PGI® Tools Guide

Parallel Tools for Scientists and Engineers

All rights reserved.

The Portland Group®
STMicroelectronics
Two Centerpointe Drive
L ake Oswego, OR 97035

While every precaution has been taken in the preparation of this document, The Portland Group™, a wholly-owned subsidiary of STMicroelectronics, makes no warranty

for the use of its products and assumes no responsibility for any errors that may appear, or for damages resulting from the use of the information contained herein. The
Portland Group retains the right to make changes to this information at any time, without notice. The software described in this document is distributed under license from
STMicroelectronics and may be used or copied only in accordance with the terms of the license agreement. No part of this document may be reproduced or transmitted in any
form or by any means, for any purpose other than the purchaser's personal use without the express written permission of The Portland Group.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this manual, The
Portland Group was aware of a trademark claim. The designations have been printed in caps or initial caps. Thanks is given to the Parallel Tools Consortium and, in particular,
to the High Performance Debugging Forum for their efforts.

PGF95, PGF95, PGC++, PVE, CDK and The Portland Group are trademarks and PGI, PGHPE, PGF77, PGCC, Cluster Development Kit, PGPROF, and PGDBG are registered
trademarks of STMicroelectronics, Inc. Other brands and names are the property of their respective owners. The use of STLport, a C++ Library, is licensed separately and
license, distribution and copyright notice can be found in the online documentation for a given release of the PGI compilers and tools.

PGI® Tools Guide
Copyright © 2004 — 2008 STMicroelectronics
All rights reserved.

Printed in the United States of America

First Printing: Release 5.2, June 2004
Second Printing: Release 6.0, March 2005
Third Printing: Release 6.1, December 2005
Fourth Printing: Release 6.2, August 2006
Fifth Printing: Release 7.0-1, December, 2006
Sixth Printing: Release 7.0-2, February, 2007
Seventh Printing: Release 7.1, October, 2007
Eighth Printing: Release 7.2 May, 2008
Ninth Printing: Release 8.0 November, 2008

Technical support: http://www.pgroup.com/support/
Sales: sales@pgroup.com
Web: http://www.pgroup.com

ID: 083151745

Contents

PLEEACE ..o Xix
Intended AUGIENCEco.erviriiiiiiiiiiiiie e XixX
Supplementary DOCUMENLAONevuieiiiiieriieieiie ittt ettt e e enes Xix
Compatibility and Conformance to Standardsccocvviiiiiiiiininiiiiiccc XiX
OFZANIZALIONvviiiiiiiii et ettt s e e e e e XX
COMVEILIONSvveeiiiiiieeiiiie ettt et ettt e ettt e e et e e e st et e s anbneeee st XXii
TEIMUNOLOZY ...ttt ettt et xxii
Related PUDHCAHONScoveriiiiiiiiiiiiiieiccc e xxii
System REQUITEIMENLScocuviiiiiiiiiiiiiiiit et XXiii

1. Getting Started with the PGDBG Debugger ..., 1
Definition Of TEITSc.vevitiitiitiiiiciie ettt 1
Building Applications for DeDUGcoeriiiiiiiiiiiii 2

Debugging Optimized COMEccveiiiriiriiiiiiiiiieie e 2
Building for Debug 0n Windowsccccooiiiiiiiiiiiii e 2
PGDBG Invocation and INIAZAtONc.coiiiiiiiiiiiiic e 2
INVOKING PGDBGvoviniiiiiiiit ittt 2
INItIAlZING PGDBGcvvivviiiiiiieit ettt ettt 3
StArting @ SESSIONcccuviiiiiiiiiiiiiiii 3
Using Command LiNe OPLONSceureuiiiiiiiitiniiiti ittt 3
PGDBG Graphical USer INEIfACEc.oovveiiiriiiiiiieit et 3
PGDBG Command LANGUAZEccveriiiiiiiiiiiiiiieit et 4
TrOUDIESROONGc.viiiiiiiiiii e 4
Selecting @ Version Of JAVAccooiriiiiiiiiiiiiiccc 4

2. The PGDBG Graphical User Interface ..., 5

Main WARAOW ..ottt 5
PGDBG Main Window COMPONENLSceeviiermiiiiniieiieiinieeeeie et 7
Command Prompt Panelcc.oociiiiiiiiiiiiiiiiic e 8
FOCUS PANEL ...t 8
Process/Thread Gridccoooiiiiiiiiiiiiiiiiicc e 8
SOUTCE PANCL ..ot 11
Main WIinAOW MENUScc.eoiiiiiiiiiiiinitiit ittt 11

SOUTCE PANECL ... e e ettt ettt e e et et e e e e e e e eeaaaaa 12

SOUICE PANEL MEMUSooiuviiiiiiiiieiie ittt e 13
SOUTCE PANEL BULONSovviiviiiieii ettt 16
Source Panel COMDO BOXEScc.ceiuiiiiiiiiiiieiit ettt 16
SOUTCE PANEL MESSAZESc.vveuvieiriiiieiieiie ettt 17
SOUICE Panel EVENLSc..ioiiiiiiiiiiiiiiieiie e 17
Source Panel POP-UP MENUScc.coviriiiiiiiiiiiiiiii ettt 17
SUDWINAOWS ...oooiiiiiiiiiiiii 19
Standard Subwindow CONLIOLScoeviiriiiiiiiiiii e 20
MemOTy SUDWINAOWc..ovviiiiiiiiiiiiiiiii e 21
Disassembler SUDWINAOWcooiiiiiiiiiiiiiiei e 21
Registers SUDWINAOWcc.ooiiiiiiiiiiiii e 22
CUSEOM SUDWINAOW ...ttt 23
MesSages SUDWINAOWcoviriiiiiiiiiieii i 24

3. PGDBG Command Line OPtionsccoccooiviiiiniiiiniiceeceee s 25
Command-Line OPHONS SYNEAXc.oeviririiriiriiiiiiiieiieti et 25
COMMANA-LINE OPOMSvvitieriieiieitieie ettt ettt ettt ettt st e bt e st st e nbeentesneenaeas 25
4. PGDBG Command LANGUAZEccoooiviiiiiiiiiiiiieceeiee e 27
COMMANA OVEIVIEWevviiiieiieiie ettt sttt ettt e bt 27
COMMEANG SYNEAX ...ttt sttt ettt et e b s 27
COMMANA MOTESevveiieiiiiiieiit et 27
COMSEANESeeuiiiiieeiitii ettt ettt e s ettt e e bbb e e e s bbbt e e s a e e e 28
SYMDOLS ...ttt 28
SCOPE RUIES ...ttt ettt ettt et et e et e et e bt e e b e e stbeenbaenateenns 28
REGIStEr SYMDOLSooiiviiiiiiiii ettt 28
SOUTCE COAE LOCAONSevventiiiieiiieii ettt e 28
LEXICAL BIOCKSocvviiieiieiecece e 29
SEACIMEIIESeeiiiiiiiiiiiiitit ettt 30
EVEIIS ..ottt e 30
EXPIESSIONS .eeeeiiiiiiiiiiiiee ettt e e ettt e e e e e ettt bttt e e e e e ettt e e e e e e aaaeeaes 33
(0071110 S OO SO TS U TSP PP PUUTTPPRPP 34
5. PGDBG Command SUMMALYccocooiiiiiiniiniieee e 35
Notation Used in Command SECHONSc.coovirieriiiiiniiiiiiet e 35
COMMANG SUMIMALY ©.....vvevviveteete ettt ettt et eteeteeteese e e e s e b et e sbeebeeseeseesaessessesesbesseeseaneeseas 36
6. PGDBG Assembly-Level Debuggingcc..cooocooiiniiiiniinininniessssnesonns 47
Assembly-Level Debugging OVEIVIEWcc.cocviriiriiiiiiiiiiiiieneeit et 47
Assembly-Level Debugging on Microsoft Windows SyStemsccccevveriiierieniesiennene. 47
Assembly-Level Debugging with FOItrancccccocoiiiiiniiniiiiiccc e 47
Assembly-Level Debugging With C++cooviviiiiiiiiiiiiiiie e 48
Assembly-Level Debugging Using the PGDBG GUIcocoeviviiniiniiiiniinieiceieeecn 48
Re@iSter SYMDOLSooiiiiiiiiii e 49
X80 RegiSter SYMDOLSocveiiiiiiiiiicee e 50

AMDO4/EMOAT Register SYMDOLScviuiiiiiiiiiiiieieii e e 51

PGI® Tools Guide

SSE Register SYMDOIScooeriiiiiiiiiiiicii s 52

7. PGDBG Source-Level Debugging ... 53
Debugging FOTTIANccooiiiiiiiiiiiti it 53
FOItran TYPESooiiiiiiiiiiiiiiiii 53
ATTAYS oot 53
OPEIALOLSvvviiiiiiiiiii i 53
Name of the Main ROULNEcc.coviriiiiiiiiiiiiiiiccccc e 54
CommON BIOCKSc..ooiiiiiiiiiiiii i 54
Internal PrOCEAUIEScc.coviiiiiiiiiiiiiei e 54
MOGUIES ... 55
MOodule PrOCEUIEScoviiiiiiiiiiiiiie e 55
DEDUZZING G .eoveveitenieteete ittt bbbttt 56
Calling C++ Instance Methodscociviiiiiiiiiiiieic e 56

8. PGDBG Platform-Specific FEaturescccoocoiiniinieecnn, 57
Pathname CONVENHONScocviiiiiiiiiiii ittt 57
Debugging with Core FAlesccoooiiiiiiiiiiiiiic e 57
SIZNALS ..o 58
Signals Used Internally by PGDBGcccoeoiiiiniiniiiiiiiiicteccc e 59
Signals Used by Linux LIDIariescoccooviviiiiiiiiiiiiiiiieiccccecee e 59

9. PGDBG Parallel Debugging OVErview ..., 61
Overview of Parallel Debugging Capabilitycocoveriiriiiiiniiiiiicce e 61
Graphical Presentation of Threads and ProCESSESc.cccveririeiieriieieiienieeie e 61
Basic Process and Thread Namingcccocooviiiiiiiiiiiiiiniiciiccccccse e 61
Thread and Process Grouping and NAmMingcoccovvevieriiiiiniininien e 62
PGDBG DebUZ MOESc..eviiiiiiiiiiieieiet ettt 62
Threads-only DeDUZZINGceiueriiiiiiiiiiiiiie s 03
Process-only DeDUZZINGc..cooviiiiiiiiiiiiiiii 03
Multilevel DEDUZZINGcveveviiiiieieiiieie e 03
ProCeSS/TRIEAA SELSc.viiiiiiiiiiiii e 04
NAMEA P/ESELS ..ottt 04
P/SEE NOTAOM ...ttt bbbt 04
DYNAMIC VS. SEAHC P/E-SLSeuvivreritinietieteieiiete ettt 05
CULTENt VS. PIEfiX P/-SEE ..vvivviniiiiitiite ettt 06
P/t-Set COMMEANASveviiiniititeete ettt 06
COMUMANA SEL ... eeeee ettt ettt ettt e e e e e ettt e e e e e e e e e et eeeeeeeeanaa 69
Process Level Commandsccooveriiiiiiiiniiiiiii e 70
Thread Level COMMANAScoooiiiiiiiiiiiiiiici e 70
Global ComMANAScceeiiiiiiiiiii i 71
Process and Thread COntrolccooviiiiiiiiiiiniiiiie e 71
Configurable StOP MOcoveviiriiiiiiiiiieee e 72
Configurable Wait MOGEooiiiiiiiiiiieie e 72
SEALUS MESSAZES ..ottt 75
The PGDBG Command PrOMPLc.oocviriiiiiiiiniiiiiiieit et 75
PATAlle]l EVENLSeviiiiiiiiieiiite ettt ettt ettt 76

PArAllE]l SEALCIMEIILSoeeeeeeeeeee e et e e e e et e e e e e e e et e et e e e e e e e e eeneeeeeaeeens 77

