64 interface

libmkl_scalapack.a Dummy library. Contains references to Intel MKL libraries

Table 3-7 Detailed directory structure (continued)

Directory/file Contents

Intel® Math Kernel Library Structure 3

3-15

libmkl_scalapack_
lp64.a

ScaLAPACK routines library supporting LP64 interface

libmkl_scalapack_
ilp64.a

ScaLAPACK routines library supporting ILP64 interface

libmkl_cdft.a Dummy library. Contains references to Intel MKL libraries

libmkl_cdft_core.a Cluster version of FFTs

RTL layer

libguide.a Intel® Legacy OpenMP* run-time library for static linking

libiomp5.a Intel® Compatibility OpenMP* run-time library for static
linking

libmkl_blacs_ilp64.a ILP64 version of BLACS routines supporting the following
MPICH versions:
• Myricom* MPICH version 1.2.5.10
• ANL* MPICH version 1.2.5.2

libmkl_blacs_lp64.a LP64 version of BLACS routines supporting the following
MPICH versions:
• Myricom* MPICH version 1.2.5.10
• ANL* MPICH version 1.2.5.2

libmkl_blacs_
intelmpi_ilp64.a

ILP64 version of BLACS routines supporting Intel MPI 1.0

libmkl_blacs_
intelmpi_lp64.a

LP64 version of BLACS routines supporting Intel MPI 1.0

libmkl_blacs_
intelmpi20_ilp64.a

ILP64 version of BLACS routines supporting Intel MPI 2.0
and 3.0, and MPICH 2.0

libmkl_blacs_
intelmpi20_lp64.a

LP64 version of BLACS routines supporting Intel MPI 2.0 and
3.0, and MPICH 2.0

libmkl_blacs_
openmpi_ilp64.a

ILP64 version of BLACS routines supporting OpenMPI.

libmkl_blacs_
openmpi_lp64.a

LP64 version of BLACS routines supporting OpenMPI.

Dynamic Libraries

Interface layer

libmkl_intel_ilp64.so ILP64 interface library for Intel compiler

libmkl_intel_lp64.so LP64 interface library for Intel compiler

libmkl_intel_sp2dp.so SP2DP interface library for Intel compiler

libmkl_gf_ilp64.so ILP64 interface library for GNU Fortran compiler

Table 3-7 Detailed directory structure (continued)

Directory/file Contents

3-16

3 Intel® Math Kernel Library User’s Guide

libmkl_gf_lp64.so LP64 interface library for GNU Fortran compiler

Threading layer

libmkl_intel_
thread.so

Parallel drivers library supporting Intel compiler

libmkl_gnu_thread.so Parallel drivers library supporting GNU compiler

libmkl_sequential.so Sequential drivers library

Computational layer

libmkl.so Dummy library. Contains references to Intel MKL libraries

libmkl_core.so Library dispatcher for dynamic load of processor-specific
kernel

libmkl_def.so Default kernel library

libmkl_p4n.so Kernel library for Intel® Xeon® processor using Intel® 64
architecture

libmkl_mc.so Kernel library for processors based on the Intel® Core™
microarchitecture

libmkl_lapack.so LAPACK routines and drivers

libmkl_ias.so Interval arithmetic routines

libmkl_vml_def.so VML/VSL part of default kernels

libmkl_vml_mc.so VML/VSL for processors based on the Intel® Core™
microarchitecture

libmkl_vml_p4n.so VML/VSL for Intel® Xeon® processor using Intel® 64
architecture

libmkl_vml_mc2.so VML/VSL for 45nm Hi-k Intel® Core™2 and Intel Xeon® pro-
cessor families

RTL layer

libguide.so Intel® Legacy OpenMP* run-time library for dynamic linking

libiomp5.so Intel® Compatibility OpenMP* run-time library for dynamic
linking

lib/641 Contains all libraries for IA-64 architecture

Static Libraries

Interface layer

libmkl_intel_ilp64.a ILP64 interface library for Intel compiler

libmkl_intel_lp64.a LP64 interface library for Intel compiler

libmkl_intel_sp2dp.a SP2DP interface library for Intel compiler

libmkl_gf_ilp64.a ILP64 interface library for GNU Fortran compiler

Table 3-7 Detailed directory structure (continued)

Directory/file Contents

Intel® Math Kernel Library Structure 3

3-17

libmkl_gf_lp64.a LP64 interface library for GNU Fortran compiler

Threading layer

libmkl_intel_thread.a Parallel drivers library supporting Intel compiler

libmkl_gnu_thread.a Parallel drivers library supporting GNU compiler

libmkl_sequential.a Sequential drivers library

Computational layer

libmkl_core.a Kernel library for IA-64 architecture

libmkl_ipf.a Dummy library. Contains references to Intel MKL libraries

libmkl_lapack.a Dummy library. Contains references to Intel MKL libraries

libmkl_solver.a Dummy library. Contains references to Intel MKL libraries

libmkl_solver_lp64.a Sparse Solver, Interval Solver, and GMP routines library
supporting LP64 interface

libmkl_solver_
ilp64.a

Sparse Solver routines library supporting ILP64 interface

libmkl_solver_lp64_
sequential.a

Sequential version of Sparse Solver, Interval Solver, and GMP
routines library supporting LP64 interface

libmkl_solver_ilp64_
sequential.a

Sequential version of Sparse Solver routines library support-
ing ILP64 interface

libmkl_scalapack.a Dummy library. Contains references to Intel MKL libraries

libmkl_scalapack_
lp64.a

ScaLAPACK routines library supporting LP64 interface

libmkl_scalapack_
ilp64.a

ScaLAPACK routines library supporting ILP64 interface

libmkl_cdft.a Dummy library. Contains references to Intel MKL libraries

libmkl_cdft_core.a Cluster version of FFTs

RTL layer

libguide.a Intel® Legacy OpenMP* run-time library for static linking

libiomp5.a Intel® Compatibility OpenMP* run-time library for static
linking

libmkl_blacs_ilp64.a ILP64 version of BLACS routines supporting the following
MPICH versions:
• Myricom* MPICH version 1.2.5.10
• ANL* MPICH version 1.2.5.2

Table 3-7 Detailed directory structure (continued)

Directory/file Contents

3-18

3 Intel® Math Kernel Library User’s Guide

libmkl_blacs_lp64.a LP64 version of BLACS routines supporting the following
MPICH versions:
• Myricom* MPICH version 1.2.5.10
• ANL* MPICH version 1.2.5.2

libmkl_blacs_
intelmpi_ilp64.a

ILP64 version of BLACS routines supporting Intel MPI 1.0

libmkl_blacs_
intelmpi_lp64.a

LP64 version of BLACS routines supporting Intel MPI 1.0

libmkl_blacs_
intelmpi20_ilp64.a

ILP64 version of BLACS routines supporting Intel MPI 2.0
and 3.0, and MPICH 2.0

libmkl_blacs_
intelmpi20_lp64.a

LP64 version of BLACS routines supporting Intel MPI 2.0 and
3.0, and MPICH 2.0

libmkl_blacs_
openmpi_ilp64.a

ILP64 version of BLACS routines supporting OpenMPI.

libmkl_blacs_
openmpi_lp64.a

LP64 version of BLACS routines supporting OpenMPI.

Dynamic Libraries

Interface layer

libmkl_intel_ilp64.so ILP64 interface library for Intel compiler

libmkl_intel_lp64.so LP64 interface library for Intel compiler

libmkl_intel_sp2dp.so SP2DP interface library for Intel compiler

libmkl_gf_ilp64.so ILP64 interface library for GNU Fortran compiler

libmkl_gf_lp64.so LP64 interface library for GNU Fortran compiler

Threading layer

libmkl_intel_
thread.so

Parallel drivers library supporting Intel compiler

libmkl_gnu_thread.so Parallel drivers library supporting GNU compiler

libmkl_sequential.so Sequential drivers library

Computational layer

libmkl.so Dummy library. Contains references to Intel MKL libraries

libmkl_core.so Library dispatcher for dynamic load of processor-specific
kernel library

libmkl_i2p.so Kernel library for IA-64 architecture

libmkl_lapack.so LAPACK routines and drivers

Table 3-7 Detailed directory structure (continued)

Directory/file Contents

Intel® Math Kernel Library Structure 3

3-19

Dummy Libraries
Pure layered libraries give more flexibility to choose the appropriate combination of
libraries but do not have backward compatibility by library names in link lines. Dummy
libraries are introduced to provide backward compatibility with earlier version of Intel MKL,
which did not use layered libraries.

Dummy libraries do not contain any functionality, but only dependencies on a set of layered
libraries. Placed in a link line, dummy libraries enable omitting dependent layered libraries,
which will be linked automatically. Dummy libraries contain dependency on the following
layered libraries (default principle):

• Interface: Intel, LP64

• Threading: Intel compiled

• Computational: the computation library.

So, if you employ the above interface and use OpenMP* threading provided by the Intel®
compiler, you may not change your link lines.

Accessing the Intel® Math Kernel Library Documentation
The section details the contents of the Intel MKL documentation directory and explains how
to access man pages for the library.

libmkl_ias.so Interval arithmetic routines

libmkl_vml_i2p.so VML kernel for IA-64 architecture

RTL layer

libguide.so Intel® Legacy OpenMP* run-time library for dynamic linking

libiomp5.so Intel® Compatibility OpenMP* run-time library for dynamic
linking

1. Additionally, a number of interface libraries may be generated as a result of respective makefile operation in the interfaces
directory (see “Using Language-Specific Interfaces with Intel® MKL” section in chapter 7).

Table 3-7 Detailed directory structure (continued)

Directory/file Contents

3-20

3 Intel® Math Kernel Library User’s Guide

Contents of the Documentation Directory
Table 3-8 shows the contents of the doc subdirectory in the Intel MKL installation
directory:

Accessing Man Pages
During installation, the man pages for the Intel MKL functions are copied to subdirectory
man/man3 of the Intel MKL installation directory, by default,
/opt/intel/mkl/10.0.xxx/man/man3,where xxx is the Intel MKL package number, for
example, "039".

To make the man pages accessible through the man command in your command shell, add
the directory with the man pages to the MANPATH environment variable. You can do so
using the scripts described in section Setting Environment Variables in chapter 4.

Once the environment variable is set, to view the man page for an Intel MKL function,
enter the following command in your command shell:

man <function base name>

Table 3-8 Contents of the doc directory

File name Comment

mklEULA.txt Intel MKL license

mklSupport.txt Information on package number for customer support reference

Doc_index.htm Index of the Intel MKL documentation

fftw2xmkl_notes.htm FFTW 2.x Interface Support Technical User Notes

fftw3xmkl_notes.htm FFTW 3.x Interface Support Technical User Notes

Install.txt Intel MKL Installation Guide

mklman.pdf Intel MKL Reference Manual

mklman90_j.pdf Intel MKL Reference Manual in Japanese

Readme.txt Intel MKL Initial User Information

redist.txt List of redistributable files

Release_Notes.htm Intel MKL Release Notes (HTML format)

Release_Notes.txt Intel MKL Release Notes (text format)

vmlnotes.htm General discussion of VML

vslnotes.pdf General discussion of VSL

userguide.pdf Intel MKL User’s Guide, this document.

./tables Directory that contains tables referenced in vmlnotes.htm.

Intel® Math Kernel Library Structure 3

3-21

In this release, <function base name> is the function name with omitted prefixes
denoting data type, precision or function domain.

Examples:

• For the BLAS function ddot, enter man dot

• For the ScaLAPACK function pzgeql2, enter man pgeql2

• For the FFT function DftiCommitDescriptor, enter man CommitDescriptor .

Note that for sparse BLAS level 2 and 3, <function base name> is the full function name,
for example, man mkl_dcoosymv .

NOTE. Function names in the man command are case-sensitive.

4-1

Configuring Your
Development Environment 4

This chapter explains how to configure your development environment for the use with
Intel® Math Kernel Library (Intel® MKL) and especially what features may be customized
using the Intel MKL configuration file.

For information on how to set up environment variables for threading, refer to Setting the
Number of Threads Using OpenMP* Environment Variable section in Chapter 6.

Setting Environment Variables
When the installation of Intel MKL for the Linux* OS is complete, you can use three scripts
mklvars32, mklvarsem64t, and mklvars64 with two flavors each (.sh and .csh) in the
tools/environment directory to set the environment variables INCLUDE,
LD_LIBRARY_PATH, MANPATH, CPATH, FPATH, and LIBRARY_PATH in the user shell. Section
Automating the Process explains how to automate setting of these variables at startup.

If you want to further customize some of the Intel MKL features, you may use the
configuration file mkl.cfg, which contains several variables that can be changed.

Automating the Process
To automate setting of the environment variables INCLUDE, LD_LIBRARY_PATH, MANPATH,
CPATH, FPATH, and LIBRARY_PATH at startup, execution of the mklvars*.sh can be
added to your shell profile so that each time you log in, the path to the appropriate Intel
MKL directories will be set.

With the local user account, you should edit the following files by adding execution of the
appropriate script to section “Path manipulation” right before exporting variables. The
commands to be added should be like this:

• bash:

~/.bash_profile, ~/.bash_login or ~/.profile

4-2

4 Intel® Math Kernel Library User’s Guide

setting up MKL environment for bash

. <absolute_path_to_installed_MKL>/tools/environment/mklvars<arch>.sh

• sh:

~/.profile

setting up MKL environment for sh

. <absolute_path_to_installed_MKL>/tools/environment/mklvars<arch>.sh

• csh:

~/.login

setting up MKL environment for csh

. <absolute_path_to_installed_MKL>/tools/environment/mklvars<arch>.csh

In the above commands, mklvars<arch> stands for each of mklvars32, mklvarsem64t
or mklvars64.

If you have super user permissions, you can add the same commands to a general-system
file in /etc/profile (for bash and sh) or in /etc/csh.login (for csh).

Before uninstalling Intel MKL, remove the above commands from all profile files where the
script execution was added, to avoid problems during logging in.

 Configuring Eclipse CDT to Link with Intel MKL
This section describes how to configure Eclipse C/C++ Development Tools (CDT) 3.x and
4.0 to link with Intel MKL.

Configuring Eclipse CDT 4.0
To configure Eclipse CDT 4.0 to link with Intel MKL, follow the instructions below:

TIP. After linking your CDT with Intel MKL, you can benefit from the
Eclipse-provided code assist feature. See Code/Context Assist description
in Eclipse Help.

Configuring Your Development Environment 4

4-3

1. If the tool-chain/compiler integration supports include path options, go to the
Includes tab of the C/C++ General > Paths and Symbols property page and set
the Intel MKL include path, for example, the default value is
/opt/intel/mkl/10.0.xxx/include, where xxx is the Intel MKL package number,
such as "039".

2. If the tool-chain/compiler integration supports library path options, go to the Library
Paths tab of the C/C++ General > Paths and Symbols property page and set a
path to the Intel MKL libraries, depending upon the target architecture, for example,
with the default installation, /opt/intel/mkl/10.0.xxx/lib/em64t

3. For a particular build, go to the Tool Settings tab of the C/C++ Build > Settings
property page and specify names of the Intel MKL libraries to link with your
application, for example, mkl_solver_lp64 and mkl_core (As compilers typically
require library names rather than library file names, the "lib" prefix and "a"
extension are omitted). See section “Selecting Libraries to Link” in chapter 5 on the
choice of the libraries. The name of the particular setting where libraries are specified
depends upon the compiler integration.

Note that the compiler/linker will automatically pick up the include and library paths
settings only in case the automatic makefile generation is turned on, otherwise, you will
have to specify the include and library paths directly in the makefile to be used.

Configuring Eclipse CDT 3.x
To configure Eclipse CDT 3.x to link with Intel MKL, follow the instructions below:

• For Standard Make projects,

1. Go to C/C++ Include Paths and Symbols property page and set the Intel MKL
include path, for example, the default value is
/opt/intel/mkl/10.0.xxx/include
where xxx is the Intel MKL package number, for instance, "039".

2. Go to the Libraries tab of the C/C++ Project Paths property page and set the
Intel MKL libraries to link with your applications, for example,
/opt/intel/mkl/10.0.xxx/lib/em64t/libmkl_lapack.a and
/opt/intel/mkl/10.0.xxx/lib/em64t/libmkl_core.a. See section
“Selecting Libraries to Link” in chapter 5 on the choice of the libraries.

Note that with the Standard Make, the above settings are needed for the CDT internal
functionality only. The compiler/linker will not automatically pick up these settings and
you will still have to specify them directly in the makefile.

• For Managed Make projects, you can specify settings for a particular build. To do this,

4-4

4 Intel® Math Kernel Library User’s Guide

1. Go to the Tool Settings tab of the C/C++ Build property page. All the settings
you need to specify are on this page. Names of the particular settings depend
upon the compiler integration and therefore are not given below.

2. If the compiler integration supports include path options, set the Intel MKL include
path, for example, the default value is /opt/intel/mkl/10.0.xxx/include.

3. If the compiler integration supports library path options, set a path to the Intel
MKL libraries, depending upon the target architecture, for example, with the
default installation, /opt/intel/mkl/10.0.xxx/lib/em64t.