Parallel Compound/Block StAtementscocoevvirieniiiiiniinieiiiieeeese e 77
Parallel If, EISe StAtEMENLScveeivuriiiiiiieiiree et e et ettt 77
Parallel While SEAEmENtscooiiiiiiiiiiiiieiie e 78
RetUrN SEACMENLSevviiieiiiiiiiiiii ittt e s et e e e 78

10. PGDBG - Parallel Debugging with OpenMP ..o, 79
OpenMP and Multi-thread SUPPOTTooviiiiiiiiiiii et 79
Multi-Thread and OpenMP DebUZZINGccveiiiiiiiiiieiiieiiieiie ettt 79
Debugging OpenMP Private DAAcccvieruiiiiieriiiiiieiie sttt ettt et 80
11. PGDBG Parallel Debugging with MPI ..., 83
MPI and Multi-Process SUPPOTEeviiuieriieieiieitiete ettt ettt ettt e e 83
PrOCESS COMIIOLiiiiiiieeie ettt ettt ettt et nt et sneente e e 83
Process SYNCAIOMIZAONcoveiuiiieiiiiieie et et 84
MPI MESSAZE QUEUESvveeeieneteiieiienieaiee et esee et ettt ete et e st et e bt e st et e bt aneesteebeaneesbeenbeeneenees 84
IMPL GLOUPS ..ceeeeeeiiiiiitit ettt ettt e e ettt e e e e e ettt et e e e e s e e ntbbbbeeeeeeeesaaebenees 85
MPT LIStENET PLOCESSES ...cooveiiiiiiiiieeeiiiiiiiiitte ettt et e e 85
SSH ANA RSH ..ottt ettt ettt b ettt s s ettt eb et eneeneeneenes 86
Multi-Process MPT DEDUZZINGc.covirieriiiiriiiiiiiieieiete s 86
Invoking PGDBG for MPI DebUZZINGcccerureuieiiiiiiiiiiiiicieeit e 87
Using PGDBG for MPI DebUZZINGc..covevuiriiriiiiiiiiiiiieieeceie et 88
Debugging Support for MPICH-1cccoiiiiiiiiiiiiiccc e 89
Debugging Support for MPICH-2, MVAPICH, HPMPI, and MSMPIccccocviiiiiiiiiinicncnne 89
12. PGDBG Parallel Debugging of Hybrid Applications ..o, 91
PGDBG Multilevel Debug MOdeccviiiiiiiiiiiieiie e 91
Multilevel DEDUZZINGc.eeruriiiiiiiietii et 91
13. PGDBG Command Referencec.ccccocoovieiiiiciieeieceeee e, 93
Notation Used in CommAand SECHONScc.evviriieriiiiiniiiieiie e 93
PLOCESS COMIIOLevvivieetiie ittt ettt ettt ettt teeneeneeneas 94
AACK ... 94
COME ..ottt ettt ettt ettt h et b ettt e s et e bbb ekt e bt e s e st e s e bbbt bttt s st e ettt ens 94
AEDUZ ..ot 94
AEtACK ..o e 94

DAL ..ottt 94

1 10, TP 95
1110 PR 95
PLOC ittt ettt e s et e e e st 95
PIOCS .ottt st 95

QUL oo 95
TOIUIL L.ooiiiiiiiiiiiiiiie ittt ettt e e e sttt e e e s st b bt et s e e e e s st bb b e b e e e e e s e s atbbarees 95

TUIL Lottt ettt e s e s a e 95

= | OSSOSO TSRO URPROPPRPRPRIN 96

11 1) O PP SO U P OO PO PP P P RPPORPPOO 96

PGI® Tools Guide

) L LSRR 96
) L S SO PTP PP 96
TRICA ... e 96
TRICAAS ... e s 96
WAL oottt e e e e e e e e e e e et e e e e e e et aaeaeerrar—. 97
ProCeSS-TRICAA SELSceiiviveieiiiiiii ettt e e e e e e aae e e 97
AEESEL ... 97
BOCUS oo 97
UIAEESEEoooiiiiiiiii e 97
VEBWSEL ..ovvieiiiiii ittt ettt e e e et e e e e e e e e e e e e aaaaa 97
WIHCIISEES ...t 97
EVRIILS oo 97
DIEAKoeeeeeeieeeeeee ettt n e annrana 97
|1 1 98
DLEaKSoooooiiiiii 99
CALCIL ..o ——————— 99
CLEAL ...oveeiiiiiecee e 99
AELELEoooeeeieeeieeec s 99
QISADIE ..o 100
QO s 100
QO e 100
CNADIC ..ot 100
RWALCH ... 100
RWALCRI@AWoooiiiiiii e 101
RWAtChDOThoooiiiiii e 101
BBNOTE ..ot e 101
] P2 11| U 101
STOP oottt e 101
SEOPI ..ottt 101
L3 T U PSPPPPPTNt 102
BLPACET .t 102
L3 1) - ORI 102
L5 1) ¢ TR RROPRI 102
UNDIC@AKoooiiiiiiii e 102
UNDTL@AKI ..ovvvviiiiiiiiii e 103
WATCKL ..o 103
WALCKI ..oovviiiiii i 103
WHICIL ..o 103
WREI ...ooiiii s 104
Program LOCAHONSc.eeviiuieriieieeitesiteteestesteeieeseesteesseesaesseeseessesseesseeseesssesseessessaesseaseens 104
s v \ L ST TR 104
C oo 104
QESASIN ...ovvvviiiiiiii e 104
CUIL .ooeeiiiei et 104
£ 1 (TSP PSRRI 105

Vii

viii

ST ..ottt ettt neene e 105
PWA ottt ettt ettt nee e 105
SEACKIIACEo..oiiiiiiiiii e 105
SEACKAUMP ..o 105
WHETE ..o 105
7 (search fOrward)ccocoiiiiiiiiiiie s 106
? (search backward)c.cccooiiiiiiiiiic e 106
Printing Variables and EXPreSSiONScocoooviriiriiiiiniiniiiieniieiieee e 106
PIAIE ..ottt 106
PrIntl oo 107
ASCIL .oeeiiiii ittt e e et e e 108
177 | PSPPSR URUPRRPP 108
EC ..o 108
BESPIAY ..ot 108
BEX . 108
OCT .ttt 108
SEEEIIE ..ottt 108
UNAESPIAY ..ot 108
SYMDOIS ANd EXPIESSIONSc.vviiviieiiiiiiieiiie ettt ettt st e e e 109
ASSIGIL ..ottt e 109
CAll 109
AECIArAIONoooooiiiiiiiiiiii 109
CIMILY ..ooiiiiiiiiiiiii i 110
IVAL Lo aa e 110
EVAL Lot 110
SCU ettt e e 110
SIZEOE ... 110
BYPC oot 111
S0P et e ettt e e e e s e e e e e s e 111
ECIS ..o 111
QOWIL ..ottt ettt ettt et e bt enbeen 111
[0 111 PP PTTRU P PSPPPPPRTN 111
BHLES ..ottt 111
Global ... 112
DATIICSooooiiiiiiiiiiiitt ettt e e e ettt et e e e e ettt e e e e sttt et e e s e sttt e e e e s s aaae 112
SCOPC .ottt et e st e s e e e st a 112
L) P 112
WHETEISoiiiiiiiii e 112
WHHCK ..o 112
REGISTET ACCESSvveeeieeeeiiii ittt e ettt e e e ettt e e e e s st e e et e e s annabbbereeeeas 112
DD e 112
PO it e 112
TEES oottt 113
PELAAAL ... 113

PGI® Tools Guide

] | J PP PP P P PPTPPRPPPPRI 113
MEMOTY ACCESSovvviiiiiiiiiiiiiii 113
CLEAM ...ttt 113
Aread ..o 113
QUIMP ..o 113
AL ...t 114
HP@AM ..o ettt 114
IP@AM ... 115
IQAUINP ..o 115
STEAM ...ttt 115
COMVETSIONSevveeeeeeee e ittt e e e sttt e e e ettt e e e e e s s abb bttt eeeesaasebb b n ettt eeeesnbbbrreeeeeeens 115
AAAE ..ot 115
FUNCHON ...ttt et 115

TIN@ ..ot 115
MISCEILANEOUSc.veviviiisiersetiiete ettt ettt ettt sttt eb et bbb bbb essebe bt ese b e b eseenesens 116
ALEASoviiiiiiiic ettt ettt ettt et reen e 116
EL@CLOTY ..ottt 116
BEIP oottt ettt 116
BESTOTY ..ottt et ettt et et 117
TAIGUAGE ..o e 117

LOG e 117
MOPTIIE ..ottt 117
PICIV .o 117
TEPCALoooiiiiiiiiiiiiiii i 120
SCEIPT ..ot 120
SCURILYeeiiiiiiiiiiiiiiiiie e ettt e et ettt e e e s ettt et e e s e sttt e e e e s s e e e e e s e 120
SREIL ... 120
SLEEP ..o s 120
SOUICE ...ooiiiiiiiiiiiiiiitit ettt e ettt e e ettt et e e s s st bbb et s e e e e s st bbb e e e e e e e s s aian 121
UNALIAS ... 121

WS ..ooiiiiiiitit ettt e e s bbb 121

14. Getting Started with the PGPROF Profilercc.ccocooooiviniinninn, 123
Methods Of PrOfIlINGcc.ooeiiiiiiiiiiiiie e 123
Instrumentation-based Profilingccccooeriiiiiiiiiiiiiiii e 124
Sample-based Profilingc.coocvvieiiiiininiiiiii e 124
Select 2 Profile MEthodccooiiiiiiiiiiiit e 126
Profiling on Non-Linux Platformsccccoviiiiriinininiiiiiiceccce e, 126
Profiling on Linux PIAtformsccocooiiiiiiiiniiii e 126
Collect Performance DAtadccooeviruiiiiiiiiiieieerese e 126
Profiling OUEPUL FIlecc.ooviiiiiiiiiiiiici e 126
Using System Environment Variablesccocooviiiiiiiiiiiiniiiiiiiniccccee 127
Profiling MPI and Multi-threaded Programsccoevvereniniiiniiiiiececc e 127
Profiling with Hardware Event COUNLETSccoervirieririiniiiiiiiieieenieee e, 127
Profiler Invocation and IniIAlZAtioNcooeviiriiriniiiii 127
APPLCAION TUIINGvevviiiiie et 127

15.

16.

17.

18.

19.

TrOUDIESROOLNGeeiiiniiiiiiii e 128

Selecting @ Version Of JAVAcccoiviiiiiiiiiiiicice e 128
SLOW NEWOTK ..o 128
Using PGPROF ..., 129
Profile NaVIGAONoouiiiiiiiiiici e 130
HotSpot Navigationccoooiiiiiiiiiiiiiiii 131
SOrting Profile DALAccoooviriiiiiiiiiiiii e 132
Compiler FEEADACKccooiiiiiiiiie e 132
Special Feedback MESSAZEScc.evviriiriiiiiiiiiiici e 133
Profiling Parallel PrOZramsccoviiiiiiriniiiiiiiiiiee e 133
Profiling Multi-threaded Programscocooceiiiiiiiiinininiie st 134
Profiling MPT PrOZLAIMScouveiiiiiiiiiiiiitieii ettt 135
Scalability COMPATISONcviuiitiiiiiiitiitiiet et 136
Profiling Resource Utilization with Hardware Event COUNterscccocvevvevverencncneninennnn 138
Profiling with Hardware Event Counters (Linux Only)cccoovvvierinininininiiicicee, 138
Profiling with Hardware Event Counters using pgeollectcccocvvvivrierinincncnennnn. 138
Profiling with Hardware Event Counters using PAPIc.ccccooivieiiiinininiiciceicn 139
Analyzing Event Counter Profilescccooiiiiiiiiiiiiiiiiei e 140
Command Line Options for Profiling ..., 143
Profiling Compilation OPHONSeovvieriiiiiieiiieiiieiie ettt e beesiaeebeeeeneas 143
PGPROF Command Line OPONSccuerreriiiiiniiiiiiieniieie ettt 144
Profiler InvOCAtON aNd SEATTUPoovveiiiiiiieiiieiie ettt 146
PGPROF Environment Variables ... 147
System Environment Variablescccooviiiiiiiiiiiiiice e 147
PGPROF Data and PreciSion ..o 149
MEASUIING TIMEeeviiiiiieiie ettt ettt et ettt e et e et e sabeenbeestreenteens 149
PLOfile DAA .o 149
Caveats (Precision of Profiling RESUILS)cccovviriiiiiiiiiiiiiee e 150
Accuracy of Performance Datacooveiiiiiiiiiiniiiiiiee e 150
Clock GranuIALityccooviiiiiiiiiiiiic e 151
Source Code COTTelationcoceeviiiiiiiriiiiiiiiic e 151
PGPROF ReferencCecocooviiiiiiieiiiiieee s 153
PGPROF User INterface OVEIVIEWcccoeriiriiriiriiiiiiiieieienieste sttt sttt 154
PGPROF MENUSccooiiiiiiiiiiiiiiiiii 154
FILE MEIU ..ottt et sttt 154
Settings MENUcccviiiiiiiiiiiiiii 155
PLOCESSES MEIIUL ...ccoinniiiiiiiiiie ettt e e ettt e e e s 157
VIEW MEIIUL ...oviiiiiiiiiiiiicc ettt e e ettt e e e e s 158
SOTE MEIUL ...vtevie ittt ettt ettt ettt ettt et e st e e st e sbeente e st e steenteeneesteenneeneesneenne e 160
SEATCH MEIUvtiviiiieit ettt ettt ettt ettt st ne s 160

HEIP MEIU ...ttt 161

PGI® Tools Guide

PGPROF TOOIDATcvvevieiiiiiieiieie ettt ettt e eneeene e 162
PGPROF StAtiSHCS TADIEcvvevivieiieiieiieieieie ettt ene e 163
Performance Data VIEWScc.ovveruiriiiiiiieieieieiestesie sttt ene e 163

Source Code Line NUMDEIINGccverviriiriiiiiiiiiiiieieiec e 166

PGPROF FOCUS PANELoovvivieiiiiiiiiieeie ettt ettt ebe e ss e 167

20. The PGPROF Command Line Interfacec.cocoooevieviinoieoieees 171
Command DeSCIIPHON SYNIAXcc.eeviieriieiiieiiieeiteiiie st riee ettt et et e st esrbeenteesnbeenaee e 171
PGPROF Command SUMMALYccuiiiiiiiiiaiiieiiieiiie sttt sttt ettt e e 171
CommMANd REfEIENCEcviiiiiiiiiiiiiiii e 172

21. pgeollect REfErenceccoviiiiiiiiiiicc e 177
INVOKING PECOLIECEvvieviieiiiieiie et ettt et et ebee e enns 177
System ACCESS REQUITEMENLSeeviiiiiiiiiiiiiiiitee ettt e et e e e e s 177
ComMMANA-HNE OPLONSeevviiiiiieiiitieit ettt 178
OVELAL OPHONSvvieveieeivieiie ettt ettt ettt s e et e b e e baeetbeebeeetbeesbaessbeebeeesnes 178
Predefined Performance Data Collection OPtioNScccevverivieriieneniinieicee e 178
User-Defined Performance Data Collection Optionscccoveverieninienieniericiienieenn 179

Defining Custom Event SPeCifiCAtionscoveriiiiiioriiiiieiieiie e 179
IACX ..o 181

Xi

Xii

Figures

2.1. Default Appearance of PGDBG GUIcc.cooveiiiiiiieiiiiiie et eiee et sre ettt siee e e e 6
2.2. PGDBG GUI with All Control Panels VISiDIec..cocveviiiiiiiiiiiiiieiiecieece e 7
2.3. Process Grid with Inner Thread Gridccoooiiiiiiiiiiiii e 10
2.4, PGDBG HEID ULHLY ... vcoveeevereeeeeereeeeeeeseeeesesesseeessesesseesseeseseessseeseseesesessesesseesseesseeesseeeseeo 12
2.5. Opening a Subwindow With @ POP-UP MENUccviiiiriiiiiiiieiiiieiieie e 18
2.6. DAtA POP-UP MENUoovviviiniiiiitietiett ettt ettt ettt ettt ettt et eeteeteeseess e st e b et e b e eaeeteeneens e 19
2.7. MemOTY SUDWINAOWoviiiiiiiiiiiiii ittt ettt 21
2.8. Disassembler SUDWINAOWcccueiiiiiiiiiieiieiit ettt se e 22
2.9. RegiSters SUDWINAOWcc.eorviiiiiiiiiiiieiit ettt 23
2.10. CUSEOM SUDWINAOWeviiiiiiiiiieiit e et 24
9.1. Focus Group Dialog BOXcccvviiiiiiiiitiitiiti ettt ettt er ettt 68
0.2, FOCUS i the GUIoviviieiieiieieti ettt ettt ettt eb e v re e s ss e 69
10.1. OpenMP Private Data in PGDBG GUIccuviiiiiiiiiiiiiii e 81
11.1. MeSSAZES SUDWINAOWeoviiiiiieiieiiiieiie ettt ettt ettt ettt e beesieeesbe e taeesbeestaeesbaensnean 85
15.1. PGPROF OVEIVIEWcooeiiiiiiiiieieiei e 130
15.2. View Navigation BULLONSoooiiiiiiiiiiiiiiiii e e e 131
15.3. HotSpot Navigation CONLIOLSc.eeviviiriieiiieiieiii ettt et erae e 131
15.4. THME SOT VIBW ...vivviitiiieieieeie ettt ettt ettt ettt sb e et e s e saa et e ena e s baesbeesbesaeeaeense s 132
15.5. Sample MPI PLOFIleccoooveiiriiiiiiiiiieie e 136
15.6. Profile of an Application Run with 4 Threadsccoovevivireriiiiiieieee e, 137
15.7. Profile with Hardware EVent COUNLETccueeruieiiiiiieiiieiieeieeiee et see e snne e 141
19.1. PGPROF USET INLEITACEveivvieriiiiiiieiie ettt ettt ettt ettt ettt enbeeetaeenbeeneees 153
19.2. New Profile Session didlog DOXcccoriiriiiiiiiiiiiieiee e 155
19.3. Bar Chart Color DIialog BOXcccccviiiriiiiiiiitietiere ettt 156
19.4. Font ChooSer DIAlog BOXc.coveriiiiiiiiiiiiieiieie ettt ebaesae e saaesae s 157
19.5. View | Configure DIalog BOXcc.oeiiiiiiieriiiiiieiiie ittt et see e 159
19.6. PGPROF HEID ...t s e s s e st eeeees s 161
19.7. PGPROF TOOIDATcuviivieiiiiiiiiiieie ettt ettt ettt ene et saesbaeaeens e e 162
19.8. ROULNE-IEVEL VIEWcooovviviiiiiiiiitictc ettt ettt ebe et eas e ae s 164
19.9. LINE-LEVEL VIEWoviviieieeiitiietc ettt ettt ettt ettt ettt ettt ettt ettt et et esen s 165
19.10. ASSEMDIY-EVEL VIEWc.eoviiviiniiiitiite ittt ettt 166
19.11. FOCUS PANEL TADSoovviviiiiiiiiciicieee ettt ettt 167
19.12. Parallelism Tab of FOCUS Panelcccooviiiiiiiiiiiiiiiiieiie e 167

Xiv

19.13. Histogram Tab of Focus Panel

19.14. Compiler Feedback Tab of FOCUS PANEc.ccciviiiiiiiiiiiieiiee e
19.15. System Information Tab of FOCUS PANElccociviiiiiiiiiiiieiieccieecee e

Tables

2.1. Colors Describing Thread SEAecoiiriiiiiiiiiiiiit e 8
4.1. PGDBG OPEIALOISvvevvievveiiessiesteeteesteestesteesteestesseesseeseesteesseessasseessesssesbaesseesseseessesssesseenseens 33
5.1. PGDBG COMMEANUSvevverieriienietieteiesiete sttt ettt ettt et ese et ese st esseneese b eneeseebeseenes 36
0.1. GENEIAL REZISLETSecveiveieieiiieiitite ettt ettt ettt ettt ettt et b bbb e b e eveeaeeasessens e b 50
6.2. x87 Floating-Point StACK REGISIELScviviiiriiriitiietieteriettete ettt ens 50
0.3. SEZMENE REZISIELScvveviiviiiitiitiete ettt ettt ettt et ete ettt e b et e et e teeaeeasess e s e b e b e ebeereeaeersaseas 50
0.4. Special PUIPOSE REISLETSc.coviviiviiriiiiitiesietet ettt ettt ettt ettt e e v ere s e s ss e, 50
0.5. GENEIAL REZISLETScvviveieieeiisiiiite ettt ettt ettt ettt et ettt ettt sbeebeeaeeteessessensesbe e 51
6.6. FLOAtiNg-POINt REZISIELScvviviiiititiitietiete ettt ettt ettt ettt b et et e ebeeve e easens s 51
0.7. SEZMENLE REGISLETScvviviiieietietiiesiete ettt ettt ettt ettt ettt e st ese b et eseebe b e st eteebebessenens 51
0.8. Special PUIPOSE REISLELScveviiiiviiiiiiiitiesietet ettt ettt ettt ettt e et ve s ss s 51
0.9. SSE REZISIELSevieveiviesiesteateteteete et ete ettt ettt et et e b e et e teeteessessess et et e b e ebeebeereessessessensesnas 52
9.1. PGDBG DEDUZ MOESc.vevviiiiiiiieiieiieieiete ettt 62
9.2, P/t-5€t COMMEANUSvevverieniiiiitiett ettt ettt ettt ettt ebe sttt es e est et e besbesbesbeeneaneas 66
9.3. PGDBG Parallel COMMANGScveiiiiiiiiiitiiiiiieieieeieie e 69
0.4, PGDBG StOP MOGESeovvivieiiiiiieiteeie ettt ettt ettt ettt et et ste e e e e saeebeessesaeebeenaesaes 72
9.5. PGDBG Wit MOGESooviinieiiieniieiieitieite ettt ettt 73
9.6. PGDBG Wit BERAVIOTc.ooviiiviiiiiiiieiiciiiee ettt 74
0.7. PGDBG Status MESSAZESoviiviiiiiiiiiiiiiiiiiiiit ettt 75
10.1. Thread State Is Described Using COLOTcciviiiiiiiiiiiiieiiiie et 80
11,10 MPICH SUPPOTL .ottt e e e ettt e e e e e s e sttt e e e e e s s anaeenes 89
13.1. pIeny COMMANUScvveiviieiieiiiteiieete et ettt rtte b e e bt e sbeebeestbeesbaessbeebeestbeesbeeesaeesbeessbeenseas 118
20.1. PGPROF COMMEANGSeeveiniiiiieiianiiitieie ettt sttt ettt ettt s 171

XV

XVi

Examples

9.1. Thread IDs in Threads-only Debug MOAEcooueriiiiiiiiiiiiiiieeetee e 63
9.2. Process IDs in process-only debug modecooevieiiiiiiiiiiiiiiiiece e 03
9.3. Thread IDs in multilevel debug mMOdecoooiiiiiiiiiiiiiii e 63
9.4. p/t-sets in Threads-only Debug MOccoviiriiriiiiiiiiiieieeee e 65
9.5. p/t-sets in Process-only Debug MOdeccoeriiiiiiiiiiiiiiiiee e 05
9.6. p/t-sets in Multilevel DeDUZ MOGEc.orviriiiiiiiiiiiiiiiei et 05
9.7. Defining @ DYNAMUC P/E-SELevvevievirierierietisietiete ettt ettt sttt ettt be sttt eresbeseese et beneenes 05
0.8. DefiNiNg @ SLALC P/E-SELvvevieierietiieee ettt ettt ettt ettt ettt ettt ettt 05
12.1. Thread IDs in multilevel debug mOdeccooiiriiiiiiiiiiii e 91
13.1. SYNLAX EXAMPIESevvieeiieiiiieiie ettt ettt et et e et et e e bt e steeesbeestbeesseesssessbeestbessbeesseessbeesseesnsaens 93
15.1. Partial Output from PEEVENLScovieiiriiiriiiiiiieitiet et 140
21.1. Custom Event EXAMPIE 1coooiviiiiiiiiiiiieiit ettt sttt 179
21.2. Custom Event EXAMPIE 2c.oooiiiiiiiiiiiiiieiit ettt ettt 179

XVii

Xviii

Preface

This guide describes how to use the PGPROF profiler and PGDBG debugger to tune and debug serial and
parallel applications built with The Portland Group (PGI) Fortran, C, and C++ for X86, AMDG64 and Intel 64
processor-based systems. It contains information about how to use the tools, as well as detailed reference
information on commands and graphical interfaces.