4. Specify names of the Intel MKL libraries to link with your application, for example,
mkl_lapack and mkl_ia32 (As compilers typically require library names rather
than library file names, the “lib” prefix and “a” extension are omitted). See
section “Selecting Libraries to Link” in chapter 5 on the choice of the libraries.

Customizing the Library Using the Configuration File
Intel MKL configuration file provides the possibility to redefine names of dynamic libraries.

You may create a configuration file with the mkl.cfg name to assign values to a number of
variables. Below is an example of the configuration file containing all possible variables
with their default values:

Example 4-1 Intel® MKL configuration file

//

// Default values for mkl.cfg file

//

// SO names for IA-32 architecture

MKL_X87so = mkl_def.so

MKL_SSE2so = mkl_p4.so

MKL_SSE3so = mkl_p4p.so

MKL_VML_X87so = mkl_vml_def.so

MKL_VML_SSE2so = mkl_vml_p4.so

MKL_VML_SSE3so = mkl_vml_p4p.so
// SO names for Intel(R) 64 architecture

MKL_EM64TDEFso = mkl_def.so

MKL_EM64TSSE3so = mkl_p4n.so

MKL_VML_EM64TDEFso = mkl_vml_def.so

MKL_VML_EM64TSSE3so = mkl_vml_p4n.so

Configuring Your Development Environment 4

4-5

When any Intel MKL function is first called, Intel MKL checks to see if the configuration file
exists, and if so, it operates with the specified names. An environment variable
MKL_CFG_FILE stores the path to the configuration file. If this variable is not defined,
then first the current directory is searched through, and then the directories specified in
the PATH environment variable. If the Intel MKL configuration file does not exist, the library
uses standard names of libraries.

If the variable is not specified in the configuration file, or specified incorrectly, standard
names of libraries are used.

Below is an example of the configuration file, which redefines the library names:

Note on the Configuration file for Out-of-Core (OOC) PARDISO*
Solver

When using the configuration file for the OOC PARDISO Solver, mind that the maximum
length of the OOC path in it is 1000.

// SO names for Intel(R) Itanium(R) processor family

MKL_I2Pso = mkl_i2p.so

MKL_VML_I2Pso = mkl_vml_i2p.so
// SO name for LAPACK library

MKL_LAPACKso = mkl_lapack.so

Example 4-2 Redefining library names using the configuration file

// SO redefinition

MKL_X87so = matlab_x87.so

MKL_SSE1so = matlab_sse1.so

MKL_SSE2so = matlab_sse2.so

MKL_SSE3so = matlab_sse2.so

MKL_ITPso = matlab_ipt.so

MKL_I2Pso = matlab_i2p.so

Example 4-1 Intel® MKL configuration file (continued)

5-1

Linking Your Application
with Intel® Math Kernel
Library 5

This chapter features linking of your applications with Intel® Math Kernel Library (Intel®
MKL) for the Linux* OS. The chapter compares static and dynamic linking models;
describes the general link line syntax to be used for linking with Intel MKL libraries;
provides comprehensive information in a tabular form on the libraries that should be linked
with your application for your particular platform and function domain; gives linking
examples. Building of custom shared objects is also discussed.

Selecting Between Linkage Models
You can link your applications with Intel MKL libraries statically, using static library
versions, or dynamically, using shared libraries.

Static Linking
With static linking, all links are resolved at link time. Therefore, the behavior of statically
built executables is absolutely predictable, as they do not depend upon a particular version
of the libraries available on the system where the executables run. Such executables must
behave exactly the same way as was observed during testing. The main disadvantage of
static linking is that upgrading statically linked applications to higher library versions is
troublesome and time-consuming, as you have to relink the entire application. Besides,
static linking produces large-size executables and uses memory inefficiently, since if
several executables are linked with the same library, each of them loads it into memory
independently. However, this is hardly an issue for Intel MKL, used mainly for large-size
problems. — It matters only for executables having data size relatively small and
comparable with the size of the executable.

5-2

5 Intel® Math Kernel Library User’s Guide

Dynamic Linking
During dynamic linking, resolving of some undefined symbols is postponed until run time.
Dynamically built executables still contain undefined symbols along with lists of libraries
that provide definitions of the symbols. When the executable is loaded, final linking is done
before the application starts running. If several dynamically built executables use the same
library, the library loads to memory only once and the executables share it, thereby saving
memory. Dynamic linking ensures consistency in using and upgrading libraries, as all the
dynamically built applications share the same library. This way of linking enables you to
separately update libraries and applications that use the libraries, which facilitates keeping
applications up-to-date. The advantages of dynamic linking are achieved at the cost of
run-time performance losses, as a part of linking is done at run time and every unresolved
symbol has to be looked up in a dedicated table and resolved. However, this is hardly an
issue for Intel MKL.

Making the Choice
It is up to you to select whether to link in Intel MKL libraries dynamically or statically when
building your application.

In most cases, users choose dynamic linking due to its strong advantages.

However, if you are developing applications to be shipped to a third-party, to have nothing
else than your application shipped, you have to use static linking. To reduce the size of
executables shipped, you can also build custom dynamic libraries (see Building Custom
Shared Objects).

Table 5-1 compares the linkage models.

Table 5-1 Quick comparison of Intel® MKL linkage models

Feature Dynamic Linkage Static Linkage
Custom Dynamic
Linkage

Processor Updates Automatic Automatic Recompile and
redistribute

Optimization All processors All processors All processors

Build Link to dynamic libraries Link to static libraries Build separate dynamic
libraries and link to
them.

Calling Regular names Regular names Modified names

Total Binary Size Large Small Small

Executable Size Smallest Small Smallest

Linking Your Application with Intel® Math Kernel Library 5

5-3

Intel MKL-specific Linking Recommendations
You are strongly encouraged to dynamically link in Intel® Legacy OpenMP* run-time
library libguide and Intel® Compatibility OpenMP* run-time library libiomp. Linking to
static OpenMP run-time library is not recommended, as it is very easy with layered
software to link in more than one copy of the library. This causes performance problems
(too many threads) and may cause correctness problems if more than one copy is
initialized.

You are advised to link with libguide and libiomp dynamically even if other libraries are
linked statically.

Link Command Syntax
To link libraries having filenames libyyy.a or libyyy.so with your application, two
options are available:

• In the link line, list library filenames using relative or absolute paths, for example:

<ld> myprog.o /opt/intel/mkl/10.0.xxx/lib/32/libmkl_solver.a

/opt/intel/mkl/10.0.xxx/lib/32/libmkl_intel.a

/opt/intel/mkl/10.0.xxx/lib/32/libmkl_intel_thread.a

/opt/intel/mkl/10.0.xxx/lib/32/libmkl_core.a

/opt/intel/mkl/10.0.xxx/lib/32/libguide.so -lpthread

where <ld> is a linker, myprog.o is the user's object file, and xxx is the Intel MKL
package number, for example, "039".
Appropriate Intel MKL libraries are listed first and followed by the system library
libpthread.

• In the link line, list library names (with absolute or relative paths, if needed) preceded
with -L<path>, which indicates where to search for binaries, and -I<include>,
which indicates where to search for header files. Discussion of linking with Intel MKL
libraries employs this option.

To link with the Intel MKL libraries, specify paths and libraries in the link line as shown
below.

Multi-threaded /
thread safe

Yes Yes Yes

Table 5-1 Quick comparison of Intel® MKL linkage models (continued)

Feature Dynamic Linkage Static Linkage
Custom Dynamic
Linkage

5-4

5 Intel® Math Kernel Library User’s Guide

-L<MKL path> -I<MKL path>

[-lmkl_lapack95] [-lmkl_blas95]

[cluster components]

[{-lmkl_{intel, intel_ilp64, intel_lp64, intel_sp2dp, gf, gf_ilp64, gf_lp64}]

[-lmkl_{intel_thread, sequential}]

[{-lmkl_solver, -lmkl_solver_lp64, -lmkl_solver_ilp64}]

{{[-lmkl_lapack] -lmkl_{ia32, em64t, ipf}},

-lmkl_core}}

[{-lguide, -liomp5}] [-lpthread] [-lm]

See Selecting Libraries to Link for details of this syntax usage and specific
recommendations on which libraries to link depending on your Intel MKL usage scenario.
See also

• section “Fortran 90 Interfaces and Wrappers to LAPACK and BLAS” in chapter 7 for
information on the libraries that you should build prior to linking

• chapter Working with Intel® Math Kernel Library Cluster Software on lining with
cluster components.

To link with Intel MKL, you can choose pure layered model or default model, which is
backward compatible on link line (except cluster components). The syntax above
incorportates both models.

For the pure layered model, you need to choose one library from the Interface layer, one
library from the Threading layer, the Computational layer library (no choice here), and add
run-time libraries. In case of the default model, you need not change the link line with
respect to the one used with Intel MKL 9.x (see the Dummy Libraries section in chapter 3
for details).

Figure 5-1 compares linking for Intel MKL 10.0, which uses layers, and Intel MKL 9.x.

NOTE. The syntax below is provided for dynamic linking. For static
linking, replace each library name preceded with "-l" with the path to the
library file, for example, replace -lmkl_core with
$MKLPATH/libmkl_core.a, where $MKLPATH is the appropriate
user-defined environment variable. See specific examples in the Linking
Examples section.

Linking Your Application with Intel® Math Kernel Library 5

5-5

Figure 5-1 Linking with Layered Intel MKL

In case of employing the pure layered model for static linking, the interface layer, threading
layer, and computation layer libraries must be enclosed in grouping symbols (for example,
-Wl,--start-group $MKLPATH/libmkl_intel_ilp64.a
$MKLPATH/libmkl_intel_thread.a $MKLPATH/libmkl_core.a -Wl,--end-group). See
specific examples in the Linking Examples section.

In case you use dummy libraries,

• The path to Intel MKL libraries must be added to the list of paths that the linker will
search for archive libraries (for example, as -L<MKL path>)

• No interface layer or threading layer libraries should be included in the link line

• No grouping symbols must be employed.

The order of listing libraries in the link line is essential, except for the libraries enclosed in
the grouping symbols.

5-6

5 Intel® Math Kernel Library User’s Guide

Selecting Libraries to Link
Below are several simple examples of link libraries for the layered pure and layered default
link models on 64-bit Linux* based on Intel® 64 architecture for different components
using Intel® compiler interface.

• BLAS, FFT, VML, VSL components, static case:

Layered default: libmkl_em64t.a

Layered pure: libmkl_intel_lp64.a libmkl_intel_thread.a libmkl_core.a

• BLAS, FFT, VML, VSL components, dynamic case:

Layered default: libmkl.so

Layered pure: libmkl_intel_lp64.so libmkl_intel_thread.so libmkl_core.so

• LAPACK, static case:

Layered default: libmkl_lapack.a libmkl_em64t.a

Layered pure: libmkl_intel_lp64.a libmkl_intel_thread.a libmkl_core.a

• LAPACK, dynamic case:

Layered default:libmkl_lapack.so libmkl.so

Layered pure: libmkl_intel_lp64.so libmkl_intel_thread.so libmkl_core.so

• ScaLAPACK, static case:

Layered default: libmkl_scalapack.a libmkl_blacs.a libmkl_lapack.a
libmkl_em64t.a

Layered pure: libmkl_intel_lp64.a libmkl_scalapack_core.a
libmkl_blacs.a libmkl_intel_thread.a libmkl_core.a

• PARDISO, static case:

Layered default: libmkl_solver.a libmkl_lapack.a libmkl_em64t.a

Layered pure, LP64: libmkl_solver_lp64.a libmkl_intel_lp64.a
libmkl_intel_thread.a libmkl_core.a

Layered pure, ILP64: libmkl_solver_ilp64.a libmkl_intel_ilp64.a
libmkl_intel_thread.a libmkl_core.a

When linking (see Link Command Syntax and Linking Examples), note that

• The solver library currently does not comply with the layered model. So, it is not
changed internally with respect to the Intel MKL 9.x. However, to support LP64/ILP64
interfaces, two libraries were introduced in the unified structure:
libmkl_solver_lp64.a for the LP64 interface and libmkl_solver_ilp64.a for the
ILP64 interface. For backward link line compatibility libmkl_solver.a has become a
dummy library. There is still only static version of the solver library, as it was for
previous releases. To link with the solver library using the pure layered model, include
the library libmkl_solver_lp64.a or libmkl_solver_ilp64.a in the link line,
depending upon the interface you need.

Linking Your Application with Intel® Math Kernel Library 5

5-7

• libmkl_lapack95.a and libmkl_blas95.a libraries contain LAPACK95 and BLAS95
interfaces respectively. They are not included into the original distribution and should
be built before using the interface. (See “Fortran 90 Interfaces and Wrappers to
LAPACK and BLAS” section in chapter 7 for details on building the libraries and
“Compiler-dependent Functions and Fortran 90 Modules” section on why source code is
distributed in this case.)

• To use the Intel MKL FFT, Trigonometric Transform, or Poisson, Laplace, and Helmholtz
Solver routines, link in the math support Linux library by adding "-lm" to the link line.

• In products for Linux, it is necessary to link the pthread library by adding
-lpthread. The pthread library is native to Linux and libguide makes use of this
library to support multi-threading. Any time libguide is required, add -lpthread at
the end of your link line (link order is important).

Linking Examples
Below are some specific examples of linking using the Intel® compilers on systems based
on Intel® 64 architecture. In these examples, <MKL path> and <MKL include>
placeholders are replaced with user-defined environment variables $MKLPATH and
$MKLINCLUDE, respectively. See also examples on linking with ScaLAPACK and Cluster FFT
in chapter 9.

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE

-Wl,--start-group $MKLPATH/libmkl_intel_lp64.a
$MKLPATH/libmkl_intel_thread.a $MKLPATH/libmkl_core.a -Wl,--end-group
-lguide -lpthread

static linking of user code myprog.f and parallel Intel MKL supporting LP64 interface.

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE

-lmkl_intel_lp64 -lmkl_intel_thread -lmkl_core -lguide -lpthread

dynamic linking of user code myprog.f and parallel Intel MKL supporting LP64
interface.

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE

-Wl,--start-group $MKLPATH/libmkl_intel_lp64.a
$MKLPATH/libmkl_sequential.a $MKLPATH/libmkl_core.a -Wl,--end-group
-lpthread

static linking of user code myprog.f and sequential version of Intel MKL supporting
LP64 interface.

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE

-lmkl_intel_lp64 -lmkl_sequential -lmkl_core -lpthread

5-8

5 Intel® Math Kernel Library User’s Guide

dynamic linking of user code myprog.f and sequential version of Intel MKL supporting
LP64 interface.

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE

-Wl,--start-group $MKLPATH/libmkl_intel_ilp64.a
$MKLPATH/libmkl_intel_thread.a $MKLPATH/libmkl_core.a -Wl,--end-group
-lguide -lpthread

static linking of user code myprog.f and parallel Intel MKL supporting ILP64 interface.

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE

-lmkl_intel_ilp64 -lmkl_intel_thread -lmkl_core -lguide -lpthread

dynamic linking of user code myprog.f and parallel Intel MKL supporting ILP64
interface.

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE -lmkl_lapack95

-Wl,--start-group $MKLPATH/libmkl_intel_lp64.a
$MKLPATH/libmkl_intel_thread.a $MKLPATH/libmkl_core.a -Wl,--end-group
-lguide -lpthread

static linking of user code myprog.f, Fortran 90 LAPACK interface1, and parallel Intel
MKL supporting LP64 interface.

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE -lmkl_blas95

-Wl,--start-group $MKLPATH/libmkl_intel_lp64.a
$MKLPATH/libmkl_intel_thread.a $MKLPATH/libmkl_core.a -Wl,--end-group
-lguide -lpthread

static linking of user code myprog.f, Fortran 90 BLAS interface1, and parallel Intel
MKL supporting LP64 interface.

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE -lmkl_solver_lp64.a

-Wl,--start-group $MKLPATH/libmkl_intel_lp64.a
$MKLPATH/libmkl_intel_thread.a $MKLPATH/libmkl_core.a -Wl,--end-group
-lguide -lpthread

static linking of user code myprog.f, parallel version of sparse solver, and parallel Intel
MKL supporting LP64 interface.

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE -lmkl_solver_lp64_sequential.a

-Wl,--start-group $MKLPATH/libmkl_intel_lp64.a
$MKLPATH/libmkl_sequential.a $MKLPATH/libmkl_core.a -Wl,--end-group
-lpthread

1. See section Fortran 90 Interfaces and Wrappers to LAPACK and BLAS in chapter 7 for information on
how to build Fortran 90 LAPACK and BLAS interface libraries.

Linking Your Application with Intel® Math Kernel Library 5

5-9

static linking of user code myprog.f, sequential version of sparse solver, and
sequential Intel MKL supporting LP64 interface.

For other linking examples, see the Intel MKL support website at
http://www.intel.com/support/performancetools/libraries/mkl/.