Intended Audience

This guide is intended for application programmers, scientists and engineers proficient in programming with
the Fortran, C, and/or C++ languages. The PGI tools are available on a variety of operating systems for the X86,
AMDG64, and Intel 64 hardware platforms. This guide assumes familiarity with basic operating system usage.

Supplementary Documentation

See http://www.pgroup.com/docs.htm for the PGDBG documentation updates. Documentation delivered

with PGDBG should be accessible on an installed system by accessing docs/index.htm in the PGI installation
directory. Typically the value of the environment variable PGI is set to the PGI installation directory. See http://
www.pgroup.com/fag/index.htm for frequently asked PGDBG questions and answers.

Compatibility and Conformance to Standards

The PGI compilers and tools run on a variety of systems. They produce and/or process code that conforms to
the ANSI standards for FORTRAN 77, Fortran 95, C, and C++ and includes extensions from MIL-STD-1753,
VAX/VMS Fortran, IBM/VS Fortran, SGI Fortran, Cray Fortran, and K&R C. PGF77, PGF90, PGCC ANSI C,

and PGCPP support parallelization extensions based on the OpenMP defacto standard. PGHPF supports

data parallel extensions based on the High Performance Fortran (HPF) defacto standard. The PGI Fortran
Reference Manual describes Fortran statements and extensions as implemented in the PGI Fortran compilers.
PGDBG permits debugging of serial and parallel (multi-threaded, OpenMP and/or MPI) programs compiled
with PGI compilers. PGPROF permits profiling of serial and parallel (multi-threaded, OpenMP and/or MPI)
programs compiled with PGI compilers.

For further information, refer to the following:

e American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).

XiX

Organization

e ISO/IEC 1539:1991, Information technology — Programming Languages — Fortran, Geneva, 1991 (Fortran
90).

e ISO/IEC 1539:1997, Information technology — Programming Languages — Fortran, Geneva, 1997 (Fortran
95).

e High Performance Fortran Language Specification, Revision 1.0, Rice University, Houston, Texas (1993),
http://www.crpc.rice.edu/HPFF.

e High Performance Fortran Language Specification, Revision 2.0, Rice University, Houston, Texas (1997),
http://www.crpc.rice.edu/HPFF.

e OpenMP Application Program Interface, Version 2.5, May 2005, http://www.openmp.org.
* Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).
e IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

e Military Standard, Fortran, DOD Supplement to American National Standard Programming Language
Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

* American National Standard Programming Language C, ANSI X3.159-1989.
e ISO/IEC 9899:1999, Information technology — Programming Languages — C, Geneva, 1999 (C99).
e HPDF Standard (High Performance Debugging Forum) http://www.ptools.org/hpdf/draft/intro.html

Organization

XX

This manual is organized as follows:

Part I: The PGDBG Debugger contains these thirteen chapters that describe PGDBG, a symbolic debugger for
Fortran, G, C++ and assembly language programs.

Chapter 1, “Getting Started with the PGDBG Debugger”
contains information on how to start using the debugger, including a description of how to build a target
application for debug and how to invoke PGDBG.

Chapter 2, “The PGDBG Graphical User Interface”
describes how to use the PGDBG graphical user interface (GUI).

Chapter 3, “PGDBG Command Line Options”
describes the PGDBG command-line options.

Chapter 4, “PGDBG Command Language”
provides detailed information about the PGDBG command language, which can be used from the
command-line user interface or from the command panel of the graphical user interface.

Chapter 5, “PGDBG Command Summary”
provides a brief summary table of the PGDBG debugger commands, providing a brief description of the
command as well as information about the category of command use.

Chapter 6, “PGDBG Assembly-Level Debugging”
contains information on assembly-level debugging; basic debugger operations, commands, and features
that are useful for debugging assembly code; and how to access registers.

Preface

Chapter 7, “PGDBG Source-Level Debugging”
contains information on language-specific issues related to source debugging.

Chapter 8, “PGDBG Platform-Specific Features”
contains platform-specific information as it relates to debugging.

Chapter 9, “PGDBG Parallel Debugging Overview”
contains an overview of the parallel debugging capabilities of PGDBG.

Chapter 10, “PGDBG - Parallel Debugging with OpenMP”
describes the parallel debugging capabilities of PGDBG and how to use them with OpenMP.

Chapter 11, “PGDBG Parallel Debugging with MPI’
describes the parallel debugging capabilities of PGDBG and how to use them with MPI.

Chapter 12, “PGDBG Parallel Debugging of Hybrid Applications”
describes the parallel debugging capabilities of PGDBG and how to use them with hybrid applications.

Chapter 13, “PGDBG Command Reference”
provides reference information about each of the PGDBG commands, separated by area of use.

Part II: The PGPROF Profiler contains these ten chapters that describe the PGPROF Profiler, a tool for
analyzing the performance characteristics of C, C++, F77, and F95 programs.

Chapter 14, “Getting Started with the PGPROF Profiler”
contains information on how to start using the profiler, including a description of the profiling process,
information specific to certain how to profile MPI and OpenMP programs and how to profile with
hardware event counters.

Chapter 15, “Using PGPROF’
describes how to use the PGPROF graphical user interface (GUI).

Chapter 16, “Command Line Options for Profiling”
describes the PGPROF command-line options.

Chapter 17, “PGPROF Environment Variables”
contains information on environment variables that you can set to control the way profiling is performed
in PGPROE

Chapter 18, “PGPROF Data and Precision”
contains descriptions of the profiling mechanism that measures time, how statistics are collected, and the
precision of the profiling results.

Chapter 19, “PGPROF Reference”
provides reference information about the PGPROF graphical user interface, including information about
the menus, the toolbars, and the subwindows.

Chapter 20, “The PGPROF Command Line Interface”
provides information about the PGPROF command language, giving reference information about each of
the PGPROF commands, separated by area of use.

Chapter 21, “pgcollect Reference”
provides reference information about the pgcollect command.

XXi

Conventions

Conventions

This guide uses the following conventions:

italic
is used for emphasis.
Constant Wdth

is used for filenames, directories, arguments, options, examples, and for language statements in the text,
including assembly language statements.

Bold
is used for commands.

[item1]
in general, square brackets indicate optional items. In this case item1 is optional. In the context of p/t-
sets, square brackets are required to specify a p/t-set.

{ item? | item 3}
braces indicate that a selection is required. In this case, you must select either item2 or item3.

filename ...
ellipsis indicate a repetition. Zero or more of the preceding item may occur. In this example, multiple
filenames are allowed.

FORTRAN
Fortran language statements are shown in the text of this guide using a reduced fixed point size.

C/C++
C/C++ language statements are shown in the test of this guide using a reduced fixed point size.

The PGI compilers and tools are supported on both 32-bit and 64-bit variants of the Linux and Windows
operating systems on a variety of x86-compatible processors. There are a wide variety of releases and
distributions of each of these types of operating systems.

Terminology

If there are terms in this guide with which you are unfamiliar, PGI provides a glossary of terms which you can
access at www.pgroup.com/support/definitions.btm

Related Publications

The following documents contain additional information related to the X86 architecture and the compilers and
tools available from The Portland Group.

e PGI Fortran Reference Manual describes the FORTRAN 77, Fortran 90/95, and HPF statements, data
types, input/output format specifiers, and additional reference material related to the use of PGI Fortran
compilers.

e System V Application Binary Interface Processor Supplement by AT&T UNIX System Laboratories, Inc.
(Prentice Hall, Inc.).

XXii

Preface

e FORTRAN 95 HANDBOOK, Complete ANSI/ISO Reference (The MIT Press, 1997).

* Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).
e IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

e The C Programming Language by Kernighan and Ritchie (Prentice Hall).

* (: A Reference Manual by Samuel P. Harbison and Guy L. Steele Jr. (Prentice Hall, 1987).

* The Annotated C++ Reference Manual by Margaret Ellis and Bjarne Stroustrup, AT&T Bell Laboratories, Inc.
(Addison-Wesley Publishing Co., 1990)

e PGI User’s Guide, PGI Tools Guide, PGI Release Notes, FAQ, Tutorials, http://www.pgroup.com/
e MPI-CH http://www.unix.mcs.anl.gov/MPI/mpich /

e OpenMP http://www.openmp.org/

 PAPI (Performance Application Program Interface) http://icl.cs.utk.edu/papi/

System Requirements

e Linux or Windows (See http://www.pgroup.com/faq/install.htm for supported releases)
e Intel x86 (and compatible), AMD Athlon or AMDG4, or Intel 64 or Core2 processor
e Intel x86 (and compatible), AMD Athlon or AMDG4, or Intel 64 or Core2 processor

XXiii

XXiv

Part |. PGDBG Debugger

Part I of the PGI Tools Guide is about the PGDBG debugger. The information in this part describes PGDBG, a
symbolic debugger for Fortran, C, C++, and assembly language programs.

e Chapter 1, “Getting Started with the PGDBG Debugger,” starting on page 1, contains information on how to start
using the debugger, including a description of how to build a target application for debug, and how to invoke
PGDBG.

e Chapter 2, “The PGDBG Graphical User Interface,” starting on page 5, describes how to use the PGDBG graphical
user interface (GUI).

e Chapter 3, “PGDBG Command Line Options,” starting on page 25, describes the PGDBG command-line options
and how they are interpreted.

e Chapter 4, “PGDBG Command Language,” starting on page 27, provides detailed information about the PGDBG
command language, which can be used from the command-line user interface or from the command panel of the
graphical user interface.

e Chapter 5, “PGDBG Command Summary,” starting on page 35, provides a brief, alphabetical, summary table of the
PGDBG debugger commands. The table includes a brief description of the command as well as information about
the category of command use.

e Chapter 6, “PGDBG Assembly-Level Debugging,” starting on page 47, contains information on machine-level
debugging; basic debugger operations, commands, and features that are useful for debugging assembly code, as
well as information on how to access registers.

e Chapter 7, “PGDBG Source-Level Debugging,” starting on page 53, contains information on language-specific
issues related to source debugging.

e Chapter 8, “PGDBG Platform-Specific Features,” starting on page 57, contains platform-specific information as it
relates to debugging.

e Chapter 9, “PGDBG Parallel Debugging Overview,” starting on page 61, contains an overview of the parallel
debugging capabilities of PGDBG.

e Chapter 10, “PGDBG - Parallel Debugging with OpenMP,” starting on page 79, describes how to use the parallel
debugging capabilities of PGDBG with OpenMP.

e Chapter 11, “PGDBG Parallel Debugging with MPL” starting on page 83, describes how to use the parallel
debugging capabilities of PGDBG with MPI.

e Chapter 12, “PGDBG Parallel Debugging of Hybrid Applications,” starting on page 91, describes how to use the
parallel debugging capabilities of PGDBG in multilevel debug mode on hybrid applications.

e Chapter 13, “PGDBG Command Reference,” starting on page 93, provides reference information about each of the
PGDBG commands, grouping the commands by category of use.

Chapter 1. Getting Started with the
PGDBG Debugger

PGDBG is a symbolic debugger for Fortran, C, C++ and assembly language programs. It provides debugger
features, such as execution control using breakpoints, single-stepping, and examination and modification of
application variables, memory locations, and registers.

PGDBG supports debugging of certain types of parallel applications, depending on the operating system on the
target machine.

e linux86, linux86-64, 0sx86, 0sx86-64, Win32 and Win64 platforms:
e Multi-threaded and OpenMP applications.
e MPI applications

e Hybrid applications, which use multiple threads or OpenMP as well as multiple MPI processes on Linux
clusters.

e Windows Subsystem for Unix Applications (SFU, SUA32 and SUA64) [and Mac OS X]:
¢ Multi-threaded and OpenMP Windows applications.

Multi-threaded and OpenMP applications may be run using more threads than the available number of CPUs,
and MPI applications may allocate more than one process to a cluster node. PGDBG supports debugging the
listed types of applications regardless of how well the number of threads match the number of CPUs or how
well the number of processes match the number of cluster nodes.

Definition of Terms

Throughout Part I of this manual we use the term host to refer to the system on which PGDBG executes,
target, to refer to the program being debugged, and target machine to refer to the system on which the target
runs. For more detailed definitions of these terms, refer to the PGI glossary of terms which you can access at
www.pgroup.com/support/definitions.htm.

For an introduction to terminology used to describe parallel debugging, refer to Chapter 9, “PGDBG Parallel
Debugging Overview,” on page 61.

Building Applications for Debug

Building Applications for Debug

To build an application for debug, compile with the —g option. With this option, the compiler generates
information about the symbols and source files in the program and includes it in the executable file. The —
g option also sets the compiler optimization to level zero (no optimization) unless you specify optimization
options such as —O, —f ast, or —f ast sse on the command line. Optimization options take effect whether
they are listed before or after —g on the command line.

Debugging Optimized Code

Programs built with —g and optimization levels higher than —00 can be debugged, but due to transformations
made to the program during optimization, source-level debugging may not be reliable. Assembly-level
debugging (e.g., accessing registers, viewing assembly code, etc.) is reliable, even with optimized code.
Programs built without —g can be debugged; however, information about types, local variables, arguments
and source file line numbers are not available. For more information on assembly-level debugging, refer to
Chapter 6, “PGDBG Assembly-Level Debugging’.

In programs built with both —g and optimization levels higher than —00, some optimizations may be disabled
or otherwise affected by the —g option, possibly changing the program behavior. An alternative option, -gopt,
can be used to build programs with full debugging information, but without modifying program optimizations.
Unlike —g, the —gopt option does not set optimization to level zero.

Building for Debug on Windows

To build an application for debug on Windows platforms, applications must be linked with the —g option

as well as compiled with—g. This process results in the generation of debug information stored in a ‘. dwf’
file and a ‘. pdb’ file. The PGI compiler driver should always be used to link applications; except for special
circumstances, the linker should not be invoked directly.

PGDBG Invocation and Initialization

PGDBG includes both a command-line interface and a graphical user interface (GUI). Text commands are
entered one line at a time through the command-line interface. The GUI interface supports command entry
through a point-and-click interface, a view of source and assembly code, a full command-line interface panel,
and several other graphical elements and features. “PGDBG Command Language” and “PGDBG Command
Reference” describe in detail how to use the PGDBG command-line interface. “The PGDBG Graphical User
Interface” describes how to use the PGDBG GUL

Invoking PGDBG

PGDBG is invoked using the pgdbg command as follows:
% pgdbg argunents target argl arg2 ... argn

where ar gument s may be any of the command-line arguments described in Chapter 3, “PGDBG Command
Line Options”. See Chapter 11, “PGDBG Parallel Debugging with MPI,” on page 83 for instructions on
how to debug an MPI program [Linux and Windows CCS Only].

The t ar get parameter is the name of the program executable file being debugged. The arguments ar g1
arg2 ...ar gn are the command-line arguments to the target program. Invoking PGDBG as described starts

Chapter 1. Getting Started with the PGDBG Debugger

the PGDBG Graphical User Interface (GUI) (See “PGDBG Graphical User Interface,” on page 3). For users
who prefer to use a command-line interface, PGDBG may be invoked with the —text parameter, as described in
Chapter 3, “PGDBG Command Line Options” and “PGDBG Command Language,” on page 4.

Note

The command shell interprets any I/O redirection specified on the PGDBG command line. Refer to
“Process Control,” on page 83 for a description of how to redirect I/0 using the run command.

Both 32-bit and 64-bit applications are supported. In general, the PATH is set to the native architecture. If the
PATH environment variable is set to use the 32-bit PGI tools, a 64-bit application can be debugged by invoking
PGDBG with the —tp option. Conversely, if the PATH environment variable is set to use the 64-bit PGI tools, you
can debug a 32-bit application by invoking PGDBG with the —tp option. For more details, refer to Chapter 3,
“PGDBG Command Line Options”.

Initializing PGDBG

Once PGDBG is started, it reads symbol information from the executable file, then loads the application into
memory. For large applications this process can take a few moments. An initialization file is useful for defining
common aliases, setting breakpoints, and for other startup commands.

If an initialization file named .pgdbgrc exists in the current directory or in the home directory, defined by the
environment variable HOME, PGDBG opens this file and executes the commands in it.

If an initialization file is found in the current directory, then the initialization file in the home directory, if there
is one, is ignored. However, a script command placed in the initialization file may execute the initialization file
in the home directory, or execute PGDBG commands in any other file.

Starting a Session

Once PGDBG is invoked and the initialization file is processed, PGDBG is ready to process commands.
Normally, a session begins by setting one or more breakpoints, using the break, stop or trace commands,
and then issuing 2 run command followed by cont , st ep, t r ace or next .

Using Command Line Options

PGPROF can interpret command-line options. For information on these options and how they are interpreted,
refer to Chapter 16, “Command Line Options for Profiling,” on page 143.

PGDBG Graphical User Interface

The default user interface used by PGDBG is a Graphical User Interface (GUI). There may be minor variations
in the appearance of the PGDBG GUI from host to host, depending on the type of display hardware available,
the settings for various defaults and the window manager used. Except for differences caused by those factors,
the basic interface remains the same across all systems. For more information on the PGDBG GUI, refer to
“The PGDBG Graphical User Interface”.

PGDBG Command Language

PGDBG Command Language

PGDBG supports a command language that is capable of evaluating complex expressions. The command
language can be used by invoking the PGDBG command-line interface with the —text option, or in the
command prompt panel of the PGDBG graphical user interface. For more information on the command
language, refer to “PGDBG Command Language” and “PGDBG Command Reference”.

Troubleshooting

If you are having trouble during invocation or the initialization process, use the following sections for tips on
what might be causing your problem.

Selecting a Version of Java

The PGDBG graphical user interface (GUI) depends on Java. PGDBG command-line mode (pgdbg -text) does
not depend on Java. PGDBG requires that the Java Virtual Machine be a specific minimum version or above. By
default, PGDBG uses the version of Java installed with your PGI software; if you chose not to install Java when
installing your PGI software, PGDBG looks for Java on your PATH. Both of these can be overridden by setting
the PGI_JAVA environment variable to the full path of the Java executable you wish to use.

For example, on a Linux system using the bash shell, use this command to specify the location of Java:

$ export PG _JAVA=/ hone/ myuser/ nyj aval bi n/ j ava

Chapter 2. The PGDBG Graphical
User Interface

The default user interface used by PGDBG is a Graphical User Interface (GUI). There may be minor variations
in the appearance of the PGDBG GUI from host to host, depending on the type of display hardware available,
the settings for various defaults and the window manager used. Except for differences caused by those factors,
the basic interface remains the same across all systems.

Main Window

Figure 2.1, “Default Appearance of PGDBG GUI” shows the main window of PGDBG GUI when it is invoked

for the first time. This window appears when PGDBG starts and remains throughout the debug session. The
initial size of the main window is approximately 700 x 600. It can be resized according to the conventions of
the window manager. Changes in window size and other settings are saved and used in subsequent invocations
of PGDBG. To prevent this, uncheck the Save Settings on Exit item under the Settings menu. See “Main Window
Menus,” on page 11, for information on the Settings menu.

At the top of the GUI, illustrated in Figure 2.1, are three horizontal divider bars, controlled by small up and
down arrow icons. These dividers hide the following optional control panels: Command Prompt, Focus Panel,
and the Process/Thread Grid. Figure 2.2, “PGDBG GUI with All Control Panels Visible,” on page 7, shows

the main window with these controls visible. The GUI remembers which control panels are visible when

you exit and redisplays them when you reopen PGDBG. Below the dividers is the Source Panel, described in
“Source Panel,” on page 11.

Main Window

A second window named the Program I/0 window is displayed when PGDBG is started. Any input or output
performed by the target program is entered and/or displayed in this window.When you first start PGDBG, this
window includes information on the version of PGDBG that you are running as well as copyright information.

On Windows platforms, to maintain input focus in the main window, the Program I/0 window is instantiated

Figure 2.1. Default Appearance of PGDBG GUI

[m] PGDBG - The Portland Group X

File Settings

-

-

Pracess O

Data Window Control Options ompcv

Line Mo. | Ewent [PC [/home/swjdemos/TOOLS_DEMO/OMP/omp.c
1 #include <stdio. b
2
3 maingl{
4
5 char but[E1];
&
7 printf{"0ne thread ... “n");
8 #pragma omp parallel
a {
10 int myid,i;
11
12 myid = omp_get_thread_num();
13 Tor{i=0;i<2;i+3{
14 printT{"HELLO %d, ¥d\n",getpid(d,myid);
15 1
1a6
17 1
18 printf{"... back to one thread.“h"J; ||
19 return;
20 1 —
hE [v]

Source 7
Loaded: fhome/sw/demos/TOOLS_DEMO/OMP omp-g

behind the DBG main window.

Chapter 2. The PGDBG Graphical User Interface

Figure 2.2. PGDBG GUI with All Control Panels Visible

=] PGDBG - The Portland Group

{File Settings

Command Prompt

Command ‘rgdhp ([1] New Thread) B
|[0] 5topped at Jx4(11F6, functior main, file omp.c, lite 1z
Prompt 128 myid = onp_cet_thread_num(): |
Panel ‘ 2
‘ngbg [a11] 0>,, -
r ~Focus-
FIOW ia" Narrie]j[*"l pjt-set
Panel [
| Add| Modiy| Kemove|
All Thraads
Process/ B
Thread —
Grid
> U s
[ERE [] :
|| Thread Crid_| Sumrrary. - Apply
Thread 0 T L T T S A T Selector
.J_IJ JJJ _I_IJ CI—
View ;
Selector i Thread O ~ | Data Window Control Options |omg.c ¥ — Source F]_[e
["Line No._ [_Event_| PC [jrome/sw;demos/TOOLS.DEMOjOMP/omp.c Selector
| 1 #include <stdio.r>
I =
3 main{){
4
5 cha~ buf[8];
@ printf("One thread ... \r");
#pragna omp parallel
i
int myid,i;
> myid = omd_get_thread_nim();
for(i=0;i<2;i++)-
printf("HELLD %d, %d\r",getpid{),myii);
}
}
prinmtf('... back to one trread.\n"); :
“eTurn; Y
Stack | éDlispla.y Mode
Frame - Selector
Selector 1ain Tine: 1z in "owp.c" address: Ox4011f6 'l% ISource 'l
\Stopped at line 12 (address 0x401116; in fle /hame/sw/dzmos!TOOLS_DEMO/IMPromp.c ;
ST L T T T e i 0 14 o a aa aa W s a v VT a s aa s 1 Ha s st e s s s aaarontauavareiassssasssasssssssararuasvunvereraresssorsseeeeesl ‘.-

PGDBG Main Window Components

The panel components of the main window, illustrated in Figure 2.2) are these:

Focus Panel

Source Panel

Command Prompt Panel

Process/Thread Grid

Main Window

Command Prompt Panel

The Command Prompt Panel provides an interface in which to use the PGDBG command language. Commands
entered in this window are executed, and the results are displayed. For a list of commands that can be entered
in the command prompt panel, refer to “Command Summary,” on page 36. The GUI also supports a “free-
floating” version of this window, that is, a version that is not anchored to a particular location on the screen.
To use the free-floating command prompt window, select the Command Window check box under the Window

menu, as described in “Source Panel Menus,” on page 13. Users who use only GUI controls may leave this
panel hidden.