Linking with Interface Libraries

Linking with the Absoft compilers

You can use Intel MKL with the Absoft compilers on systems based on Intel® 64 or IA-32
architecture. Table 5-2 explains which Interface layer library must be included in the link
line to link with the Absoft compilers.

Linking with Threading Libraries
In the past, only few compilers other than Intel® ones supported threading of the user's
application. Starting with Intel MKL 10.0 timeframe, additional compilers will be offering
OpenMP* threading. If an application compiled with such a threading compiler used
OpenMP threading and called threaded parts of Intel MKL versions lower than 10.0, there
might be difficulties. They may arise because MKL is threaded using the Intel® compilers,
and threading libraries from different compilers are not compatible. This can lead to
performance issues, and perhaps even failures when incompatible threading is used within
the same application. Starting with Intel MKL 10.0, several solutions are available in
certain cases. Those solutions are provided both from the Threading Layer and the supplied
run-time libraries found in the Compiler Support RTL Layer.

The Solution in Layers. With this release of Intel MKL, the library is structured as layers.
One of those layers is a Threading Layer. Because of the internal structure of the library, all
of the threading represents a small amount of code. This code is compiled by different
compilers (such as a gnu compiler on Linux*) and the appropriate layer linked in with the
threaded application.

Table 5-2 Interface layer library for linking with the Absoft compilers

Archiecture
Programming
Interface Static Linking Dynamic Linking

IA-32 Does not matter libmkl_intel.a libmkl_intel.so

Intel® 64 ILP64 libmkl_gf_ilp64.a libmkl_gf_ilp64.so

Intel® 64 LP64 libmkl_gf_lp64.a libmkl_gf_lp64.so

5-10

5 Intel® Math Kernel Library User’s Guide

The second relevant component is the Compiler Support RTL Layer. Prior to Intel MKL 10.0,
this layer only included the Intel® Legacy OpenMP* run-time compiler library libguide.
Now you have a new choice to use the Intel® Compatibility OpenMP* run-time compiler
library libiomp. The Compatibility library provides support for one additional threading
compiler on Linux (gnu). That is, a program threaded with a gnu compiler can safely be
linked with Intel MKL and libiomp and execute efficiently and effectively.

More about libiomp. libiomp is a new software. It has successfully been through a beta
trial, it is robust and has shown few bugs even in the beta. In addition it offers excellent
scaling with increasing numbers of cores in comparison to the Microsoft or gnu threading
libraries. libiomp is essentially libguide with an interface layer to map the compiler
generated function calls to the libguide thread management software.

Table 5-3 shows different scenarios, depending on the threading compiler used, and the
possibilities for each scenario to choose the Threading layer and RTL layer when using the
current version of Intel MKL (static cases only):

Table 5-3 Selecting the Threading Layer

Compiler
Application
Threaded? Threading Layer

RTL Layer
Recommended Comment

Intel Does not
matter

mkl_intel_thread. libguide.so or
libiomp5.so

gnu Yes libmkl_gnu_thread.a libiomp5.so or
GNU OpenMP layer

libiomp5 offers
superior scaling
performance

gnu Yes libmkl_sequential.a None

gnu No libmkl_intel_thread.a libguide.so or
libiomp5.so

other Yes libmkl_sequential.a None

other No libmkl_intel_thread.a libguide.so or
libiomp5.so

NOTE. If you compiled your application with libguide from Intel MKL
9.x or earlier, then the you cannot use Intel MKL 10.0 with libiomp.

Linking Your Application with Intel® Math Kernel Library 5

5-11

Notes on Linking

Updating LD_LIBRARY_PATH

When using the Intel MKL shared libraries, do not forget to update the shared libraries
environment path, that is, a system variable LD_LIBRARY_PATH, to include the libraries
location. For example, if the Intel MKL libraries are in the
/opt/intel/mkl/10.0.xxx/lib/32 directory (where xxx is the Intel MKL package
number, for instance, "039"), then the following command line can be used (assuming a
bash shell):

export LD_LIBRARY_PATH=/opt/intel/mkl/10.0.xxx/lib/32:$LD_LIBRARY_PATH

Linking with libguide

If you link with libguide statically (discouraged)

• and use the Intel® compiler, then link in the libguide version that comes with the
compiler, that is, use -openmp option.

• but do not use the Intel compiler, then link in the libguide version that comes with
Intel MKL.

If you use dynamic linking (libguide.so) of the threading library (recommended), make
sure the LD_LIBRARY_PATH is defined so that exactly this version of libguide is found
and used at run time.

Building Custom Shared Objects
Custom shared objects enable reducing the collection of functions available in Intel MKL
libraries to those required to solve your particular problems, which helps to save disk space
and build your own dynamic libraries for distribution.

Intel MKL Custom Shared Object Builder
Custom shared object builder is targeted for creation of a dynamic library (shared object)
with selected functions and located in tools/builder directory. The builder contains a
makefile and a definition file with the list of functions. The makefile has three targets:
"ia32", "ipf", and "em64t". "ia32" target is used for processors using IA-32 architecture,
"ipf" is used for IA-64 architecture, and "em64t" is used for Intel® Xeon® processor
using Intel® 64 architecture.

5-12

5 Intel® Math Kernel Library User’s Guide

Specifying Makefile Parameters
There are several macros (parameters) for the makefile:

export = functions_list

determines the name of the file that contains the list of entry point functions to be
included into shared object. This file is used for definition file creation and then for
export table creation. Default name is functions_list.

name = mkl_custom

specifies the name of the created library. By default, the library mkl_custom.so is
built.

xerbla = user_xerbla.o

specifies the name of object file that contains user's error handler. This error
handler will be added to the library and then will be used instead of the Intel MKL
error handler xerbla. By default, that is, when this parameter is not specified, the
native Intel MKL xerbla is used.
Note that if the user’s error handler has the same name as the Intel MKL handler,
the name of the user’s handler must be upper-case, that is, XERBLA.o.

All parameters are not mandatory. In the simplest case, the command line could be
make ia32 and the values of the remaining parameters will be taken by default. As a
result, mkl_custom.so library for processors using IA-32 architecture will be created, the
functions list will be taken from the functions_list.txt file, and the native Intel MKL
error handler xerbla will be used.

Another example for a more complex case is as follows:

make ia32 export=my_func_list.txt name=mkl_small xerbla=my_xerbla.o

In this case, mkl_small.so library for processors using IA-32 architecture will be created,
the functions list will be taken from my_func_list.txt file, and user's error handler
my_xerbla.o will be used.

The process is similar for processors using Intel® 64 or IA-64 architecture.

Specifying List of Functions
Entry points in functions_list file should be adjusted to interface. For example, Fortran
functions get an underscore character "_" as a suffix when added to the library:

dgemm_

ddot_

dgetrf_

If selected functions have several processor-specific versions, they all will be included into
the custom library and managed by dispatcher.

6-1

Managing Performance and
Memory 6

The chapter features different ways to obtain best performance with Intel® Math Kernel
Library (Intel® MKL): primarily, it discusses threading (see Using Intel® MKL Parallelism),
then shows coding techniques and gives hardware configuration tips for improving
performance. The chapter also discusses the Intel MKL memory management and shows
how to redefine memory functions that the library uses by default.

Using Intel® MKL Parallelism
Being designed for multi-threaded programming, Intel MKL is thread-safe, which means
that Intel MKL functions work correctly during simultaneous execution by multiple threads.
In particular, any chunk of threaded Intel MKL code provides access of multiple threads to
the same shared data, while permitting only one thread at any given time to access a
shared piece of data. Due to thread-safety, you can call Intel MKL from multiple threads
and not worry about the functions interfering with each other.

Intel MKL is threaded in a number of places:

• Direct sparse solver

• LAPACK

— Linear equations, computational routines:

- factorization: *getrf, *gbtrf, *potrf, *pptrf, *sytrf, *hetrf, *sptrf, *hptrf

- solving: *gbtrs, *gttrs, *pptrs, *pbtrs, *pttrs, *sytrs, *sptrs, *hptrs,
*tptrs, *tbtrs

— Orthogonal factorization, computational routines:
*geqrf, *ormqr, *unmqr, *ormlq, *unmlq, *ormql, *unmql, *ormrq, *unmrq

— Singular Value Decomposition, computational routines: *gebrd, *bdsqr

— Symmetric Eigenvalue Problems, computational routines:
*sytrd, *hetrd, *sptrd, *hptrd, *steqr, *stedc

6-2

6 Intel® Math Kernel Library User’s Guide

Note that a number of other LAPACK routines, which are based on threaded LAPACK or
BLAS routines, make effective use of parallelism: *gesv, *posv, *gels, *gesvd,
*syev, *heev, etc.

• All Level 3 BLAS, Sparse BLAS matrix-vector and matrix-matrix multiply routines for
the compressed sparse row and diagonal formats

• VML

• All FFTs (except 1D transformations when DFTI_NUMBER_OF_TRANSFORMS=1 and sizes
are not power of two).

The library uses OpenMP* threading software, which responds to the environmental
variable OMP_NUM_THREADS that sets the number of threads to use. Notice that there are
different means to set the number of threads. In Intel MKL releases earlier than 10.0, you
could use the environment variable OMP_NUM_THREADS (see Setting the Number of Threads
Using OpenMP* Environment Variable for details) or the equivalent OpenMP run-time
function calls (detailed in section Changing the Number of Threads at Run Time). Starting
with version 10.0, Intel MKL also offers variables that are independent of OpenMP, such as
MKL_NUM_THREADS, and equivalent Intel MKL functions for threading management (see
Using Additional Threading Control for details). The Intel MKL variables are always
inspected first, then the OpenMP variables are examined, and if neither is used, the
OpenMP software chooses the default number of threads. This is a change with respect to
Intel MKL versions 9.x or earlier, which used a default value of one, as the Intel® Compiler
OpenMP software uses the default number of threads equal to the number of processors in
your system.

To achieve higher performance, you are recommended to set the number of threads to the
number of real processors or physical cores. Do this by any available means, which are
summarized in section Techniques to Set the Number of Threads.

NOTE. For power-of-two data in 1D FFTs, Intel MKL provides parallelism
for all the three supported architectures. For Intel® 64 architecture, the
parallelism is provided for double complex out-of-place FFTs only.

NOTE. In Intel MKL 10.0, the OpenMP* software determines the default
number of threads. The default number of threads is equal to the number
of logical processors in your system for Intel OpenMP* libraries.

Managing Performance and Memory 6

6-3

Techniques to Set the Number of Threads
You can employ different techniques to specify the number of threads to use in Intel MKL.

• Set OpenMP or Intel MKL environment variable:

— OMP_NUM_THREADS

— MKL_NUM_THREADS

— MKL_DOMAIN_NUM_THREADS

• Call OpenMP or Intel MKL function:

— omp_set_num_threads()

— mkl_set_num_threads()

— mkl_domain_set_num_threads().

When choosing the appropriate technique, take into account the following rules:

• If you employ the OpenMP techniques (OMP_NUM_THREADS and
omp_set_num_threads()) only, which was the case with earlier Intel MKL versions,
the library will still respond to them.

• The Intel MKL threading controls take precedence over the OpenMP techniques.

• A subroutine call takes precedence over any environment variables. The exception is
the OpenMP subroutine omp_set_num_threads(), which does not have precedence
over Intel MKL environment variables, such as MKL_NUM_THREADS.

• The environment variables cannot be used to change run-time behavior in the course
of the run, as they are read only once.

Avoiding Conflicts in the Execution Environment
There are situations in which conflicts can exist in the execution environment that make
the use of threads in Intel MKL problematic. They are listed here with recommendations for
dealing with these. First, a brief discussion of why the problem exists is appropriate.

If the user threads the program using OpenMP directives and compiles the program with
Intel® compilers, Intel MKL and the program will both use the same threading library. Intel
MKL tries to determine if it is in a parallel region in the program, and if it is, it does not
spread its operations over multiple threads unless the user specifically requests Intel MKL
to do so via the MKL_DYNAMIC functionality (see Using Additional Threading Control for
details). However, Intel MKL can be aware that it is in a parallel region only if the threaded
program and Intel MKL are using the same threading library. If the user’s program is
threaded by some other means, Intel MKL may operate in multithreaded mode and the
performance may suffer due to overuse of the resources.

6-4

6 Intel® Math Kernel Library User’s Guide

Here are several cases with recommendations depending on the threading model you
employ:

To avoid correctness and performance problems, you are also strongly encouraged to
dynamically link with the Intel® Legacy OpenMP run-time library libguide and Intel®
Compatibility OpenMP run-time library libiomp.

Setting the Number of Threads Using OpenMP* Environment
Variable

You can set the number of threads using the environment variable OMP_NUM_THREADS. To
change the number of threads, in the command shell in which the program is going to run,
enter:

Table 6-1 How to avoid conflicts in the execution environment for your threading
model

Threading model Discussion

You thread the program using OS threads
(pthreads on the Linux* OS).

If more than one thread calls the library, and the
function being called is threaded, it may be
important that you turn off Intel MKL threading. Set
the number of threads to one by any of the available
means (see Techniques to Set the Number of
Threads).

You thread the program using OpenMP directives
and/or pragmas and compile the program using a
compiler other than a compiler from Intel.

This is more problematic in that setting of
OMP_NUM_THREADS in the environment affects both
the compiler's threading library and libguide
(libiomp). In this case, you should try to choose
the Threading layer library that matches the layered
Intel MKL with the OpenMP compiler you employ (see
Linking Examples on how to do this). If this is
impossible, the sequential version of Intel MKL can
be used as the Threading layer. To do this, you
should link with the appropriate Threading layer
library: libmkl_sequential.a or
libmkl_sequential.so (see the High-level
Directory Structure section in chapter 3).

There are multiple programs running on a
multiple-cpu system, as in the case of a parallelized
program running using MPI for communication in
which each processor is treated as a node.

The threading software will see multiple processors
on the system even though each processor has a
separate MPI process running on it. In this case, set
the number of threads to one by any of the available
means (see Techniques to Set the Number of
Threads).

Managing Performance and Memory 6

6-5

export OMP_NUM_THREADS=<number of threads to use> for certain shells, such as
bash.

or

set OMP_NUM_THREADS=<number of threads to use> for other shells, such as csh or
tcsh.

See Using Additional Threading Control on how to set the number of threads using Intel
MKL environment variables, for example, MKL_NUM_THREADS.

Changing the Number of Threads at Run Time
It is not possible to change the number of processors during run time using the
environment variables. However, you can call OpenMP API functions from your program to
change the number of threads during run time. The following sample code demonstrates
changing the number of threads during run time using the omp_set_num_threads()
routine. See also Techniques to Set the Number of Threads.

To run this example, use the omp.h header file from the Intel® Compiler package. If you
do not have the Intel Compiler but wish to explore the functionality in the example, use
Fortran API for omp_set_num_threads() rather than the C version.

Example 6-1 Changing the number of processors for threading

#include "omp.h"

#include "mkl.h"

#include <stdio.h>

#define SIZE 1000

void main(int args, char *argv[]){

 double *a, *b, *c;

 a = new double [SIZE*SIZE];

 b = new double [SIZE*SIZE];

 c = new double [SIZE*SIZE];

6-6

6 Intel® Math Kernel Library User’s Guide

 double alpha=1, beta=1;

 int m=SIZE, n=SIZE, k=SIZE, lda=SIZE, ldb=SIZE, ldc=SIZE, i=0, j=0;

 char transa='n', transb='n';

 for(i=0; i<SIZE; i++){

 for(j=0; j<SIZE; j++){

 a[i*SIZE+j]= (double)(i+j);

 b[i*SIZE+j]= (double)(i*j);

 c[i*SIZE+j]= (double)0;

 }

 }

 cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,

 m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);

 printf("row\ta\tc\n");

 for (i=0;i<10;i++){

 printf("%d:\t%f\t%f\n", i, a[i*SIZE], c[i*SIZE]);

 }

 omp_set_num_threads(1);

 for(i=0; i<SIZE; i++){

 for(j=0; j<SIZE; j++){

 a[i*SIZE+j]= (double)(i+j);

 b[i*SIZE+j]= (double)(i*j);

 c[i*SIZE+j]= (double)0;

 }

 }

Example 6-1 Changing the number of processors for threading (continued)

Managing Performance and Memory 6

6-7

 cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,

 m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);

 printf("row\ta\tc\n");

 for (i=0;i<10;i++){

 printf("%d:\t%f\t%f\n", i, a[i*SIZE], c[i*SIZE]);

 }

 omp_set_num_threads(2);

 for(i=0; i<SIZE; i++){

 for(j=0; j<SIZE; j++){

 a[i*SIZE+j]= (double)(i+j);

 b[i*SIZE+j]= (double)(i*j);

 c[i*SIZE+j]= (double)0;

 }

 }

 cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,

 m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);

 printf("row\ta\tc\n");

 for (i=0;i<10;i++){

 printf("%d:\t%f\t%f\n", i, a[i*SIZE],

c[i*SIZE]);

 }

 delete [] a;

 delete [] b;

 delete [] c;

}

Example 6-1 Changing the number of processors for threading (continued)

6-8

6 Intel® Math Kernel Library User’s Guide

Using Additional Threading Control
Intel MKL 10.0 introduces new optional threading controls, that is, the environment
variables and service functions. They behave similar to their OpenMP equivalents, but take
precedence over them. By using these controls along with OpenMP variables, you can
thread the part of the application that does not call Intel MKL and the library independently
from each other.