Focus Panel

The Focus Panel can be used in a parallel debugging session to specify subsets of processes and/or threads
known as p/t-sets. P/t-sets allow application of debugger commands to a subset of threads and/or processes.
P/t-sets are displayed in the table labeled Focus, shown in Figure 2.2. In this window the Focus table contains
one p/t-set called Al | that represents all processes/threads. P/t-sets are covered in more detail in “p/t-set
Notation,” on page 64. Within the PGDBG GUI, to select a p/t set, use a left mouse click on the desired

group in the Focus table. The selected group is known as the Current Focus. By default, the Current Focus is
set to all processes/threads. Note that this panel has no use in serial debugging, debugging one single-threaded
process.

For non-MPI applications, p/t-sets are used only for distinguishing threads.

Process/Thread Grid

The Process/Thread Grid is another component of the interface used for parallel debugging. All active target
processes and threads are represented in the Process/Thread Grid. If the target application consists of multiple
processes, the grid is labeled Process Grid. If the target application is a single multi-threaded process, the

grid is labeled Thread Grid. The colors of each element in the grid represent the state of the corresponding
component of the target application; for example, green means running and red means stopped. The colors
and their meanings are defined in Table 2.1.

Table 2.1. Colors Describing Thread State

Option Description
Stopped Red
Signaled Blue
Running Green
Terminated Black

In addition to the panels, notice the location of these selection areas that are labeled in Figure 2.2, “PGDBG
GUI with All Control Panels Visible,” on page 7:

o Source file selector

e Scope selector

Chapter 2. The PGDBG Graphical User Interface

o Stack frame selector

e Display mode selector

On Windows platforms, the Process/Thread Grid is used only for distinguishing threads.

In the Process/Thread Grid, each element is labeled with a numeric process identifier, as described in
“Process-only Debugging,” on page 63, and represents a single process. Each element is a button that can

be pushed to select the corresponding process as the Current Process. The Current Process is highlighted with
a thick black border.

For single-process/multi-threaded (e.g., OpenMP) targets, the grid is called the Thread Grid. Each element in
the thread grid is labeled with a numeric thread identifier, as described in “Threads-only Debugging,” on page
63. As with the process grid, clicking on an element in the thread grid selects that element as the Current
Thread, which is highlighted with a thick black border.

For multi-process/multi-threaded (hybrid) targets, the grid is labeled the Process Grid. Selecting a process in
the grid reveals an inner thread grid as illustrated in Figure 2.3, “Process Grid with Inner Thread Grid”.

Main Window

Figure 2.3. Process Grid with Inner Thread Grid

[=] PGDBG - The Portland Group x

File Settings Halp
r -Command Prompt |

[o. 0] Stopped at 0Ox403094, function main, file ompmpi.c, 1ine 24
#24 Torfi=0;i<3;i+{

pgdhg [211] 0.0=

i
LProcess Crid L’Sum'r'h'a’r-y |

Process O Thread O

HD T T]
Bun | Halt | Cont MNext | Step | Stepo MNexti| Stepi |

|F‘rocess.Thread 0.0 '| Data Windew Contrel Options |empmpic ¥

Line No. [Bvent [PC [fhome/sw/demos/TOOLS_DEMO/OMPMPIfompmpi.c
g int myrank,threadrank; b
=] char hname[32];

10 int i;
il
1z @ WPI_Init{ Zargc, &argy);
i
14 gethostnameChname, 323,
15 MPI_Comm_rank{MPI_COMM_WORLD, &myrank);
16
17 onp_set_numn_threads{4);
18
19 #pragmna omp parallel
20 {
21 int i;
22 int num;
23 num = omp_get_thread_numi);
24 b for{i=0;i<3;i+34{
25 printf{"¥s¥d: %d\n" , hname, myrank, num} ;
26 1
27 1
28
20 MPI_Finalize();
30
31 return;
e

|#O main 1ine: 24 in "ompmpi.c" address: 0x40309a '”V{ |Source
|Stopped at line 24 faddress 0x40309a in file fhome/swidemos/TOOLS_DEMOZOMPMPI ompmpi.c
I I

In this figure, process 0 has four threads labeled 0.0, 0.1, 0.2, and 0.3; where the integer to the left of the
decimal point is the process identifier and the integer to the right of the decimal point is the thread identifier.
See “Multilevel Debugging,” on page 63 for more information on processes/thread identifiers.

For a textual representation of the Process/Thread grid, select the Summary tab under the grid. The text
representation is essentially the output of the t hr eads debugger command, discussed in “Process Control,”
on page 83. By default, a summary of all the processes/threads displays.

Use the slider to the right of the grid to zoom in and out on the grid. If the slider is not visible, increase the size
of the Process/Thread grid’s panel.

10

Chapter 2. The PGDBG Graphical User Interface

Source Panel

The Source Panel displays the source code for the current location. The current location is marked by an
arrow icon under the PC column. Source line numbers are listed under the Line No. column. Figure 2.2 shows
some of the line numbers grayed-out. A grayed-out line number indicates that its respective source line is
non-executable. Some examples of non-executable source lines are comments, non-applicable preprocessed
code, some routine prologues, and some variable declarations. A line number in a black font represent

an executable source line. Breakpoints may be set at any executable source line by clicking the left mouse
button under the Event column of the source line. The breakpoints are marked by stop sign icons. An existing
breakpoint may be deleted by clicking the left mouse button on the stop sign icon. The source panel is
described in greater detail in “Source Panel,” on page 12.

Main Window Menus

The main window includes three menus located at the top of the window: File, Settings, and Help. Below is a
summary of each menu in the main window.

¢ File Menu

Open Target. .. — Select this option to begin a new debugging session. After selecting this option, select
the program to debug (the target) from the file chooser dialog. The current target is closed and replaced
with the target that you selected from the file chooser. Press the Cancel button in the file chooser to abort
the operation. For more information, see the command “debug,” on page 94.

Attach to Target. .. — Select this option to attach to a running process. You can attach to a target running
on a local or a remote host. For more information, refer to the command” “attach,” on page 94.

Detach Target — Select this option to end the current debug session. This command does not terminate
the target application. For more information, refer to the command” “detach,” on page 94.

Exit — End the current debug session and close all the windows.

e Settings Menu

Font... — This option displays the font chooser dialog box. Use this dialog box to select the font and
size used in the Command Prompt Panel, Focus Panel, and Source Panel. The default font is named
monospace and the default size is 12.

Show Tool Tips — Select this check box to enable tool tips. Tool tips are small temporary messages that
pop-up when you position the mouse pointer over a component in the GUL They provide additional
information on the functionality of the component. Deselect this check box to turn them off.

Restore Factory Settings — Select this option to restore the GUI to its initial state illustrated in Figure 2.1,
“Default Appearance of PGDBG GUI,” on page 6.

Restore Saved Settings — Select this option to restore the GUI to the state that it was in at the start of the
debug session.

Save Settings on Exit — By default, the PGDBG saves the state (size and settings) of the GUI when you
exit. Uncheck this option to prevent PGDBG from saving the GUI state. This option must be unchecked
prior to every exit since PGDBG always defaults to saving GUI state. When PGDBG saves state, it stores the
size of the main window, the location of the main window on the desktop, the location of each control

11

Source Panel

panel divider, the tool tips preference, the font and size used. The GUI state is not shared across host
machines.

e Help Menu

* PGDBG Help... — This option starts up PGDBG’s integrated help utility as illustrated in Figure 2.4. The
help utility includes a summary of every PGDBG command. To find 2 command, use one of the following
tabs in the left panel: The “book” tab presents a table of contents, the “index” tab presents an index of
commands, and the “magnifying glass” tab presents a search engine. Each help page, displayed on the
right, may contain hyperlinks, denoted in underlined blue, to terms referenced elsewhere in the help

engine. Use the arrow buttons to navigate between visited pages. Use the printer buttons to print the
current help page.

* About PGDBG. .. — This option displays a dialog box with version and copyright information on PGDBG.
It also contains sales and support points of contact.

Figure 2.4. PGDBG Help Utility

| PGDBG Help x
2 2SS

(O AN :

&1 PGDBG Help l PGDBG Help

&] Process Control
@ 3 Process Thread Sets

& O Events Cormmands are broken up into the following list of topics:
&[] Program Locations & Frocess Control

- [Printing ; ® Process|Thread Sets

& [symbals and Expressio @ Events

&[] 5cope : # Program Locations

@] Register Access # Printing

&= [Memary Access & Symbols and Expressions

@[] Conversions ® SCope

& [Miscellaneous & Register AcCcess

& Memory Acress
& COonversions
& Miscellaneous

Al Unless otherwise rnoted, the user can assume that every
cormand listed here can be executed through the comrmand
A prompt. Instructions for executing an equivalent set of
cormrmands in the Graphical User Interface (GUI) are also
+|included if they are available.

Source Panel

As described in “Source Panel,” on page 12, the source panel is located in the lower portion of the GUI,
below the Command Prompt, Focus Panel, and Process/Thread grids. Use the source panel to control the
debug session, step through source files, set breakpoints, and browse source code. This Source Panel section
consists of these subsections: Menus, Buttons, Combo Boxes, Messages, and Events.

12

Chapter 2. The PGDBG Graphical User Interface

Source Panel Menus

The source panel contains the following four menus: Data, Window, Control, and Options. In the descriptions
below, keyboard shortcuts are indicated by keystroke combinations (e.g., Control P) enclosed in parentheses.

Data Menu
The items under this menu are enabled when a data item is selected in the source panel. Selecting and
printing data in the source panel is explained in detail in “Source Panel Pop-Up Menus,” on page 17.
For more information on printing, also refer to “Printing Variables and Expressions,” on page 106.

Print
Print the value of the selected item. (Control P).

Print *
Dereference and print the value of the selected item.

String

Treat the selected value as a string and print its value.
Bin

Print the binary value of the selected item.

Oct
Print the octal value of the selected item.

Hex
Print the hexadecimal value of the selected item.

Dec
Print the decimal value of the selected item.

Ascii
Print the ASCII value of the selected item.

Addr
Print the address of the selected item.

Type Of

Print data type information for the selected item.

Window Menu
The items under this menu select various subwindows associated with the target application. Subwindows
are explained in greater detail in “Source Panel Pop-Up Menus,” on page 17.

Registers
Display the registers subwindow. For more information, refer to the command: “regs,” on page
113.

Stack
Display the stack subwindow. For more information, refer to the command” “stacktrace,” on page
105.

13

Source Panel

Locals
Display a list of local variables that are currently in scope. For more information, refer to the
command “names,” on page 112.

Custom
Bring up a custom subwindow.

Disassembler
Bring up the PGDBG Disassembler subwindow.

Memory
Bring up the memory dumper subwindow.

Messages
[MPI Debugging Only| Display the MPI message queues. For more information on MPI message
queues, refer to “MPI Message Queues,” on page 84.

Events
Display a list of currently active breakpoints, watchpoints, etc.

Command Window
When this menu item’s check box is selected, the GUI displays a “free-floating” version of the
command prompt window. See Chapter 13, “PGDBG Command Reference” for a description of each
command that can be entered in the command prompt.