These controls enable you to specify the number of threads for Intel MKL independently of
the OpenMP settings. Although Intel MKL may actually use the number of threads that
differs from the one suggested, the controls will also enable you to instruct the library to
try using the suggested number in the event of undetectable threading behavior in the
application calling the library.

Employing Intel MKL threading controls in your application is optional. If you do not use
them, the library will mainly behave the same way as Intel MKL 9.1 in what relates to
threading with the possible exception of a different default number of threads. See Note on
FFT Usage for the usage differences.

Table 6-2 lists the Intel MKL environment variables for threading control, their equivalent
functions, and OMP counterparts:

NOTE. Intel MKL does not always have a choice on the number of
threads for certain reasons, such as system resources.

Table 6-2 Intel® MKL environment variables for threading controls

Environment Variable Service Function Comment

Equivalent OMP
Environment
Variable

MKL_NUM_THREADS mkl_set_num_threads Suggests the number of
threads to use.

OMP_NUM_THREADS

MKL_DOMAIN_NUM_
THREADS

mkl_domain_set_num_
threads

Suggests the number of
threads for a particular
function domain.

MKL_DYNAMIC mkl_set_dynamic Enables Intel MKL to
dynamically change the
number of threads.

OMP_DYNAMIC

Managing Performance and Memory 6

6-9

The example below illustrates the use of the Intel MKL function mkl_set_num_threads()
to mimic the Intel MKL 9.x default behavior, that is, running on one thread.

The section further expands on the Intel MKL environment variables for threading control.
See the Intel MKL Reference Manual for the detailed description of the threading control
functions, their parameters, calling syntax, and more code examples.

MKL_DYNAMIC

The value of MKL_DYNAMIC is by default set to TRUE, regardless of OMP_DYNAMIC, whose
default value may be FALSE.

MKL_DYNAMIC being TRUE means that Intel MKL will always try to pick what it considers the
best number of threads, up to the maximum specified by the user. MKL_DYNAMIC being
FALSE means that Intel MKL will not deviate from the number of threads the user
requested, unless there are reasons why it has no choice.

Notice that setting MKL_DYNAMIC=FALSE does not ensure that Intel MKL will use the
number of threads that you request. The library may examine the problem and pick a
different number of threads than the value suggested. For example, if you attempt to do a
size 1 matrix-matrix multiply across 8 threads, the library may instead choose to use only
one thread because it is impractical to use 8 threads in this event.

NOTE. The functions take precedence over the respective environment
variables.
In particular, if in your application, you want Intel MKL to use a given
number of threads and do not want users of your application to change
this via environment variables, set this number of threads by a call to
mkl_set_num_threads(), which will have full precedence over any
environment variables set.

Example 6-2 Setting the number of threads to one

#include <omp.h>

#include <mkl.h>

…

mkl_set_num_threads (1);

6-10

6 Intel® Math Kernel Library User’s Guide

Note also that if Intel MKL is called in a parallel region, it will use only one thread by
default. If you want the library to use nested parallelism, and thread within a parallel
region is compiled with the same OpenMP compiler as Intel MKL is using, you may
experiment with setting MKL_DYNAMIC to FALSE and manually increasing the number of
threads.

In general, you should set MKL_DYNAMIC to FALSE only under circumstances that Intel
MKL is unable to detect, for example, when nested parallelism is desired where the library
is called already from a parallel section.

MKL_DYNAMIC being TRUE, in particular, provides for optimal choice of the number of
threads in the following cases:

• If the requested number of threads exceeds the number of physical cores (perhaps
because of hyper-threading), and MKL_DYNAMIC is not changed from its default value
of TRUE, Intel MKL will scale down the number of threads to the number of physical
cores.

• If you are able detect the presence of MPI, but cannot determine if it has been called in
a thread-safe mode (it is impossible to detect this with MPICH 1.2.x, for instance), and
MKL_DYNAMIC has not been changed from its default value of TRUE, Intel MKL will run
one thread.

MKL_DOMAIN_NUM_THREADS

MKL_DOMAIN_NUM_THREADS accepts a string value <MKL-env-string>, which must have
the following format:

<MKL-env-string> ::= <MKL-domain-env-string> { <delimiter>
<MKL-domain-env-string> }

<delimiter> ::= [<space-symbol>*] (<space-symbol> | <comma-symbol> |
<semicolon-symbol> | <colon-symbol>) [<space-symbol>*]

<MKL-domain-env-string> ::= <MKL-domain-env-name> <uses>
<number-of-threads>

<MKL-domain-env-name> ::= MKL_ALL | MKL_BLAS | MKL_FFT | MKL_VML

<uses> ::= [<space-symbol>*] (<space-symbol> | <equality-sign> |
<comma-symbol>) [<space-symbol>*]

<number-of-threads> ::= <positive-number>

<positive-number> ::= <decimal-positive-number> | <octal-number> |
<hexadecimal-number>

In the syntax above, MKL_BLAS indicates the BLAS function domain, MKL_FFT indicates
non-cluster FFTs, and MKL_VML indicates the Vector Mathematics Library.

For example,

MKL_ALL 2 : MKL_BLAS 1 : MKL_FFT 4

Managing Performance and Memory 6

6-11

MKL_ALL=2 : MKL_BLAS=1 : MKL_FFT=4

MKL_ALL=2, MKL_BLAS=1, MKL_FFT=4

MKL_ALL=2; MKL_BLAS=1; MKL_FFT=4

MKL_ALL = 2 MKL_BLAS 1 , MKL_FFT 4

MKL_ALL,2: MKL_BLAS 1, MKL_FFT,4 .

The global variables MKL_ALL, MKL_BLAS, MKL_FFT, and MKL_VML, as well as the interface
for the Intel MKL threading control functions, can be found in the mkl.h header file.

Table 6-3 illustrates how values of MKL_DOMAIN_NUM_THREADS are interpreted.

Table 6-3 Interpretation of MKL_DOMAIN_NUM_THREADS values

Value of
MKL_DOMAIN_NUM_THREADS Interpretation

MKL_ALL=4 All parts of Intel MKL are suggested to try using 4 threads. The actual
number of threads may be still different because of the MKL_DYNAMIC
setting or system resource issues. The setting is equivalent to
MKL_NUM_THREADS = 4.

MKL_ALL=1, MKL_BLAS=4 All parts of Intel MKL are suggested to use 1 thread, except for BLAS,
which is suggested to try 4 threads.

MKL_VML = 2 VML is suggested to try 2 threads. The setting affects no other part of
Intel MKL.

NOTE. The domain-specific settings take precedence over the overall
ones. For example, the "MKL_BLAS=4" value of
MKL_DOMAIN_NUM_THREADS suggests to try 4 threads for BLAS,
regardless of later setting MKL_NUM_THREADS, and a function call
"mkl_domain_set_num_threads (4, MKL_BLAS);" suggests the
same, regardless of later calls to mkl_set_num_threads().
However, pay attention to that a function call with input "MKL_ALL", such
as "mkl_domain_set_num_threads (4, MKL_ALL);" is equivalent to
"mkl_set_num_threads(4)", and thus it will be overwritten by later
calls to mkl_set_num_threads. Similarly, the environment setting of
MKL_DOMAIN_NUM_THREADS with "MKL_ALL=4" will be overwritten with
MKL_NUM_THREADS = 2.

6-12

6 Intel® Math Kernel Library User’s Guide

Whereas the MKL_DOMAIN_NUM_THREADS environment variable enables you set several
variables at once, for example, "MKL_BLAS=4,MKL_FFT=2", the corresponding function
does not take string syntax. So, to do the same with the function calls, you may need to
make several calls, which in this example are as follows:

mkl_domain_set_num_threads (4, MKL_BLAS);

mkl_domain_set_num_threads (2, MKL_FFT);

Setting the Environment Variables for Threading Control

To set the environment variables used for threading control, in the command shell in which
the program is going to run, enter:

export <VARIABLE NAME>=<value> for certain shells, such as bash.

For example,

export MKL_NUM_THREADS=4

export MKL_DOMAIN_NUM_THREADS="MKL_ALL=1, MKL_BLAS=4"

export MKL_DYNAMIC=FALSE

For other shells, such as csh or tcsh, enter

set <VARIABLE NAME>=<value> .

For example,

set MKL_NUM_THREADS=4

set MKL_DOMAIN_NUM_THREADS="MKL_ALL=1, MKL_BLAS=4"

set MKL_DYNAMIC=FALSE

Note on FFT Usage

Introduction of additional threading control made it possible to optimize the commit stage
of the FFT implementation and get rid of double data initialization. However, this
optimization requires a change in the FFT usage. Suppose you create threads in the
application yourself after initializing all FFT descriptors. In this case, threading is employed
for the parallel FFT computation only, the descriptors are released upon return from the
parallel region, and each descriptor is used only within the corresponding thread. Starting
with Intel MKL 10.0, you must explicitly instruct the library before the commit stage to
work on one thread. To do this, set MKL_NUM_THREADS=1 or
MKL_DOMAIN_NUM_THREADS="MKL_FFT=1" or call the corresponding pair of service
functions. Otherwise, the actual number of threads may be different because the
DftiCommitDescriptor function is not in a parallel region. See Example C-27a "Using
Parallel Mode with Multiple Descriptors Initialized in One Thread" in the Intel MKL
Reference Manual.

Managing Performance and Memory 6

6-13

Tips and Techniques to Improve Performance
To obtain the best performance with Intel MKL, follow the recommendations given in the
subsections below.

Coding Techniques
To obtain the best performance with Intel MKL, ensure the following data alignment in your
source code:

• arrays are aligned at 16-byte boundaries

• leading dimension values (n*element_size) of two-dimensional arrays are divisible
by 16

• for two-dimensional arrays, leading dimension values divisible by 2048 are avoided.

LAPACK packed routines

The routines with the names that contain the letters HP, OP, PP, SP, TP, UP in the matrix
type and storage position (the second and third letters respectively) operate on the
matrices in the packed format (see LAPACK "Routine Naming Conventions" sections in the
Intel MKL Reference Manual). Their functionality is strictly equivalent to the functionality of
the unpacked routines with the names containing the letters HE, OR, PO, SY, TR, UN in the
corresponding positions, but the performance is significantly lower.

If the memory restriction is not too tight, use an unpacked routine for better performance.
Note that in such a case, you need to allocate N2/2 more memory than the memory
required by a respective packed routine, where N is the problem size (the number of
equations).

For example, solving a symmetric eigenproblem with an expert driver can be speeded up
through using an unpacked routine:

call dsyevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w,
z, ldz, work, lwork, iwork, ifail, info),

where a is the dimension lda-by-n, which is at least N2 elements, instead of

call dspevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z,
ldz, work, iwork, ifail, info),

where ap is the dimension N*(N+1)/2.

FFT functions

There are additional conditions to gain performance of the FFT functions.

6-14

6 Intel® Math Kernel Library User’s Guide

Applications based on IA-32 or Intel® 64 architecture. The addresses of the first elements of
arrays and the leading dimension values, in bytes (n*element_size), of two-dimensional
arrays should be divisible by cache line size, which equals

• 32 bytes for Pentium® III processor

• 64 bytes for Pentium® 4 processor

• 128 bytes for processor using Intel® 64 architecture.

Applications based on IA-64 architecture. The sufficient conditions are as follows:

• For the C-style FFT, the distance L between arrays that represent real and imaginary
parts is not divisible by 64. The best case is when L=k*64 + 16

• Leading dimension values, in bytes (n*element_size), of two-dimensional arrays are
not power of two.

Hardware Configuration Tips

Dual-Core Intel® Xeon® processor 5100 series systems. To get the best Intel MKL
performance on Dual-Core Intel® Xeon® processor 5100 series systems, you are advised
to enable the Hardware DPL (streaming data) Prefetcher functionality of this processor.
Configuration of this functionality is accomplished through appropriate BIOS settings where
supported. Check your BIOS documentation for details.

The use of Hyper-Threading Technology. Hyper-Threading Technology (HT Technology) is
especially effective when each thread is performing different types of operations and when
there are under-utilized resources on the processor. Intel MKL fits neither of these criteria
as the threaded portions of the library execute at high efficiencies using most of the
available resources and perform identical operations on each thread. You may obtain
higher performance when using Intel MKL without HT Technology enabled. See Using
Intel® MKL Parallelism for information on the default number of threads, changing this
number, and other relevant details.
If you run with HT enabled, performance may be especially impacted if you run on fewer
threads than physical cores. For example, as there are two threads to every physical core,
the thread scheduler may assign two threads to some cores and ignore others altogether. If
you are using the OpenMP* library of the Intel Compiler, read the respective User Guide on
how to best set the affinity to avoid this situation. For Intel MKL, you are recommended to
set KMP_AFFINITY=granularity=fine,compact,1,0.

Managing Performance and Memory 6

6-15

Managing Multi-core Performance
You can obtain best performance on systems with multi-core processors by requiring that
threads do not migrate from core to core. To do this, bind threads to the CPU cores by
setting an affinity mask to threads. You can do it either with OpenMP facilities (which is
recommended if available, for instance, via KMP_AFFINITY environment variable using
Intel OpenMP), or with a system routine, as in the example below.

Suppose,

• The system has two sockets with two cores each

• 2 threads parallel application, which calls Intel MKL FFT, happens to run faster than in
4 threads, but the performance in 2 threads is very unstable

In this case,

1. Put the part of the following code fragment preceding the last comment into your code
before FFT call to bind the threads to the cores on different sockets.

2. Build your application and run it in 2 threads:

env OMP_NUM_THREADS=2 ./a.out

See the Linux Programmer's Manual (in man pages format) for particulars of the
sched_setaffinity function used in the above example.

Example 6-3 Setting an affinity mask by operating system means using an Intel® compiler

// Set affinity mask

#include <sched.h>

#include <omp.h>

#pragma omp parallel default(shared)

{

 unsigned long mask = (1 << omp_get_thread_num()) * 2;
 sched_setaffinity(0, sizeof(mask), &mask);
 }

// Call MKL FFT routine

6-16

6 Intel® Math Kernel Library User’s Guide

Operating on Denormals
If an Intel MKL function operates on denormals, that is, non-zero numbers that are smaller
than the smallest possible non-zero number supported by a given floating-point format, or
produces denormals during the computation (for instance, if the incoming data is too close
to the underflow threshold), you may experience considerable performance drop. The CPU
state may be set so that floating-point operations on denormals invoke the exception
handler that slows down the application.

To resolve the issue, before compiling the main program, turn on the -ftz option, if you
are using the Intel® compiler or any other compiler that can control this feature. In this
case, denormals are treated as zeros at processor level and the exception handler is not
invoked. Note, however, that setting this option slightly impacts the accuracy.

Another way to bring the performance back to norm is proper scaling of the input data to
avoid numbers near the underflow threshold.

FFT Optimized Radices
You can gain performance of Intel MKL FFT if length of the data vector permits factorization
into powers of optimized radices.

In Intel MKL, the list of optimized radices depends upon the architecture:

• 2, 3, 4, 5 for IA-32 architecture

• 2, 3, 4, 5 for Intel® 64 architecture

• 2, 3, 4, 5, 7, 11 for IA-64 architecture.

Using Intel® MKL Memory Management
Intel MKL has the memory management software that controls memory buffers for use by
the library functions. New buffers that the library allocates when certain functions (Level 3
BLAS or FFT) are called are not deallocated until the program ends. To get the amount of
memory allocated by the memory management software, call the MKL_MemStat()
function. If at some point your program needs to free memory, it may do so with a call to
MKL_FreeBuffers(). If another call is made to a library function that needs a memory
buffer, then the memory manager will again allocate the buffers and they will again remain
allocated until either the program ends or the program deallocates the memory.

This behavior facilitates better performance. However, some tools may report the behavior
as a memory leak. You can release memory in your program through the use of a function
made available in Intel MKL or you can force memory releasing after each call by setting an
environment variable.

Managing Performance and Memory 6

6-17

The memory management software is turned on by default. To disable the software using
the environment variable, set MKL_DISABLE_FAST_MM to any value, which will cause
memory to be allocated and freed from call to call. Disabling this feature will negatively
impact performance of routines such as the level 3 BLAS, especially for small problem
sizes.

Using one of these methods to release memory will not necessarily stop programs from
reporting memory leaks, and, in fact, may increase the number of such reports in case you
make multiple calls to the library, thereby requiring new allocations with each call. Memory
not released by one of the methods described will be released by the system when the
program ends.

Redefining Memory Functions
Starting with MKL 9.0, you can replace memory functions that the library uses by default
with your own ones. It is possible due to the memory renaming feature.

Memory renaming

In general, if users try to employ their own memory management functions instead of
similar system functions (malloc, free, calloc, and realloc), actually, the memory
gets managed by two independent memory management packages, which may cause
memory issues. To prevent from such issues, the memory renaming feature was
introduced in certain Intel® libraries and in particular in Intel MKL. This feature enables
users to redefine memory management functions.

Redefining is possible because Intel MKL actually uses pointers to memory functions
(i_malloc, i_free, i_calloc, i_realloc) rather than the functions themselves. These
pointers initially hold addresses of respective system memory management functions
(malloc, free, calloc, realloc) and are visible at the application level. So, the pointer
values can be redefined programmatically.

Once a user has redirected these pointers to their own respective memory management
functions, the memory will be managed with user-defined functions rather than system
ones. As only one (user-defined) memory management package is in operation, the issues
are avoided.

Intel MKL memory management by default uses standard C run-time memory functions to
allocate or free memory. These functions can be replaced using memory renaming.

How to redefine memory functions

To redefine memory functions, you may use the following procedure:

6-18

6 Intel® Math Kernel Library User’s Guide

1. Include the i_malloc.h header file in your code.
(The header file contains all declarations required for an application developer to
replace the memory allocation functions. This header file also describes how memory
allocation can be replaced in those Intel libraries that support this feature.)

2. Redefine values of pointers i_malloc, i_free, i_calloc, i_realloc prior to the
first call to MKL functions:

Example 6-4 Redefining memory functions

#include "i_malloc.h"

 . . .

 i_malloc = my_malloc;

 i_calloc = my_calloc;

 i_realloc = my_realloc;

 i_free = my_free;

 . . .

// Now you may call Intel MKL functions

7-1

Language-specific Usage
Options 7

Intel® Math Kernel Library (Intel® MKL) basically provides support for Fortran and C/C++
programming. However, not all function domains support both Fortran and C interfaces
(see Table A-1). For example, LAPACK has no C interface. Still you can call functions
comprising these domains from C using mixed-language programming.

Moreover, even if you want to use LAPACK or BLAS, which basically support Fortran, in the
Fortran 90 environment, additional effort is initially required to build language-specific
interface libraries and modules, being delivered as source code.

The chapter mainly focuses on mixed-language programming and the use of
language-specific interfaces. It expands upon the use of Intel MKL in C language
environments for function domains that basically support Fortran as well as explains usage
of language-specific interfaces and, in particular, Fortran 90 interfaces to LAPACK and
BLAS. In this connection, compiler-dependent functions are discussed to explain why
Fortran 90 modules are supplied as sources. A separate section guides you through the
process of running examples of invoking Intel MKL functions from Java.

Using Language-Specific Interfaces with Intel® MKL
The following interface libraries and modules may be generated as a result of operation of
respective makefiles located in the interfaces directory.

Table 7-1 Interface libraries and modules

File name Comment

libmkl_blas95.a Contains Fortran 90 wrappers for BLAS (BLAS95)

libmkl_lapack95.a Contains Fortran 90 wrappers for LAPACK (LAPACK95)

libfftw2xc_intel.a Contains interfaces for FFTW version 2.x (C interface for
Intel® compiler) to call Intel MKL FFTs.

libfftw2xc_gnu.a Contains interfaces for FFTW version 2.x (C interface for
GNU compiler) to call Intel MKL FFTs.

7-2

7 Intel® Math Kernel Library User’s Guide

Section “Fortran 90 Interfaces and Wrappers to LAPACK and BLAS” shows by example how
these libraries and modules are generated.

 Fortran 90 Interfaces and Wrappers to LAPACK and BLAS

Fortran 90 interfaces are provided for pure procedures and along with wrappers are
delivered as sources. (For more information, see Compiler-dependent Functions and
Fortran 90 Modules). The simplest way to use them is building corresponding libraries and
linking them as user's libraries. To do this, you must have administrator rights. Provided
the product directory is open for writing, the procedure is simple:

1. Go to the respective directory mkl/10.0.xxx/interfaces/blas95 or
mkl/10.0.xxx/interfaces/lapack95
where xxx is the Intel MKL package number, for example, "039"

2. Type one of the following commands:

make PLAT=lnx32 lib - for IA-32 architecture

make PLAT=lnx32e lib - for Intel® 64 architecture

make PLAT=lnx64 lib - for IA-64 architecture.

libfftw2xf_intel.a Contains interfaces for FFTW version 2.x (Fortran
interface for Intel compiler) to call Intel MKL FFTs.

libfftw2xf_gnu.a Contains interfaces for FFTW version 2.x (Fortran
interface for GNU compiler) to call Intel MKL FFTs.

libfftw3xc_intel.a Contains interfaces for FFTW version 3.x (C interface for
Intel compiler) to call Intel MKL FFTs.

libfftw3xc_gnu.a Contains interfaces for FFTW version 3.x (C interface for
GNU compiler) to call Intel MKL FFTs.

libfftw3xf_intel.a Contains interfaces for FFTW version 3.x (Fortran
interface for Intel compiler) to call Intel MKL FFTs.

libfftw3xf_gnu.a Contains interfaces for FFTW version 3.x (Fortran
interface for GNU compiler) to call Intel MKL FFTs.

libfftw2x_cdft_SINGLE.a Contains single-precision interfaces for MPI FFTW version
2.x (C interface) to call Intel MKL cluster FFTs.

libfftw2x_cdft_DOUBLE.a Contains double-precision interfaces for MPI FFTW
version 2.x (C interface) to call Intel MKL cluster FFTs.

mkl95_blas.mod Contains Fortran 90 interface module for BLAS (BLAS95)

mkl95_lapack.mod Contains Fortran 90 interface module for LAPACK
(LAPACK95)

mkl95_precision.mod Contains Fortran 90 definition of precision parameters for
BLAS95 and LAPACK95

Table 7-1 Interface libraries and modules (continued)

File name Comment

Language-specific Usage Options 7

7-3

As a result, the required library and a respective .mod file will be built and installed in the
standard catalog of the release.

The .mod files can also be obtained from files of interfaces using the compiler command

ifort -c mkl_lapack.f90 or ifort -c mkl_blas.f90.

These files are in the include directory.

If you do not have administrator rights, then do the following:

1. Copy the entire directory (mkl/10.0.xxx/interfaces/blas95 or
mkl/10.0.xxx/interfaces/lapack95) into a user-defined directory <user_dir>

2. Copy the corresponding file (mkl_blas.f90 or mkl_lapack.f90) from
mkl/10.0.xxx/include into the user-defined directory <user_dir>/blas95 or
<user_dir>/lapack95 respectively

3. Run one of the above make commands in <user_dir>/blas95 or
<user_dir>/lapack95 with an additional variable, for instance:

make PLAT=lnx32 INTERFACE=mkl_blas.f90 lib

make PLAT=lnx32 INTERFACE=mkl_lapack.f90 lib

Now the required library and the .mod file will be built and installed in the
<user_dir>/blas95 or <user_dir>/lapack95 directory, respectively.

By default, the ifort compiler is assumed. You may change it with an additional parameter
of make: FC=<compiler>.

For instance,

make PLAT=lnx64 FC=<compiler> lib

There is also a way to use the interfaces without building the libraries.

To delete the library from the building directory, use the following commands:

make PLAT=lnx32 clean - for IA-32 architecture

make PLAT=lnx32e clean - for Intel® 64 architecture

make PLAT=lnx64 clean - for IA-64 architecture.

Compiler-dependent Functions and Fortran 90 Modules

Compiler-dependent functions arise whenever the compiler places into the object code
function calls that are resolved in its run-time library (RTL). Linking of such code without
the appropriate RTL will result in undefined symbols. MKL has been designed to minimize
RTL dependencies.

Where the dependencies do arise, supporting RTL is shipped with Intel MKL. The only
example of such RTLs, except those that are relevant to the Intel MKL cluster software, are
libguide and libiomp, which are the libraries for the OpenMP* code compiled with an
Intel® compiler. libguide and libiomp support the threaded code in Intel MKL.

7-4

7 Intel® Math Kernel Library User’s Guide

In other cases where RTL dependencies might arise, the functions are delivered as source
code and it is the responsibility of the user to compile the code with whatever compiler
employed.

In particular, Fortran 90 modules result in the compiler-specific code generation requiring
RTL support, so, Intel MKL delivers these modules as source code.

Mixed-language programming with Intel® MKL
Appendix A lists the programming languages supported for each Intel MKL function
domain. However, you can call Intel MKL routines from different language environments.
This section explains how to do this using mixed-language programming.

Calling LAPACK, BLAS, and CBLAS Routines from C Language
Environments

Not all Intel MKL function domains support both C and Fortran environments. To use Intel
MKL Fortran-style functions in C/C++ environments, you should observe certain
conventions, which are discussed for LAPACK and BLAS in the subsections below.

LAPACK

As LAPACK routines are Fortran-style, when calling them from C-language programs, make
sure that you follow the Fortran-style calling conventions:

• Pass variables by 'address' as opposed to pass by 'value'.

Function calls is Example 7-1 and Example 7-2 illustrate this.

• Store your data Fortran-style, that is, in column-major rather than row-major order.

With row-major order, adopted in C, the last array index changes most quickly and the
first one changes most slowly when traversing the memory segment where the array is
stored. With Fortran-style column-major order, the last index changes most slowly
whereas the first one changes most quickly (as illustrated by Figure 7-1 for a 2D
array).

Language-specific Usage Options 7

7-5

Figure 7-1 Column-major order vs. row-major order

For example, if a two-dimensional matrix A of size m x n is stored densely in a
one-dimensional array B, you can access a matrix element like this:

A[i][j] = B[i*n+j] in C (i=0, ... , m-1, j=0, ... , n-1)

A(i,j) = B(j*m+i) in Fortran (i=1, ... , m, j=1, ... , n).

When calling LAPACK routines from C, also mind that LAPACK routine names can be both
upper-case or lower-case, with trailing underscore or not. For example, these names are
equivalent: dgetrf, DGETRF, dgetrf_, DGETRF_.

BLAS

BLAS routines are Fortran-style routines. If you call BLAS routines from a C-language
program, you must follow the Fortran-style calling conventions:

• Pass variables by address as opposed to passing by value.

• Store data Fortran-style, that is, in column-major rather than row-major order.

Refer to the LAPACK section for details of these conventions. See Example 7-1 on how to
call BLAS routines from C.

When calling BLAS routines from C, also mind that BLAS routine names can be both
upper-case and lower-case, with trailing underscore or not. For example, these names are
equivalent: dgemm, DGEMM, dgemm_, DGEMM_.

CBLAS

An alternative for calling BLAS routines from a C-language program is to use the CBLAS
interface.

7-6

7 Intel® Math Kernel Library User’s Guide

CBLAS is a C-style interface to the BLAS routines. You can call CBLAS routines using
regular C-style calls. When using the CBLAS interface, the header file mkl.h will simplify
the program development as it specifies enumerated values as well as prototypes of all the
functions. The header determines if the program is being compiled with a C++ compiler,
and if it is, the included file will be correct for use with C++ compilation. Example 7-3
illustrates the use of CBLAS interface.

Calling BLAS Functions That Return the Complex Values in
C/C++ Code

You must be careful when handling a call from C to a BLAS function that returns complex
values. The problem arises because these are Fortran functions and complex return values
are handled quite differently for C and Fortran. However, in addition to normal function
calls, Fortran enables calling functions as though they were subroutines, which provides a
mechanism for returning the complex value correctly when the function is called from a C
program. When a Fortran function is called as a subroutine, the return value shows up as
the first parameter in the calling sequence. This feature can be exploited by the C
programmer.

The following example shows how this works.

Normal Fortran function call: result = cdotc(n, x, 1, y, 1).

A call to the function as a

subroutine: call cdotc(result, n, x, 1, y, 1).

A call to the function from C

(notice that the hidden

parameter gets exposed): cdotc(&result, &n, x, &one, y, &one).

Using the above example, you can call from C, and thus, from C++, several level 1 BLAS
functions that return complex values. However, it is still easier to use the CBLAS interface.
For instance, you can call the same function using the CBLAS interface as follows:

cblas_cdotu(n, x, 1, y, 1, &result)

NOTE. Intel MKL has both upper-case and lower-case entry points in
BLAS, with trailing underscore or not. So, all these names are acceptable:
cdotc, CDOTC, cdotc_, CDOTC_.

Language-specific Usage Options 7

7-7

The following example illustrates a call from a C program to the complex BLAS Level 1
function zdotc(). This function computes the dot product of two double-precision complex
vectors.

In this example, the complex dot product is returned in the structure c.

NOTE. The complex value comes back expressly in this case.

Example 7-1 Calling a complex BLAS Level 1 function from C

#include "mkl.h"

#define N 5

void main()

{

int n, inca = 1, incb = 1, i;

typedef struct{ double re; double im; } complex16;

complex16 a[N], b[N], c;

void zdotc();

n = N;

for(i = 0; i < n; i++){

a[i].re = (double)i; a[i].im = (double)i * 2.0;

b[i].re = (double)(n - i); b[i].im = (double)i * 2.0;

}

zdotc(&c, &n, a, &inca, b, &incb);

printf("The complex dot product is: (%6.2f, %6.2f)\n", c.re, c.im);

}

7-8

7 Intel® Math Kernel Library User’s Guide

Below is the C++ implementation:

Example 7-2 Calling a complex BLAS Level 1 function from C++

#include "mkl.h"

typedef struct{ double re; double im; } complex16;

extern "C" void zdotc (complex16*, int *, complex16 *, int *, complex16
*, int *);

#define N 5

void main()

{

int n, inca = 1, incb = 1, i;

complex16 a[N], b[N], c;

n = N;

for(i = 0; i < n; i++){

a[i].re = (double)i; a[i].im = (double)i * 2.0;

b[i].re = (double)(n - i); b[i].im = (double)i * 2.0;

}

zdotc(&c, &n, a, &inca, b, &incb);

printf("The complex dot product is: (%6.2f, %6.2f)\n", c.re, c.im);

}

Language-specific Usage Options 7

7-9

The implementation below uses CBLAS:

Invoking Intel® MKL Functions from Java Applications
This section describes examples that are provided with the Intel MKL package and illustrate
calling the library functions from Java.

Example 7-3 Using CBLAS interface instead of calling BLAS directly from C

#include "mkl.h"

typedef struct{ double re; double im; } complex16;

extern "C" void cblas_zdotc_sub (const int , const complex16 *,

 const int , const complex16 *, const int, const complex16*);

#define N 5

void main()

{

int n, inca = 1, incb = 1, i;

complex16 a[N], b[N], c;

n = N;

for(i = 0; i < n; i++){

a[i].re = (double)i; a[i].im = (double)i * 2.0;

b[i].re = (double)(n - i); b[i].im = (double)i * 2.0;

}

cblas_zdotc_sub(n, a, inca, b, incb,&c);

printf("The complex dot product is: (%6.2f, %6.2f)\n", c.re, c.im);

}

7-10

7 Intel® Math Kernel Library User’s Guide

Intel MKL Java examples

Java was positioned by its inventor, the Sun Microsystems Corporation as "Write Once Run
Anywhere" (WORA) language. Intel MKL may help to speed-up Java applications, the
WORA philosophy being partially supported, as Intel MKL editions are intended for wide
variety of operating systems and processors covering most kinds of laptops and desktops,
many workstations and servers.

To demonstrate binding with Java, Intel MKL includes the set of Java examples found in the
following directory:

<mkl directory>/examples/java .

The examples are provided for the following MKL functions:

• the ?gemm, ?gemv, and ?dot families from CBLAS

• complete set of non-cluster FFT functions

• ESSL1-like functions for 1-dimensional convolution and correlation.

• VSL Random Number Generators (RNG), except user-defined ones and file
subroutines.

• VML functions, except GetErrorCallBack, SetErrorCallBack, and
ClearErrorCallBack.

You can see the example sources in the following directory:

<mkl directory>/examples/java/examples .

The examples are written in Java. They demonstrate usage of the MKL functions with the
following variety of data:

• 1- and 2-dimensional data sequences

• real and complex types of the data

• single and double precision.

However, note that the wrappers, used in examples, do not

• demonstrate the use of huge arrays (>2 billion elements)

• demonstrate processing of arrays in native memory

• check correctness of function parameters

• demonstrate performance optimizations

To bind with Intel MKL, the examples use the Java Native Interface (JNI* developer
framework). The JNI documentation to start with is available from
http ://java .sun .com/j2se/1.5.0/docs/guide/jni/index. html .

1. IBM Engineering Scientific Subroutine Library (ESSL*).

Language-specific Usage Options 7

7-11

The Java example set includes JNI wrappers which perform the binding. The wrappers do
not depend on the examples and may be used in your Java applications. The wrappers for
CBLAS, FFT, VML, VSL RNG, and ESSL-like convolution and correlation functions do not
depend on each other.

To build the wrappers, just run the examples (see the Running the examples section for
details). The makefile builds the wrapper binaries and the examples, invoked after that,
double-check if the wrappers are built correctly. As a result of running the examples, the
following directories will be created in
<mkl directory>/examples/java:

• docs

• include

• classes

• bin

• _results .