Control Menu
The items under this menu control the execution of the target application. Many of the items under this
menu have a corresponding button associated with them, described in “Source Panel Buttons,” on page
16. When a control key is available, it is shown in parenthesis.

Arrive
Display the current program location in the Source panel. For more information, refer to the
command: “arrive,” on page 104.

Up
Enter the scope of routine up one level in the call stack. For more information, refer to the command:
“up,” on page 112 (Control U).

Down
Enter the scope of routine down one level in the call stack. For more information, refer to the
command” “down,” on page 111 (Control D).

Run
Run or Rerun the target application. For more information, refer to the commands “run,” on page
95 and “rerun,” on page 95 (Control R).

Run Arguments
Opens a dialog box that allows adding to or modifying the target’s runtime arguments.

Halt
Halt the running processes or threads. For more information, refer to the command: “halt,” on page
94 (Control H).

14

Chapter 2. The PGDBG Graphical User Interface

Call...
Open a dialog box to request a routine to call. For more information, refer to the command “call,” on
page 109.

Cont
Continue execution from the current location. For more information, refer to the command: “cont,”
on page 94 (Control G).

Step
Continue and stop after executing one source line, stepping into called routines. For more
information, refer to the command: “step,” on page 96 (Control S).

Next
Continue and stop after executing one source line, stepping over called routines. For more
information, refer to the command: “next,” on page 95 (Control N).

Step Out
Continue and stop after returning to the caller of the current routine. For more information, refer to
the command: “stepout,” on page 96 (Control 0).

Stepi
Continue and stop after executing one assembly-level instruction, stepping into called routines. For
more information, refer to the command: “stepi,” on page 96 (Control I).

Nexti
Continue and stop after executing one assembly-level instruction, stepping over called routines. For
more information, refer to the command: “nexti,” on page 95 (Control T).

Options Menu
This menu contains additional items that assist in the debug process.

Search Forward. ..
Select this option to perform a forward string search in the currently displayed source file (Control F).

Search Backward. ..
Select this option to perform a backward string search in the currently displayed source file (Control
B).

Search Again
Select this option to repeat the last search that was performed on the source panel (Control E).

Locate Routine. ..
When this option is selected, PGDBG queries for the name of the routine that you wish to find. If
PGDBG has symbol and source information for that routine, it displays the routine in the source panel.
Refer to “Source Panel Pop-Up Menus,” on page 17.

Set Breakpoint. ...
When this option is selected, PGDBG queries for the name of a routine on which to set a breakpoint.
The GUI then sets a breakpoint at the first executable source line in the specified routine.

Disassemble
Disassemble the data selected in the source panel. For more information, refer to the command:
“disasm,” on page 104.

15

Source Panel

Cascade Windows
If one or more subwindows are open, this option can be used to automatically stack subwindows in
the upper left-hand corner of the desktop (Control W).

Refresh
Repaint the process/thread grid and source panels (Control L).

Source Panel Buttons

There are nine buttons located above the source panel’s menus. Except for the Back button, these buttons
function like the same menu item on the Control menu, described in Control Menu.

Run Step Next
Halt Stepi Nexti
Cont Stepo

The Back button resets the source panel view to the current PC location, denoted by the left arrow icon under
the PC column.

Source Panel Combo Boxes

Depending on the state of the debug session, the source panel may contain one or more combo or drop-down
boxes. A combo box is a combination text field and list component. In its closed or default state, it presents a
text field of information with a small down arrow icon to its right. When the down arrow icon is selected by a
left mouse click, the box opens and presents a list of choices that can be selected.

The source panel, illustrated in Figure 2.2, contains five combo boxes that contain the values: All, Thread 0,
omp.c, #0 main line: 12 in “omp.c” address: 0x4011f6, and Source. These combo boxes are called the Apply
Selector, View Selector, Source File Selector, Scope Selector, and Display Mode Selector respectively. Below is a
description of each combo box.

* Use the Apply Selector to select the set of processes and/or threads on which to operate. Any command
entered in the source panel is applied to this set of processes/threads. These commands include setting
breakpoints, selecting items under the Control menu, pressing one of the nine buttons mentioned in“Source
Panel Buttons,” on page 16, and so on. Depending on whether you are debugging a multi-threaded,
multi-process, or multi-process/multi-threaded (hybrid) target, the following options may be available:

All
All processes/threads receive commands entered in the source panel (default).

Current Thread
Commands are applied to the current thread ID only.

Current Process
Commands are applied to all threads that are associated with the current process.

Current Process.Thread
MPI only. Commands are applied to the current thread in the current process only.

16

Chapter 2. The PGDBG Graphical User Interface

Focus
Commands are applied to the focus group selected in the Focus Panel, described in “Main Window,”
on page 5). Refer to “Process/Thread Sets,” on page 64for more information on this advanced
feature.

This combo box is not displayed when debugging a serial program.

¢ The function of the View Selector is the same as for the Process/Thread Grid - to select the current Process,
Thread, or Process.Thread. The current Process, Thread, or Proceess.Thread controls the display in the
source panel; it can also be used as a selection for control and display operations. This combo box is not
displayed when debugging a serial program.

e By default, the Source File Selector displays the source file that contains the current target location. It can
be used to select another file for viewing in the Source Panel. When this combo box is closed, it displays the
name of the source file displayed in the Source Panel. To select a different source file, open the combo box
and select a file from the list. If the source file is available, the source file appears in the Source Panel.

* The Scope Selector displays the scope of the current Program Counter (PC). Open the combo box and
select a different scope from the list or use the up and down buttons located on the right of the combo box.
The up button is equivalent to the up debugger command and the down button is equivalent to the down
debugger command. For more information on these commands, refer to the up and down commands in
“Scope,” on page 111.

* The Display Mode Selector is used to select three different source display modes: Source, Disassembly, and
Mixed. The Source mode shows the source code of the current source file indicated by the File Selector.
This is the default display mode if the source file is available. The Disassembly mode shows the assembly-
level instructions of the current routine. This is the default display mode if the source file is not available.
The Mixed mode shows assembly-level instructions annotated with source code. This mode is available only
if the source file is available.

Source Panel Messages

The source panel contains two message areas. The top center indicates the current process/thread ID (e.g.,
Thread 0 in Figure 2.5) and the bottom left displays status messages (e.g., Stopped at line 12... in Figure 2.5).

Source Panel Events

Breakpoints are displayed under the Event column in the source panel. The stop sign icon denotes a
breakpoint. Breakpoints are added through the source panel by clicking the left mouse button on the desired
source line under the Event column. Clicking the left mouse button over a stop sign deletes the corresponding
breakpoint. Selecting the Events item under the Window menu displays a global list of Events, such as
breakpoints, watchpoints, and so on.

Source Panel Pop-Up Menus

The PGDBG source panel supports two pop-up menus to provide quick access to commonly used features. One
pop-up menu is used to invoke subwindows. It is accessed using a right mouse-click in a blank or vacant area
of the source panel. See “Subwindows,” on page 19 for more information on invoking subwindows using

a pop-up menu. The other pop-up menu is accessed by first highlighting some text in the source panel, then

17

Source Panel Pop-Up Menus

18

using a right mouse click to bring up the menu. The selections offered by this pop-up menu take the selected
text as input.

To select text in the source panel, first click on the line of source containing the text. This action results in the
display of a box surrounding the source line. Next, hold down the left mouse button and drag the cursor, or
mouse pointer, across the text to be selected. The text should then be highlighted. Once the text is highlighted,
menu selections from the Source Panel menus or from the Source Panel pop-up menu use the highlighted text
as input. In Figure 2.6, the variable nyi d is highlighted and the pop-up menu is used to print its value as a
decimal integer. The data type of selected data items may also be displayed using the pop-up menu.

Figure 2.5. Opening a Subwindow with a Pop-up Menu

PGDBG - The Portland Group X
ile Settings Halp

L1 1L]

[E

LThread Grid LSummary |

T T T T T T T T T e e,

Thread O

Thread O = | Data Windew Centrel Optiens |omp.c ™

Line Mo. | Ewent | PC | jhomejsw/demos/TOOLS_DEMC/OMP/omp.c

1 #include <stdio.hx =
5
i Ll Registers

5 char buf[81]; Stack

& Locals

7@ printf{"One thread ... \n"); Custorn

8 #pragma omp parallel -

o { Disassembler

10 int myid,i; Mearmory

=) Messages

12 > myid = omp_get_thread_numil; —

13 for(i=0;i<2;i++){ Refresh

14 printf("HELLO ¥d, %d\n",getpidd,myid);

15 1

16

17 1

15 printfi{"... hack to one thread.»n");

19 return;

20 i

|#O main Tine: 12 in "omp.c" address: Cx4011F6 '|
Stopped at line 12 {address 0x4011F6) in file fhomeswfdemos/TOOLS_DEMO Y OMPfomp.c

h
W | |Source

Chapter 2. The PGDBG Graphical User Interface

Figure 2.6. Data Pop-up Menu

]

PGDBG - The Portland Group x

A

File Settings Hezlp

All Threads

| [z
LThread Grid LSummary |

-

Thread 0

Thread 0 w | Data Windew Control Optiens |omp.c™

Line Mo. | Event | PC | fhome/sw/demos/TOOLS_DEMO/OMPjomp.c

1 #include <stdio.h: -

2

3 maingid

4

5 char buf[81];

4]

7 printf({"0One thread ... “n");

g8 #pragma omp parallel

=]

10 int myid,d;

11

12 myid = omp_oget_thread_num(d;

13 for{i=0;i<2;i+24 Print

14 @)2 printf{"HELLD ¥d, Xdn", get pejqe Options » Print *

ig b Type of String

17 } Locate Routine | Bin

18 printf("... hack to one thread. Set Breakpoint Qet

159 return; —

20 7 Dizassemble Hex

call... Dec

Ascil
Addr

[4]

l

]

|#O main 1ine: 14 in "omp.c" address: 0x401219 '”7{ |Source v|
Stopped at line 14 (address 0x401219 in file fhomefswidemos/TOOLS_DEMO} OMPfamp.c

The pop-up menu shown in Figure 2.6 provides the Disassemble, Call, and Locate Routine selections, which
use selected routine names as input. The Disassemble item opens a disassembler subwindow for the selected
routine. The Call item can be used to manually call the selected routine. The Locate Routine option displays the
source code in which the selected routine is defined.

For more information on each of these selections, refer to “Source Panel Menus,” on page 13.
Subwindows

PGDBG provides some features that are subwindows, that is, windows that are not connected to the main frame
of the PGDBG GUIL. One example of a subwindow is the Program I/0 window that is displayed at startup. Other

19

Subwindows

examples of subwindows can be found under the source panel’s Window menu. These include the Registers,
Stack, Locals, Custom, Disassembler, Memory, Messages, Events, and Command Window subwindows, as
shown in Figure 2.5, “Opening a Subwindow with a Pop-up Menu,” on page 18. With the exception of the
Command Window, all of these subwindows are controlled by similar mechanisms. The standard subwindow
control mechanisms are described in “Standard Subwindow Controls,” on page 20. Specific details of other
subwindows are described in subsequent sections. See the description of the Window menu, “Source Panel
Menus,” on page 13 for more information on each subwindow.

The Window menu can be used to bring up a subwindow. You can invoke the same menu by clicking the right
mouse button over a blank spot in the source panel. Subwindows are specific to the current process and/

or thread. For example, in Figure 2.5, selecting Registers displays the registers subwindow for thread 0, the
current thread.

Standard Subwindow Controls

20

The PGDBG graphical user interface supports a number of subwindows for displaying detailed information
about the target application state. These subwindows include the memory subwindow, the disassembler
subwindow, the registers subwindow, the custom subwindow that is used for displaying the output of arbitrary
commands, and the messages subwindow that is used for displaying the MPI state.

Figure 2.7 shows the Memory subwindow. This subwindow shows all of the possible controls that are available
in 2 PGDBG subwindow. Not all subwindows have all of the components shown in this figure. However, nearly
all have the following components: File menu, Options menu, Reset button, Close Button, Update button, and
the Lock/Unlock toggle button.