The directories docs, include, classes, and bin will contain the wrapper binaries and
documentation; the directory _results will contain the testing results.

For a Java programmer, the wrappers look like the following Java classes:

• com.intel.mkl.CBLAS

• com.intel.mkl.DFTI

• com.intel.mkl.ESSL

• com.intel.mkl.VML

• com.intel.mkl.VSL

Documentation for the particular wrapper and example classes will be generated from the
Java sources during building and running the examples. To browse the documentation,
start from the index file in the docs directory which will be created by the build script:

<mkl directory>/examples/java/docs/index.html .

The Java wrappers for CBLAS, VML, VSL RNG, and FFT establish the interface that directly
corresponds to the underlying native functions and you can refer to the Intel MKL
Reference Manual for their functionality and parameters. Interfaces for the ESSL-like
functions are described in the generated documentation for the com.intel.mkl.ESSL
class.

Each wrapper consists of the interface part for Java and JNI stub written in C. You can find
the sources in the following directory:

<mkl directory>/examples/java/wrappers .

Both Java and C parts of the wrapper for CBLAS and VML demonstrate the straightforward
approach, which you may easily employ to cover missing CBLAS functions.

7-12

7 Intel® Math Kernel Library User’s Guide

The wrapper for FFT is more complicated because of supporting the lifecycle for FFT
descriptor objects. To compute a single Fourier transform, an application needs to call the
FFT software several times with the same copy of native FFT descriptor. The wrapper
provides the handler class to hold the native descriptor while virtual machine runs Java
bytecode.

The wrapper for VSL RNG is similar to the one for FFT. The wrapper provides the handler
class to hold the native descriptor of the stream state.

The wrapper for the convolution and correlation functions mitigates the same difficulty of
the VSL interface, which assumes similar lifecycle for "task descriptors". The wrapper
utilizes the ESSL-like interface for those functions, which is simpler for the case of
1-dimensional data. The JNI stub additionally enwraps the MKL functions into the ESSL-like
wrappers written in C and so "packs" the lifecycle of a task descriptor into a single call to
the native method.

The wrappers meet the JNI Specification versions 1.1 and 5.0 and so must work with
virtually every modern implementation of Java.

The examples and the Java part of the wrappers are written for the Java language
described in “The Java Language Specification (First Edition)” and extended with the
feature of "inner classes" (this refers to late 1990s). This level of language version is
supported by all versions of Sun's Java Software Development Kit (SDK) and compatible
implementations starting from the version 1.1.5, that is, by all modern versions of Java.

The level of C language is "Standard C" (that is, C89) with additional assumptions about
integer and floating-point data types required by the Intel MKL interfaces and the JNI
header files. That is, the native float and double data types are required to be the same
as JNI jfloat and jdouble data types, respectively, and the native int is required to be
4-byte long.

Running the examples

The Java examples support all the C and C++ compilers that the Intel MKL does. The
makefile intended to run the examples also needs the make utility, which is typically
provided with the Linux* OS.

To run Java examples, Java SDK is required for compiling and running Java code. A Java
implementation must be installed on the computer or available via the network. You may
download the SDK from the vendor website.

The examples must work for all versions of Java 2 SE SDK. However, they were tested only
with the following Java implementations:

• from the Sun Microsystems Corporation (http ://sun .com)

• from the BEA (http ://bea .com)

See the Intel MKL Release Notes about the supported versions of these Java SDKs.

Language-specific Usage Options 7

7-13

Also note that the Java runtime environment* (JRE*) system, which may be pre-installed
on your computer, is not enough. You need the JDK* developer toolkit that supports the
following set of tools:

• java

• javac

• javah

• javadoc

To make these tools available for the examples makefile, you have to setup the JAVA_HOME
environment variable and to add JDK binaries directory to the system PATH, for example:

export JAVA_HOME=/home/<user name>/jdk1.5.0_09

export PATH=${JAVA_HOME}/bin:${PATH}

You may also need to clear the JDK_HOME environment variable, if it is assigned a value:

unset JDK_HOME

To start the examples, use the makefile found in the Intel MKL Java examples directory:

make {so32|soem64t|so64} [function=…] [compiler=…]

If started without specifying a target (any of the choices, like so32), the makefile prints the
help info, which explains the targets as well as the function and compiler parameters.

For the examples list, see the examples.lst file in the same directory.

Known limitations

There are three kinds of limitations:

• functionality

• performance

• known bugs.

Functionality. It is possible that some MKL functions will not work fine if called from Java
environment via a wrapper, like those provided with the Intel MKL Java examples. Only
those specific CBLAS, FFT, VML, VSL RNG, and the convolution/correlation functions listed

NOTE. The implementation from the Sun Microsystems Corporation
supports only processors using IA-32 and Intel® 64 architectures. The
implementation from BEA supports Intel® Itanium® 2 processors as
well.

7-14

7 Intel® Math Kernel Library User’s Guide

in the Intel MKL Java examples section were tested with Java environment. So, you may
use the Java wrappers for these CBLAS, FFT, VML, VSL RNG, and convolution/correlation
functions in your Java applications.

Performance. The functions from Intel MKL must work faster than similar functions written
in pure Java. However, note that performance was not the main goal for these wrappers. —
The intent was giving code examples. So, an Intel MKL function called from Java
application will probably work slower than the same function called from a program written
in C/C++ or Fortran.

Known bugs. There is a number of known bugs in Intel MKL (identified in the Release
Notes) and there are incompatibilities between different versions of Java SDK. The
examples and wrappers include workarounds for these problems to make the examples
work anyway. Source codes of the examples and wrappers include comments which
describe the workarounds.

8-1

Coding Tips 8
This is another chapter whose contents discusses programming with Intel® Math Kernel
Library (Intel® MKL). Whereas chapter 7 focuses on general language-specific
programming options, this one presents coding tips that may be helpful to meet certain
specific needs. Currently the only tip advising how to achieve numerical stability is given.
You can find other coding tips, relevant to performance and memory management, in
chapter 6.

Aligning Data for Numerical Stability
If linear algebra routines (LAPACK, BLAS) are applied to inputs that are bit-for-bit identical
but the arrays are differently aligned or the computations are performed either on different
platforms or with different numbers of threads, the outputs may not be bit-for-bit identical,
though they will deviate within the appropriate error bounds. The Intel MKL version may
also affect numerical stability of the output, as the routines may be implemented
differently in different versions. With a given Intel MKL version, the outputs will be
bit-for-bit identical provided all the following conditions are met:

• the outputs are obtained on the same platform;

• the inputs are bit-for-bit identical;

• the input arrays are aligned identically at 16-byte boundaries.

Unlike the first two conditions, which are under users' control, the alignment of arrays, by
default, is not. For instance, arrays dynamically allocated using malloc are aligned at
8-byte boundaries, but not at 16-byte. If you need the numerically stable output, use
MKL_malloc() to get the properly aligned workspace:

8-2

8 Intel® Math Kernel Library User’s Guide

Example 8-1 Aligning addresses at 16-byte boundaries

// ******* C language *******

...

#include <stdlib.h>

...

void *darray;

int workspace

...

// Allocate workspace aligned on 16-bit boundary

darray = MKL_malloc(sizeof(double)*workspace, 16);

...

// call the program using MKL

mkl_app(darray);

...

// Free workspace

MKL_free(darray)

! ******* Fortran language *******

...

double precision darray

pointer (p_wrk,darray(1))

integer workspace

...

! Allocate workspace aligned on 16-bit boundary

p_wrk = mkl_malloc(8*workspace, 16)

...

! call the program using MKL

call mkl_app(darray)

...

! Free workspace

call mkl_free(p_wrk)

9-1

Working with Intel® Math
Kernel Library Cluster
Software 9

This chapter discusses usage of Intel® MKL ScaLAPACK and Cluster FFTs, mainly
describing linking your application with these domains and including C- and Fortran-specific
linking examples; gives information on the supported MPI.

See Table 3-7 for detailed Intel MKL directory structure in chapter 3.

For information on the available documentation and the doc directory, see Table 3-8 in the
same chapter.

For information on MP LINPACK Benchmark for Clusters, see section Intel® Optimized MP
LINPACK Benchmark for Clusters in chapter 10.

Intel MKL ScaLAPACK and FFTs support MPICH-1.2.x and Intel® MPI.

To link a program that calls ScaLAPACK, you need to know how to link an MPI application
first.

Typically, this involves using mpi scripts mpicc or mpif77 (C or FORTRAN 77 scripts) that
use the correct MPI header files and others. If, for instance, you are using MPICH installed
in /opt/mpich, then typically /opt/mpich/bin/mpicc and /opt/mpich/bin/mpif77 will
be the compiler scripts and /opt/mpich/lib/libmpich.a will be the library used for that
installation.

Linking with ScaLAPACK and Cluster FFTs
To link to ScaLAPACK and/or Cluster FFTs in Intel MKL, use the following general form:

<<MPI> linker script> <files to link> \

-L<Cluster MKL path> <Cluster MKL Library> \
<BLACS> <MKL Core Libraries> \

where

<MPI> is one of several MPI implementations (MPICH, Intel MPI 1.x, Intel MPI 2.x,
Intel MPI 3.x)

9-2

9 Intel® Math Kernel Library User’s Guide

<BLACS> is one of -lmkl_blacs, -lmkl_blacs_intelmpi,
-lmkl_blacs_intelmpi20,-mkl_blacs_openmpi

<MKL Cluster Library> is -lmkl_scalapack_core and/or -lmkl_cdft_core

<MKL Core Libraries> is <MKL LAPACK & MKL kernel libraries> for
ScaLAPACK, and <MKL kernel libraries> for Cluster FFTs.

<MKL LAPACK & kernel libraries> are LAPACK, processor optimized kernels,
threading library, and system library for threading support linked as described at the
beginning of section Link Command Syntax in Chapter 5.

For example, if you are using Intel MPI 3.x, wish to statically use the LP64 interface with
ScaLAPACK and to have only one MPI process per core (and thus do not employ threading),
provide the following linker options:

-L$MKLPATH -I$MKLINCLUDE -Wl,--start-group $MKLPATH/libmkl_intel_lp64.a
$MKLPATH/libmkl_scalapack_lp64 $MKLPATH/libmkl_blacs_intelmpi20_lp64
$MKLPATH/libmkl_sequential.a $MKLPATH/libmkl_core.a -static_mpi
-Wl,--end-group -lpthread –lm

For more examples, see Examples for Linking with ScaLAPACK and Cluster FFT.

Note that <<MPI> linker script> and <BLACS> library should correspond to the MPI
version. For instance, if it is Intel MPI 2.x, then <Intel MPI 2.x linker script> and
libmkl_blacs_intelmpi20 libraries are used. To link with Intel MPI 3.0 or 3.1, also
libmkl_blacs_intelmpi20 should be used.

For information on linking with Intel® MKL libraries, see Chapter 5 Linking Your Application
with Intel® Math Kernel Library.

Setting the Number of Threads
The OpenMP* software responds to the environmental variable OMP_NUM_THREADS. Intel®
MKL 10.0 has also introduced other mechanisms to set the number of threads, such as
MKL_NUM_THREADS or MKL_DOMAIN_NUM_THREADS (see section “Using Additional Threading
Control” in chapter 6). Make certain that the relevant environment variable has the same
and correct value on all the nodes. Intel MKL 10.0 also no longer sets the default number
of threads to 1, but depends on the compiler to set the default number. For the threading
layer based on the Intel® compiler (libmkl_intel_thread.a), this value is the number
of CPUs according to the OS. Be cautious to avoid over-prescribing the number of threads,
which may occur, for instance, when the number of MPI ranks per node and the number of
threads per node are both greater than one.

The best way to set, for example, the environment variable OMP_NUM_THREADS is in the
login environment. Remember that mpirun starts a fresh default shell on all of the nodes
and so, changing this value on the head node and then doing the run (which works on an
SMP system) will not effectively change the variable as far as your program is concerned.
In .bashrc, you could add a line at the top, which looks like this:

Working with Intel® Math Kernel Library Cluster Software 9

9-3

OMP_NUM_THREADS=1; export OMP_NUM_THREADS

It is possible to run multiple CPUs per node using MPICH, but the MPICH must be built to
allow it. Be aware that certain MPICH applications may not work perfectly in a threaded
environment (see the Known Limitations section in the Release Notes). The safest thing for
multiple CPUs, although not necessarily the fastest, is to run one MPI process per
processor with OMP_NUM_THREADS set to one. Always verify that the combination with
OMP_NUM_THREADS=1 works correctly.

Using Shared Libraries
All needed shared libraries must be visible on all the nodes at run time. One way to
accomplish this is to point these libraries by the LD_LIBRARY_PATH environment variable in
the .bashrc file. If Intel MKL is installed only on one node, you should link statically when
building your Intel MKL applications.

The Intel® compilers or GNU compilers can be used to compile a program that uses Intel
MKL. However, make certain that MPI implementation and compiler match up correctly.

ScaLAPACK Tests
To build NetLib ScaLAPACK tests for IA-32, IA-64, or Intel® 64 architectures, add
libmkl_scalapack_core.a to your link command.

Examples for Linking with ScaLAPACK and Cluster FFT
For information on detailed MKL structure of the architecture-specific directories of the
cluster libraries, see section Directory Structure in Detail in Chapter 3.

Examples for C Module
Suppose the following conditions are met:

• MPICH 1.2.5 or higher is installed in /opt/mpich,

• Intel® MKL 10.0 is installed in /opt/intel/mkl/10.0.xxx, where xxx is the Intel
MKL package number, for example, /opt/intel/mkl/10.0.039.

• You use the Intel® C Compiler 8.1 or higher and the main module is in C.

9-4

9 Intel® Math Kernel Library User’s Guide

To link with ScaLAPACK for a cluster of systems based on the IA-32 architecture, use the
following libraries:

/opt/mpich/bin/mpicc <user files to link> \
-L/opt/intel/mkl/10.0.xxx/lib/32 \
-lmkl_scalapack_core \
-lmkl_blacs \
–lmkl_lapack \
-lmkl_intel –lmkl_intel_thread –lmkl_core \
-lguide \
-lpthread

To link with Cluster FFT for a cluster of systems based on the IA-64 architecture, use the
following libraries:

/opt/mpich/bin/mpicc <user files to link> \
-L/opt/intel/mkl/10.0.xxx/lib/64 \
-lmkl_cdft_core \
-lmkl_blacs_ilp64 \
-lmkl_intel –lmkl_intel_thread –lmkl_core \
-lguide -lpthread

Examples for Fortran Module
Suppose the following conditions are met:

• Intel MPI 3.0 is installed in /opt/intel/mpi/3.0,

• Intel® MKL 10.0 is installed in /opt/intel/mkl/10.0.xxx, where xxx is the Intel
MKL package number, for example, /opt/intel/mkl/10.0.039.

• You use the Intel® Fortran Compiler 8.1 or higher and the main module is in Fortran.

To link with ScaLAPACK for a cluster of systems based on the IA-64 architecture, use the
following libraries:

/opt/intel/mpi/3.0/bin/mpiifort <user files to link> \
-L/opt/intel/mkl/10.0.xxx/lib/64 \
-lmkl_scalapack_lp64 \
-lmkl_blacs_intelmpi20_lp64 \
-lmkl_lapack \

 -lmkl_intel_lp64 –lmkl_intel_thread –lmkl_core \
-lguide \
-lpthread

To link with Cluster FFT for a cluster of systems based on the IA-64 architecture, use the
following libraries:

Working with Intel® Math Kernel Library Cluster Software 9

9-5

/opt/intel_mpi_10/bin/mpiifort <user files to link> \
-L/opt/intel/mkl/10.0.xxx/lib/64 \
-lmkl_cdft_core \
-lmkl_blacs_intelmpi_ilp64 \
-lmkl_intel_lp64 –lmkl_intel_thread –lmkl_core \
-lguide -lpthread

A binary linked with ScaLAPACK runs in the same way as any other MPI application (For
information, refer to the documentation that comes with the MPI implementation). For
instance, the script mpirun is used in case of MPICH 1.2.x and OpenMPI, and a number of
MPI processes is set by -np. In case of MPICH 2.0 and all Intel MPIs, you should start the
daemon before running an application; the execution is driven by the script mpiexec.

For further linking examples, see the Intel MKL support website at
http://www.intel.com/support/performancetools/libraries/mkl/.

10-1

LINPACK and MP LINPACK
Benchmarks 10

This chapter describes the Intel® Optimized LINPACK Benchmark for the Linux* OS and
Intel® Optimized MP LINPACK Benchmark for Clusters.

Intel® Optimized LINPACK Benchmark for Linux OS*
Intel® Optimized LINPACK Benchmark is a generalization of the LINPACK 1000 benchmark.
It solves a dense (real*8) system of linear equations (Ax=b), measures the amount of
time it takes to factor and solve the system, converts that time into a performance rate,
and tests the results for accuracy. The generalization is in the number of equations (N) it
can solve, which is not limited to 1000. It uses partial pivoting to assure the accuracy of
the results.

This benchmark should not be used to report LINPACK 100 performance, as that is a
compiled-code only benchmark. This is a shared memory (SMP) implementation which
runs on a single platform and should not be confused with MP LINPACK, which is a
distributed memory version of the same benchmark. This benchmark should not be
confused with LINPACK, the library, which has been expanded upon by the LAPACK library.

Intel is providing optimized versions of the LINPACK benchmarks to make it easier than
using HPL for you to obtain high LINPACK benchmark results on your systems based on
genuine Intel® processors. Use this package to benchmark your SMP machine.

Additional information on this software as well as other Intel® software performance
products is available at http://developer.intel.com/software/products/.

Contents
The Intel Optimized LINPACK Benchmark for Linux* contains the following files, located in
the ./benchmarks/linpack/ subdirectory in the Intel MKL directory (see Table 3-1):

http://developer.intel.com/software/products/

10-2

10 Intel® Math Kernel Library User’s Guide

Running the Software
To obtain results for the pre-determined sample problem sizes on a given system, type one
of the following, as appropriate:

./runme_itanium

./runme_xeon32

./runme_xeon64 .

Table 10-1 Contents of the LINPACK Benchmark

./benchmarks/linpack/

linpack_itanium The 64-bit program executable for a system based on Intel®
Itanium® 2 processor.

linpack_xeon32 The 32-bit program executable for a system based on Intel®
Xeon® processor or Intel® Xeon® processor MP with or without
Streaming SIMD Extensions 3 (SSE3).

linpack_xeon64 The 64-bit program executable for a system with Intel® Xeon®
processor using Intel® 64 architecture.

runme_itanium A sample shell script for executing a pre-determined problem set
for linpack_itanium. OMP_NUM_THREADS set to 8
processors.

runme_xeon32 A sample shell script for executing a pre-determined problem set
for linpack_xeon32. OMP_NUM_THREADS set to 2
processors.

runme_xeon64 A sample shell script for executing a pre-determined problem set
for linpack_xeon64. OMP_NUM_THREADS set to 4 processors.

lininput_itanium Input file for pre-determined problem for the runme_itanium
script.

lininput_xeon32 Input file for pre-determined problem for the runme_xeon32
script.

lininput_xeon64 Input file for pre-determined problem for the runme_xeon64
script.

lin_itanium.txt Result of the runme_itanium script execution.

lin_xeon32.txt Result of the runme_xeon32 script execution.

lin_xeon64.txt Result of the runme_xeon64 script execution.

help.lpk Simple help file.

xhelp.lpk Extended help file.

LINPACK and MP LINPACK Benchmarks 10

10-3

To run the software for other problem sizes, please refer to the extended help included with
the program. Extended help can be viewed by running the program executable with the
"-e" option:

./xlinpack_itanium -e

./xlinpack_xeon32 -e

./xlinpack_xeon64 -e .

The pre-defined data input files lininput_itanium, lininput_xeon32, and
lininput_xeon64 are provided merely as examples. Different systems may have different
number of processors, or amount of memory, and require new input files. The extended
help can be used for insight into proper ways to change the sample input files.

Each input file requires at least the following amount of memory:

lininput_itanium 16 GB

lininput_xeon32 2 GB

lininput_xeon64 16 GB.

If the system has less memory than the above sample data inputs require, you may have
to edit or create your own data input files, as directed in the extended help.

Each sample script, in particular, uses the OMP_NUM_THREADS environment variable to set
the number of processors it is targeting. To optimize performance on a different number of
physical processors, change that line appropriately. If you run the Intel Optimized LINPACK
Benchmark without setting the number of threads, it will default to the number of cores
according to the OS. You can find the settings for this environment variable in the runme_*
sample scripts. If the settings do not already match the situation for your machine, edit the
script.

Known Limitations
The following limitations are known for the Intel Optimized LINPACK Benchmark for
Linux*:

• Intel Optimized LINPACK Benchmark is threaded to effectively use multiple processors.
So, in multi-processor systems, best performance will be obtained with
Hyper-Threading technology turned off, which ensures that the operating system
assigns threads to physical processors only.

• If an incomplete data input file is given, the binaries may either hang or fault. See the
sample data input files and/or the extended help for insight into creating a correct data
input file.

10-4

10 Intel® Math Kernel Library User’s Guide

Intel® Optimized MP LINPACK Benchmark for Clusters
The Intel® Optimized MP LINPACK Benchmark for Clusters is based on modifications and
additions to HPL 1.0a from Innovative Computing Laboratories (ICL) at the University of
Tennessee, Knoxville (UTK). The benchmark can be used for Top 500 runs (see
http ://www .top500 .org). The use of the benchmark requires that you are already
intimately familiar with the HPL distribution and usage. This package adds some additional
enhancements and bug fixes designed to make the HPL usage more convenient. The
./benchmarks/mp_linpack directory adds techniques to minimize search times frequently
associated with long runs.

The Intel® Optimized MP LINPACK Benchmark for Clusters is an implementation of the
Massively Parallel MP LINPACK benchmark. HPL code was used as a basis. It solves a
random dense (real*8) system of linear equations (Ax=b), measures the amount of time
it takes to factor and solve the system, converts that time into a performance rate and
tests the results for accuracy. You can solve any size (N) system of equations that fit into
memory. The benchmark uses full row pivoting to ensure the accuracy of the results.

This benchmark should not be used to report LINPACK performance on a shared memory
machine. For that, the Intel® Optimized LINPACK Benchmark should be used instead. This
benchmark should be used on a distributed memory machine.

Intel is providing optimized versions of the LINPACK benchmarks to make it easier than
using HPL for you to obtain high LINPACK benchmark results on your systems based on
genuine Intel® processors. Use this package to benchmark your cluster. The prebuilt
binaries require Intel® MPI 3.x be installed on the cluster. The run-time version of Intel
MPI is free and can be downloaded from www.intel.com/software/products/cluster.

The package includes software developed at the University of Tennessee, Knoxville,
Innovative Computing Laboratories and neither the University nor ICL endorse or promote
this product. Although HPL 1.0a is redistributable under certain conditions, this particular
package is subject to the MKL license.

Intel MKL 10.0 Update 3 has introduced a new functionality into MP LINPACK, which is
called a hybrid build, while continuing to support the older version. The term “hybrid”
refers to special optimizations added to take advantage of mixed OpenMP*/MPI
parallelism. If you want to use one MPI process per node and to achieve further parallelism
via OpenMP, use of the hybrid build. If you want to rely exclusively on MPI for parallelism
and use one MPI per core, use of the non-hybrid build. In addition to supplying certain
hybrid prebuilt binaries, Intel MKL supplies certain hybrid prebuilt libraries to take
advantage of the additional OpenMP optimizations.

NOTE. If you wish to use a different version of MPI, you can do so by
using the MP LINPACK source provided.

www.intel.com/software/products/cluster

LINPACK and MP LINPACK Benchmarks 10

10-5

Note that the non-hybrid version may be used in a hybrid mode, but it would be missing
some of the optimizations added to the hybrid version. Non-hybrid builds are the default.
In many cases, the use of the hybrid mode is required for system reasons, but if there is a
choice, the non-hybrid code may be faster, although that may change in future releases. To
use the non-hybrid code in a hybrid mode, use the threaded MPI and Intel MKL, link with a
thread-safe MPI, and call function MPI_init_thread() so as to indicate a need for MPI to
be thread-safe.

Contents
The Intel Optimized MP LINPACK Benchmark for Clusters includes the HPL 1.0a distribution
in its entirety as well as the modifications, delivered in the files listed in Table 10-2 and
located in the ./benchmarks/mp_linpack/ subdirectory in the Intel MKL directory (see
Table 3-1):

Table 10-2 Contents of the MP LINPACK Benchmark

./benchmarks/mp_linpack/

testing/ptest/HPL_pdtest.c HPL 1.0a code modified to display captured DGEMM
information in ASYOUGO2_DISPLAY (see details in
the New Features section) if it was captured.

src/blas/HPL_dgemm.c HPL 1.0a code modified to capture DGEMM information
if desired from ASYOUGO2_DISPLAY

src/grid/HPL_grid_init.c HPL 1.0a code modified to do additional grid
experiments originally not in HPL 1.0.

src/pgesv/HPL_pdgesvK2.c HPL 1.0a code modified to do ASYOUGO and
ENDEARLY modifications

include/hpl_misc.h and
hpl_pgesv.h

Bugfix added to allow for 64-bit address computation.

src/pgesv/HPL_pdgesv0.c HPL 1.0a code modified to do ASYOUGO, ASYOUGO2,
and ENDEARLY modifications

testing/ptest/HPL.dat HPL 1.0a sample HPL.dat modified.

Make.ia32 (New) Sample architecture make for processors using
IA-32 architecture and Linux.

Make.em64t (New) Sample architecture make for processors using
Intel® 64 architecture and Linux.

Make.ipf (New) Sample architecture make for IA-64
architecture and Linux.

HPL.dat A repeat of testing/ptest/HPL.dat in the top-level
directory

10-6

10 Intel® Math Kernel Library User’s Guide

Building MP LINPACK
There are a few included sample architecture makes. It is recommended that you edit them
to fit your specific configuration. In particular:

• Set TOPdir to the directory MP LINPACK is being built in.

• You may set MPI variables, that is, MPdir, MPinc, and MPlib.

• Specify the location of Intel MKL and of files to be used (LAdir, LAinc, LAlib).

• Adjust compiler and compiler/linker options.

• Specify the version of MP LINPACK you are going to build (hybrid or non-hybrid) by
setting the version parameter for the make, for example,

make arch=em64t version=hybrid install

Next three files are prebuilt executables, readily available for simple performance testing.

bin_intel/ia32/xhpl_ia32 (New) Prebuilt binary for IA-32 architecture, Linux,
and Intel® MPI 3.0.

bin_intel/em64t/xhpl_em64t (New) Prebuilt binary for Intel® 64 architecture,
Linux, and Intel MPI 3.0.

bin_intel/ipf/xhpl_ipf (New) Prebuilt binary for IA-64 architecture, Linux,
and Intel MPI 3.0.

Next three files are prebuilt hybrid executables.

bin_intel/ia32/xhpl_hybrid_
ia32

(New) Prebuilt hybrid binary for IA-32 architecture,
Linux, and Intel MPI 3.0.

bin_intel/em64t/xhpl_
hybrid_em64t

(New) Prebuilt hybrid binary for Intel® 64
architecture, Linux, and Intel MPI 3.0.

bin_intel/ipf/xhpl_
hybrid_ipf

(New) Prebuilt hybrid binary for IA-64 architecture,
Linux, and Intel MPI 3.0.

lib_hybrid/32/libhpl_hybrid.a (New) Prebuilt library with the hybrid version of MP
LINPACK for IA-32 architecture.

lib_hybrid/em64t/libhpl_
hybrid.a

(New) Prebuilt library with the hybrid version of MP
LINPACK for Intel® 64 architecture.

lib_hybrid/64/libhpl_hybrid.a (New) Prebuilt library with the hybrid version of MP
LINPACK for IA-64 architecture.

nodeperf.c (New) Sample utility that tests the DGEMM speed
across the cluster.

Table 10-2 Contents of the MP LINPACK Benchmark

./benchmarks/mp_linpack/

LINPACK and MP LINPACK Benchmarks 10

10-7

For some sample cases, like Linux systems based on Intel® 64 architecture, the makes
contain values that seem to be common. However, you are required to be familiar with
building HPL and picking appropriate values for these variables.

New Features
The toolset is basically identical with the HPL 1.0a distribution. There are a few changes
which are optionally compiled in and are disabled until you specifically request them. These
new features are:

ASYOUGO: Provides non-intrusive performance information while runs proceed. There are
only a few outputs and this information does not impact performance. This is especially
useful because many runs can go hours without any information.

ASYOUGO2: Provides slightly intrusive additional performance information because it
intercepts every DGEMM.

ASYOUGO2_DISPLAY: Displays the performance of all the significant DGEMMs inside the run.

ENDEARLY: Displays a few performance hints and then terminates the run early.

FASTSWAP: Inserts the LAPACK-optimized DLASWP into HPL's code. This may yield a benefit
for Itanium® 2 processor. You can experiment with this to determine best results.

HYBRID: Establishes the Hybrid OpenMP/MPI mode of MP LINPACK, providing the possibility
to use threaded Intel MKL and prebuilt MP LINPACK hybrid libraries.

Benchmarking a Cluster
To benchmark a cluster, follow the sequence of steps (maybe, optional) below. Pay special
attention to the iterative steps 3 and 4. They make up a loop that searches for HPL
parameters (specified in HPL.dat) which the top performance of you cluster is reached
with.

WARNING. Use this option only with an Intel compiler and the Intel®
MPI library version 3.1 or higher. You are also recommended to use the
compiler version 10.0 or higher.

10-8

10 Intel® Math Kernel Library User’s Guide

1. Get HPL installed and functional on all the nodes.

2. You may run nodeperf.c (included in the distribution) to see the performance of
DGEMM on all the nodes.

Compile nodeperf.c in with your MPI and Intel MKL.

For example,

mpicc -O3 nodeperf.c /opt/intel/mkl/10.0.xxx/lib/em64t/libmkl_em64t.a
/opt/intel/mkl/10.0.xxx/lib/em64t/libguide.a -lpthread -o nodeperf
where xxx is the Intel MKL package number.

Launching nodeperf.c on all the nodes is especially helpful in a very large cluster.
Indeed, there may be a stray job on a certain node, for example, 738, which is running
5% slower than the rest. MP LINPACK will then run as slow as the slowest node. In this
case, nodeperf enables quick identifying of the potential problem spot without lots of
small MP LINPACK runs around the cluster in search of the bad node. It is common
that after a bunch of HPL runs, there may be zombie processes and nodeperf
facilitates finding the slow nodes. It goes through all the nodes, one at a time, and
reports the performance of DGEMM followed by some host identifier. Therefore, the
higher the penultimate number then, the faster that node was performing.

3. Edit HPL.dat to fit your cluster needs.

Read through the HPL documentation for ideas on this. However, you should try on at
least 4 nodes.

4. Make an HPL run, using compile options such as ASYOUGO or ASYOUGO2 or ENDEARLY to
aid in your search (These options enable you to gain insight into the performance
sooner than HPL would normally give this insight.)

When doing so, follow these recommendations:

— Use the MP LINPACK patched version of HPL to save time in the searching.

Using a patched version of HPL should not hinder your performance. That’s why
features that could be performance intrusive are compile-optional (and it is called
out below) in MP LINPACK. That is, if you don't use any of the new options
explained in section Options to reduce search time, then these changes are
disabled. The primary purpose of the additions is to assist you in finding solutions.

HPL requires long time to search for many different parameters. In the MP
LINPACK, the goal is to get the best possible number.

Given that the input is not fixed, there is a large parameter space you must search
over. In fact, an exhaustive search of all possible inputs is improbably large even
for a powerful cluster.

This patched version of HPL optionally prints information on performance as it
proceeds, or even terminates early depending on your desires.

LINPACK and MP LINPACK Benchmarks 10

10-9

— Save time by compiling with -DENDEARLY -DASYOUGO2 (described in the Options
to reduce search time section) and using a negative threshold (Do not to use a
negative threshold on the final run that you intend to submit if you are doing a
Top500 entry!) You can set the threshold in line 13 of the HPL 1.0a input file
HPL.dat.

— If you are going to run a problem to completion, do it with -DASYOUGO (see
Options to reduce search time section).

5. Using the quick performance feedback, return to step 3 and iterate until you are sure
that the performance is as good as possible.

Options to reduce search time

Running huge problems to completion on large numbers of nodes can take many hours.
The search space for MP LINPACK is also huge: not only can you run any size problem, but
over a number of block sizes, grid layouts, lookahead steps, using different factorization
methods, etc. It can be a large waste of time to run a huge problem to completion only to
discover it ran 0.01% slower than your previous best problem.

There are 3 options you might want to experiment with to reduce the search time:

• -DASYOUGO

• -DENDEARLY

• -DASYOUGO2

Use cautiously, as it does have a marginal performance impact. To see DGEMM internal
performance, compile with -DASYOUGO2 and -DASYOUGO2_DISPLAY. This will give lots
of useful DGEMM performance information at the cost of around 0.2% performance loss.

If you want the old HPL back, simply don't define these options and recompile from scratch
(try "make arch=<arch> clean_arch_all").

-DASYOUGO: Gives performance data as the run proceeds. The performance always starts
off higher and then drops because this actually happens in LU decomposition. The ASYOUGO
performance estimate is usually an overestimate (because LU slows down as it goes), but it
gets more accurate as the problem proceeds. The greater the lookahead step, the less
accurate the first number may be. ASYOUGO tries to estimate where one is in the LU
decomposition that MP LINPACK performs and this is always an overestimate as compared
to ASYOUGO2, which measures actually achieved DGEMM performance. Note that the
ASYOUGO output is a subset of the information that ASYOUGO2 provides. So, refer to the
description of the -DASYOUGO2 option below for the details of the output.

-DENDEARLY: Terminates the problem after a few steps, so that you can set up 10 or 20
HPL runs without monitoring them, see how they all do, and then only run the fastest ones
to completion. -DENDEARLY assumes -DASYOUGO. You do not need to define both, although
it doesn't hurt. Because the problem terminates early, it is recommended setting the

10-10

10 Intel® Math Kernel Library User’s Guide

"threshold" parameter in HPL.dat to a negative number when testing ENDEARLY. There is
no point in doing a residual check if the problem ended early. It also sometimes gives a
better picture to compile with -DASYOUGO2 when using -DENDEARLY.

You need to know the specifics of -DENDEARLY:

— -DENDEARLY stops the problem after a few iterations of DGEMM on the blocksize
(the bigger the blocksize, the further it gets). It prints only 5 or 6 "updates",
whereas -DASYOUGO prints about 46 or so outputs before the problem completes.

— Performance for -DASYOUGO and -DENDEARLY always starts off at one speed,
slowly increases, and then slows down toward the end (because that is what LU
does). -DENDEARLY is likely to terminate before it starts to slow down.

— -DENDEARLY terminates the problem early with an HPL Error exit. It means that
you need to ignore the missing residual results, which are wrong, as the problem
never completed. However, you can get an idea what the initial performance was,
and if it looks good, then run the problem to completion without -DENDEARLY. To
avoid the error check, you can set HPL's threshold parameter in HPL.dat to a
negative number.

— Though -DENDEARLY terminates early, HPL treats the problem as completed and
computes Gflop rating as though the problem ran to completion. Ignore this
erroneously high rating.

— The bigger the problem, the more accurately the last update that -DENDEARLY
returns will be close to what happens when the problem runs to completion.
-DENDEARLY is a poor approximation for small problems. It is for this reason that
you are suggested to use ENDEARLY in conjunction with ASYOUGO2, because
ASYOUGO2 reports actual DGEMM performance, which can be a closer
approximation to problems just starting.

The best known compile options for Itanium® 2 processor are with the Intel®
compiler and look like this:

-O2 -ipo -ipo_obj -ftz -IPF_fltacc -IPF_fma -unroll -w -tpp2

-DASYOUGO2: Gives detailed single-node DGEMM performance information. It captures all
DGEMM calls (if you use Fortran BLAS) and records their data. Because of this, the routine
has a marginal intrusive overhead. Unlike -DASYOUGO, which is quite non-intrusive,
-DASYOUGO2 is interrupting every DGEMM call to monitor its performance. You should
beware of this overhead, although for big problems, it is, for sure, less than 1/10th of a
percent.

Here is a sample ASYOUGO2 output (the first 3 non-intrusive numbers can be found in
ASYOUGO and ENDEARLY), so it suffices to describe these numbers here:

Col=001280 Fract=0.050 Mflops=42454.99 (DT= 9.5 DF= 34.1
DMF=38322.78).

The problem size was N=16000 with a blocksize of 128. After 10 blocks, that is, 1280
columns, an output was sent to the screen. Here, the fraction of columns completed is
1280/16000=0.08. Only about 20 outputs are printed, at various places through the

LINPACK and MP LINPACK Benchmarks 10

10-11

matrix decomposition: fractions 0.005,0.010,0.015,0.02,0.025,0.03,0.035,
0.04,0.045,0.05,0.055,0.06,0.065,0.07,0.075,0.080,0.085,0.09,0.095,.
10,...,.195,.295,.395,...,.895. However, this problem size is so small and the
block size so big by comparison that as soon as it printed the value for 0.045, it was
already through 0.08 fraction of the columns. On a really big problem, the fractional
number will be more accurate. It never prints more than the 46 numbers above. So,
smaller problems will have fewer than 46 updates, and the biggest problems will have
precisely 46 updates.

The Mflops is an estimate based on 1280 columns of LU being completed. However,
with lookahead steps, sometimes that work is not actually completed when the output
is made. Nevertheless, this is a good estimate for comparing identical runs.

The 3 numbers in parenthesis are intrusive ASYOUGO2 addins. The DT is the total time
processor 0 has spent in DGEMM. The DF is the number of billion operations that have
been performed in DGEMM by one processor. Hence, the performance of processor 0 (in
Gflops) in DGEMM is always DF/DT. Using the number of DGEMM flops as a basis instead
of the number of LU flops, you get a lower bound on performance of our run by looking
at DMF, which can be compared to Mflops above (It uses the global LU time, but the
DGEMM flops are computed under the assumption that the problem is evenly distributed
amongst the nodes, as only HPL’s node (0,0) returns any output.)

Note that when using the above performance monitoring tools to compare different
HPL.dat inputs, you should beware that the pattern of performance drop off that LU
experiences is sensitive to some of the inputs. For instance, when you try very small
problems, the performance drop off from the initial values to end values is very rapid. The
larger the problem, the less the drop off, and it is probably safe to use the first few
performance values to estimate the difference between a problem size 700000 and
701000, for instance. Another factor that influences the performance drop off is the grid
dimensions (P and Q). For big problems, the performance tends to fall off less from the first
few steps when P and Q are roughly equal in value. You can make use of a large number of
parameters, such as broadcast types, and change them so that the final performance is
determined very closely by the first few steps.

Using these tools will greatly assist the amount of data you can test.

A-1

Intel® Math Kernel Library
Language Interfaces
Support A

The following table shows language interfaces that Intel® Math Kernel Library (Intel®
MKL) provides for each function domain. However, Intel MKL routines can be called from
other languages using mixed-language programming. For example, see section
“Mixed-language programming with Intel® MKL” in chapter 7 on how to call Fortran
routines from C/C++.

Table A-1 Intel® MKL language interfaces support

Function Domain
FORTRAN 77
interface

Fortran 90/95
interface

C/C++
interface

Basic Linear Algebra Subprograms (BLAS) + + via CBLAS

Sparse BLAS Level 1 + + via CBLAS

Sparse BLAS Level 2 and 3 + + +

LAPACK routines for solving systems of linear
equations

+ +

LAPACK routines for solving least-squares
problems, eigenvalue and singular value
problems, and Sylvester's equations

+ +

Auxiliary and utility LAPACK routines +

ScaLAPACK routines +

PARDISO + +

Other Direct and Iterative Sparse Solver
routines

+ + +

Vector Mathematical Library (VML) functions + +

Vector Statistical Library (VSL) functions + +

Fourier Transform functions (FFT) + +

Cluster FFT functions + +

Interval Solver routines +

Trigonometric Transform routines + +

A-2

A Intel® Math Kernel Library User’s Guide

Fast Poisson, Laplace, and Helmholtz Solver
(Poisson Library) routines

+ +

Optimization (Trust-Region) Solver routines + + +

Table A-1 Intel® MKL language interfaces support

Function Domain
FORTRAN 77
interface

Fortran 90/95
interface

C/C++
interface

B-1

Support for Third-Party
Interfaces B

This appendix describes in brief certain interfaces that Intel® Math Kernel Library (Intel®
MKL) supports.

GMP* Functions
Intel MKL implementation of GMP* arithmetic functions includes arbitrary precision
arithmetic operations on integer numbers. The interfaces of such functions fully match the
GNU Multiple Precision* (GMP) Arithmetic Library.

If you currently use the GMP* library, you need to modify INCLUDE statements in your
programs to mkl_gmp.h.

FFTW Interface Support
Intel MKL offers two wrappers collections, each being the FFTW interface superstructure, to
be used for calling the Intel MKL Fourier transform functions. These collections correspond
to the FFTW versions 2.x and 3.x, respectively, and the Intel MKL versions 7.0 and later.

The purpose of these wrappers is to enable developers whose programs currently use
FFTW to gain performance with the Intel MKL Fourier transforms without changing the
program source code. See FFTW to Intel® MKL Wrappers Technical User Notes for FFTW
2.x (fftw2xmkl_notes.htm) for details on the use of the FFTW 2.x wrappers and FFTW to
Intel® MKL Wrappers Technical User Notes for FFTW 3.x (fftw3xmkl_notes.htm) for
details on the use of the FFTW 3.x wrappers.

Index-1

Index
A
Absoft compiler, linking with, 5-9
affinity mask, 6-15
aligning data, 8-2
audience, 1-2

B
benchmark, 10-1
BLAS

calling routines from C, 7-5

Fortran-95 interfaces to, 7-2

C
C, calling LAPACK, BLAS, CBLAS from, 7-4
calling

BLAS functions in C, 7-6

complex BLAS Level 1 function from C, 7-7

complex BLAS Level 1 function from C++, 7-8

Fortran-style routines from C, 7-4

CBLAS, 7-6
CBLAS, code example, 7-9
Cluster FFT, linking with, 9-1
cluster software, 9-1

linking examples, 9-3

linking syntax, 9-1

coding
data alignment, 8-1

mixed-language calls, 7-6

techniques to improve performance, 6-13

Compatibility OpenMP run-time compiler library,

5-10
compiler support, 2-2
compiler support RTL layer, 3-4
compiler, Absoft, linking with, 5-9
compiler-dependent function, 7-3
computational layer, 3-4
configuration file, 4-4

for OOC PARDISO, 4-5

configuring development environment, 4-1
Eclipse CDT, 4-2

redefining library names, 4-5

custom shared object, 5-11
building, 5-11

specifying list of functions, 5-12

specifying makefile parameters, 5-12

D
data alignment, 8-2
denormal, performance, 6-16
development environment, configuring, 4-1
directory structure

documentation, 3-20

high-level, 3-1

in-detail, 3-11

documentation, 3-20
dummy library, 3-19
dynamic linking, 5-2

E
Eclipse CDT, configuring, 4-2

Intel® Math Kernel Library User’s Guide

Index-2

environment variables, setting, 4-1
examples

linking, general, 5-7

ScaLAPACK, Cluster FFT, linking with, 9-3

F
FFT functions, data alignment, 6-13
FFT interface

MKL_LONG type, 3-6

optimized radices, 6-16

threading tip, 6-12

FFTW interface support, B-1
Fortran-95, interfaces to LAPACK and BLAS, 7-2

G
GMP arithmetic functions, B-1
GNU Multiple Precision Arithmetic Library, B-1

H
HT Technology, see Hyper-Threading technology
hybrid, version, of MP LINPACK, 10-4
Hyper-Threading Technology, configuration tip, 6-14

I
ILP64 programming, support for, 3-5
installation, checking, 2-1
interface layer, 3-4

J
Java examples, 7-10

L
language interfaces support, A-1

Fortran-95 interfaces, 7-2

language-specific interfaces, 7-1

LAPACK
calling routines from C, 7-4

Fortran-95 interfaces to, 7-2

packed routines performance, 6-13

layer
compiler support RTL, 3-4

computational, 3-4

interface, 3-4

RTL, 3-3

threading, 3-4

layered model, 3-2
Legacy OpenMP run-time compiler library, 5-10
library

run-time, Compatibility OpenMP, 5-10

run-time, Legacy OpenMP, 5-10

library names, redefining in config file, 4-5
library structure, 3-1
link command

examples, 5-7

syntax, 5-3

link libraries
interface, for the Absoft compilers, 5-9

threading, 5-10

linkage models, comparison, 5-2
linking, 5-1

default model, 5-4

dynamic, 5-2

pure layered model, 5-4

recommendations, 5-3

static, 5-1

with Cluster FFT, 9-1

with ScaLAPACK, 9-1

LINPACK benchmark, 10-1

M
memory functions, redefining, 6-17
memory management, 6-16
memory renaming, 6-17
mixed-language programming, 7-4
module, Fortran-95, 7-4
MP LINPACK benchmark, 10-4

hybrid version, 10-4

multi-core performance, 6-15

N
notational conventions, 1-4
number of threads

changing at run time, 6-5

Index-3

Intel MKL choice, particular cases, 6-10

setting for cluster, 9-2

setting with OpenMP environment variable, 6-4

techniques to set, 6-3

numerical stability, 8-1

O
OpenMP

Compatibility run-time compiler library, 5-10

Legacy run-time compiler library, 5-10

P
parallel performance, 6-4
parallelism, 6-1
PARDISO OOC, configuration file, 4-5
performance, 6-1

coding techniques to gain, 6-13

hardware tips to gain, 6-14

multi-core, 6-15

of LAPACK packed routines, 6-13

with denormals, 6-16

R
RTL, 7-3
RTL layer, 3-3
run-time library, 7-3

Compatibility OpenMP, 5-10

Legacy OpenMP, 5-10

S
ScaLAPACK, linking with, 9-1
sequential version of the library, 3-4
stability, numerical, 8-1
static linking, 5-1
support, technical, 1-1
syntax

linking, cluster software, 9-1

linking, general, 5-3

T
technical support, 1-1

thread safety, of Intel MKL, 6-1
threading

avoiding conflicts, 6-4

environment variables and functions, 6-8

Intel MKL behavior, particular cases, 6-10

Intel MKL controls, 6-8

see also number of threads

threading layer, 3-4

U
unstable output, numerically, getting rid of, 8-1
usage information, 1-1

	Intel® Math Kernel Library for the Linux* OS
	Legal Information
	Contents
	List of Tables
	List of Examples

	1. Overview
	Technical Support
	About This Document
	Purpose
	Audience
	Document Organization
	Term and Notational Conventions

	2. Getting Started
	Checking Your Installation
	Obtaining Version Information
	Compiler Support
	Before You Begin Using Intel MKL

	3. Intel® Math Kernel Library Structure
	High-level Directory Structure
	Layered Model Concept
	Layers

	Sequential Version of the Library
	Support for ILP64 Programming
	Concept
	Compiling for ILP64
	Coding for ILP64
	Browsing the Intel MKL include files
	Limitations

	Intel® MKL Versions
	Directory Structure in Detail
	Dummy Libraries

	Accessing the Intel® Math Kernel Library Documentation
	Contents of the Documentation Directory
	Accessing Man Pages

	4. Configuring Your Development Environment
	Setting Environment Variables
	Automating the Process

	Configuring Eclipse CDT to Link with Intel MKL
	Configuring Eclipse CDT 4.0
	Configuring Eclipse CDT 3.x

	Customizing the Library Using the Configuration File
	Note on the Configuration file for Out-of-Core (OOC) PARDISO* Solver

	5. Linking Your Application with Intel® Math Kernel Library
	Selecting Between Linkage Models
	Static Linking
	Dynamic Linking
	Making the Choice
	Intel MKL-specific Linking Recommendations

	Link Command Syntax
	Selecting Libraries to Link
	Linking Examples
	Linking with Interface Libraries
	Linking with the Absoft compilers

	Linking with Threading Libraries
	Notes on Linking
	Updating LD_LIBRARY_PATH
	Linking with libguide

	Building Custom Shared Objects
	Intel MKL Custom Shared Object Builder
	Specifying Makefile Parameters
	Specifying List of Functions

	6. Managing Performance and Memory
	Using Intel® MKL Parallelism
	Techniques to Set the Number of Threads
	Avoiding Conflicts in the Execution Environment
	Setting the Number of Threads Using OpenMP* Environment Variable
	Changing the Number of Threads at Run Time
	Using Additional Threading Control
	MKL_DYNAMIC
	MKL_DOMAIN_NUM_THREADS
	Setting the Environment Variables for Threading Control
	Note on FFT Usage

	Tips and Techniques to Improve Performance
	Coding Techniques
	LAPACK packed routines
	FFT functions

	Hardware Configuration Tips
	Managing Multi-core Performance
	Operating on Denormals
	FFT Optimized Radices

	Using Intel® MKL Memory Management
	Redefining Memory Functions
	Memory renaming
	How to redefine memory functions

	7. Language-specific Usage Options
	Using Language-Specific Interfaces with Intel® MKL
	Fortran 90 Interfaces and Wrappers to LAPACK and BLAS
	Compiler-dependent Functions and Fortran 90 Modules

	Mixed-language programming with Intel® MKL
	Calling LAPACK, BLAS, and CBLAS Routines from C Language Environments
	LAPACK
	BLAS
	CBLAS

	Calling BLAS Functions That Return the Complex Values in C/C++ Code
	Invoking Intel® MKL Functions from Java Applications
	Intel MKL Java examples
	Running the examples
	Known limitations

	8. Coding Tips
	Aligning Data for Numerical Stability

	9. Working with Intel® Math Kernel Library Cluster Software
	Linking with ScaLAPACK and Cluster FFTs
	Setting the Number of Threads
	Using Shared Libraries
	ScaLAPACK Tests
	Examples for Linking with ScaLAPACK and Cluster FFT
	Examples for C Module
	Examples for Fortran Module

	10. LINPACK and MP LINPACK Benchmarks
	Intel® Optimized LINPACK Benchmark for Linux OS*
	Contents
	Running the Software
	Known Limitations

	Intel® Optimized MP LINPACK Benchmark for Clusters
	Contents
	Building MP LINPACK
	New Features
	Benchmarking a Cluster
	Options to reduce search time

	A. Intel® Math Kernel Library Language Interfaces Support
	B. Support for Third-Party Interfaces
	GMP* Functions
	FFTW Interface Support

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U