The File menu contains the following items:

Save. ..
Save the text in this subwindow to a file.

Close
Close the subwindow.

The Options menu contains the following items:

Update
Clear and regenerate the data displayed in the subwindow.

Stop
Interrupt processing. This option comes in handy during long listings that can occur in the Disassembler
and Memory subwindows. Control C is a hot key mapped to this menu item.

Reset
Clear the subwindow.

The Reset, Close, and Update buttons are synonymous with their menu item counterparts.

The contents of subwindows are generally updated whenever a process or thread stops, such as after a step,
next, cont, or halt command. You can control updating by using the Lock/Unlock button. Whenever a
subwindow is "Locked", its contents are not updated. Figure 2.8 shows a subwindow in the "Locked" state,

Chapter 2. The PGDBG Graphical User Interface

with the Lock/Unlock button labeled "Unlock". Clicking this button toggles the state of the subwindow to
"Unlocked", with the button labeled "Lock", as shown in Figure 2.7. In the "Unlocked" state, the subwindow
contents are updated whenever processes or threads stop.

In addition to the subwindow capabilities previously described, subwindows may also have one to three input
fields. If the subwindow has one or more input fields, then it also contains Stop and Clear buttons. The Stop
button is synonymous with the Stop item in the Options menu described above. The Clear button erases the
input field(s).

For target applications with more than one process and/or thread, a View Selector displays in the bottom
center illustrated in Figure 2.7. You can use the View Selector to view data specific to a particular process/
thread or a subset of process/threads when selecting Focus. Refer to “Process/Thread Sets,” on page 64 for
more information on Focus.

Figure 2.7. Memory Subwindow

m| PGDBG Memory Dump X
File Options

Address= [Tjac
Count= (12
Format= [#f

| Stop || Clear |

0] dump fjac, 12, "&T"

rhTfedtd: O, 000000

rhTffedts: 1.000000

xhfffedbc: O, 000000

xhTfearo: 1.000000

whTTTeard: 0.000000

rhTffedrs: 1.000000

rhTffedrc: 0.000000

rhTTreds0: 1.000000

xhTTredsd: 0, 000000

xhTfedBs: 1.000000

rhTTTeaBc: 0. 000000

whTTTe3g0: 1.000000
| Feszet H Close ‘ Thread 0 b Update || Lock, |

I 1

Memory Subwindow

The memory subwindow displays a region of memory using a format descriptor like that of the printf routine
from the Standard C Library. In the Memory subwindow, inputs include the starting address in the Address
field, the number of items in the Count field, and a printf-like format string in the Format field. See the
explanation of the PGDBG dump command (‘“Memory Access,” on page 113) for a description of supported
format strings. The Address field accepts a numeric address or a symbolic variable name.

Disassembler Subwindow

Figure 2.8 shows the Disassembler subwindow. Use this subwindow to disassemble a routine (or a text
address) specified in the Request> input field. PGDBG defaults to the current routine if you specify nothing

21

Subwindows

in the Request> input field. After a request is made to the Disassembler, the GUI asks if you want to “Display
Disassembly in the Source window”. Choosing “yes” causes the Disassembler window to disappear and

the disassembly to appear in the source panel. Viewing the disassembly in the source panel allows setting
breakpoints at the assembly-level instruction level. Choosing “no” dumps the disassembly in the Disassembler
subwindow illustrated in Figure 2.8.

Figure 2.8. Disassembler Subwindow

| PGDBG Disassembler x
File Options

Fequest>

"AhomeswSdenas,Test. U ERAT N
Tine 3:6
int maing) { o
float Tjac[M];
int 1;
BodE5a0: 55 pushl %ehp
BO4E5a1: 89 e5 il #esp,sehp
FEOd4E533: B3 ed T8 andl SO TTTTTTTa, %esp
BO4E5a5: B9 2d 90 95 4 B mow #ehp, 0x80498090
B0dE5ac: Bbh 55 0 Mo DEebp), Kedx
BO4E5at: 89 14 24 il Hedx, (Hesp)
BO4E5hZ: &b 55 4 Mol 4 (ebpd, wedx
BO4E85h5: B9 54 24 4 mow Hedx, 4 {¥esp)
B0dE5k9: Bh 55 8 Mo B¥ebp), Xedx
MASShee 50 54 74 8 il oy Si%acnt

Specifying a text address, rather than a routine name, in the Request> field causes PGDBG to disassemble
address locations until it runs out of memory or hits an invalid op code. This may cause very large machine
language listings. For that case, the subwindow provides a Stop button. Press the Stop button to interrupt
long listings that may occur with the Disassembler. Specify a count after the text address to limit the number
of instructions dumped to the subwindow. For example, entering Oxabcdef, 16 tells PGDBG to dump up to
16 instructions following address Oxabcdef. The Request> field accepts the same arguments as the disasm
command described in “Program Locations,” on page 104.

Registers Subwindow

22

Figure 2.9 illustrates the Registers subwindow. You may view the registers on one or more processes and
threads using the View Selector. The Registers subwindow is essentially a representation of the regs debugger
command, described in “Register Access,” on page 112.

Chapter 2. The PGDBG Graphical User Interface

Figure 2.9. Registers Subwindow

| PGDBG Registers >
File Cptions

ehx 1079117008 Oxd014Thdd | es 123 0%7h

B 0 ox0 | fs 0 %0

e 134518236 0x580495dc | os 51 0x33

g5 1073834170 OxJ00168C0 | orig_eax -1 QxTFErrfer

edi 134522928 0xB043830 | eip 134518254 (x804595ea

ebp -1073745738 QxhfTTfbE | cs 115 0x73

Bax 2 0x2 | eflags 2087784 0x200282

s 123 Dx7h | esp -1073745816 QxbTTT06E

=3 123 Dx7h |

Mo i = {0, 0, 0, 0}

wmmnl i = {0, 0, 0, 0}

M i = {0, 0, 0, 0}

Hmmn3 i = {0, 0, 0, 0}

M i = {0, 0, 0, O}

HmmnS i = {0, 0, 0, O}

B3] i = {0, 0, 0, O}

mn7 i = {0, 0, 0, O} —|

| Feszet || Close | Thread O - Update || Lack |

Custom Subwindow

Figure 2.10 illustrates the Custom subwindow. The Custom subwindow is useful for repeatedly executing a
sequence of debugger commands whenever a process/thread halts on a new location or when pressing the
Update button. The commands, entered in the edit box labeled “Command>", can be any debugger command
mentioned in “PGDBG Command Language”, including a semicolon-delimited list of commands.

23

Subwindows

Figure 2.10. Custom Subwindow

| PGDBG Custom >
File Options

C o &= |pr1’nt fiac[0:11] |

| Stop || Clear |
[@] print fjac[0:11] :
pl1o101010101
‘ Feset || Close | Current Thread Update || Laock |

Messages Subwindow

You use the Messages subwindow for debugging MPI applications. Refer to “MPI Message Queues,” on page
84 for more information on the content and use of this subwindow.

24

Chapter 3. PGDBG Command Line
Options

As we stated in Chapter 1, “Getting Started with the PGDBG Debugger”, PGDBG can interpret command-
line options when present on the command line. This chapter describes these options and how they are
interpreted.

Command-Line Options Syntax

The pgdbg command accepts several command-line options.

These options must appear on the command line before the name of the program being debugged.

Command-Line Options

The valid PGDBG options are these:

-dbx
Start the debugger in dbx mode, which provides a dbx-like debugger command language.

-sstartup
Specify an alternate initialization file st ar t up.

The default initialization file is ~/ . pgdbgr c.

-¢ “command”
Execute the debugger command command, where the command must be in double quotes, before
executing the commands in the startup file.

T
Run the debugger without first waiting for a command. If the program being debugged runs successfully,
the debugger terminates. Otherwise, the debugger is invoked and stops when an exception occurs.

-mpi
Debug an MPI application (except for MPICH-1).

25

Command-Line Options

26

-text
Run the debugger using a command-line interface (CLI). The default is for the debugger to launch in
graphical user interface (GUI) mode.

-tp px, -tp k8-32
Debug a 32-bit program running on under a 64-bit operating system. This option is valid under the 64-bit
version of PGDBG only.

-tp p7-64, -tp k8-64
Debug a 64-bit program running under a 64-bit operating system. This option is valid under the 64-bit
version of PGDBG only.

—help
Display a list of command-line arguments (this list).

—I <directory>
Add <di r ect or y> to the list of directories that PGDBG uses to search for source files. You can use this
option multiple times to add multiple directories to the search path.

Chapter 4. PGDBG Command
Language

PGDBG supports a command language that is capable of evaluating complex expressions. The command

language is composed of commands, constants, symbols, locations, expressions, and statements.

You can use the command language by invoking the PGDBG command-line interface with the —text option, or
in the command prompt panel of the PGDBG graphical user interface, as described in “The PGDBG Graphical
User Interface”.

Command Overview

Commands are named operations, which take zero or more arguments and perform some action. Commands
may also return values that may be used in expressions or as arguments to other commands.

Command Syntax
Commands are entered one line at a time.

e Lines are delimited by a carriage return.
e FEach line must consist of a command and its arguments, if any.

e You can place multiple commands on a single line by using the semi-colon (;) as a delimiter.
Command Modes
There are two command modes: pgi and dbx.

e The pgi command mode maintains the original PGDBG command interface.

e In dbx mode, the debugger uses commands compatible with the familiar dbx debugger.

Pgi and dbx commands are available in both command modes, but some command behavior may be slightly
different depending on the mode. The mode can be set when PGDBG is invoked by using command-line
options, or while the debugger is running by using the pgienv command.

27

Constants

Constants

PGDBG supports C language style integer (hex, octal and decimal), floating point, character, and string
constants.

Symbols

PGDBG uses the symbolic information contained in the executable object file to create a symbol table for

the target program. The symbol table contains symbols to represent source files, subprograms (functions,

and subroutines), types (including structure, union, pointer, array, and enumeration types), variables, and
arguments. The PGDBG command-line interface is case-sensitive with respect to symbol names; a symbol name
on the command line must match the name as it appears in the object file.

Scope Rules

Since several symbols in a single application may have the same name, scope rules are used to bind program
identifiers to symbols in the symbol table. PGDBG uses the concept of a search scope for looking up identifiers.
The search scope represents a routine, a source file, or global scope. When the user enters a name, PGDBG
first tries to find the symbol in the search scope. If the symbol is not found, the containing scope, (source file,
or global) is searched, and so forth, until either the symbol is located or the global scope is searched and the
symbol is not found.

Normally, the search scope is the same as the current scope, which is the routine where execution is currently
stopped. The current scope and the search scope are both set to the current routine each time execution of the
target program stops. However, you can use the enter command to change the search scope.

A scope qualifier operator @ allows selection of out-of-scope identifiers. For example, if f is a routine with a
local variable i, then:

f@

represents the variable i local to f. Identifiers at file scope can be specified using the quoted file name with this
operator, for example:

"xyz.c" @

represents the variable i defined in file xyz.c.

Register Symbols

To provide access to the system registers, PGDBG maintains symbols for them. Register names generally begin
with § to avoid conflicts with program identifiers. Each register symbol has a default type associated with it,
and registers are treated like global variables of that type, except that their address may not be taken. See
“Register Symbols,” on page 49 for a complete list of the register symbols.

Source Code Locations

28

Some commands must refer to source code locations. Source file names must be enclosed in double quotes.
Source lines are indicated by number, and may be qualified by a quoted filename using the scope qualifier
operator. Further, a range of lines is indicated using the range operator ":". Here are some examples:

Chapter 4. PGDBG Command Language

break 37 sets a breakpoint at line 37 of the current source file.
break "xyz.c" @7 sets a breakpoint at line 37 of the source file xyz.c.
list 3:13 lists lines 3 through 13 of the current file.

list "xyz.c"@: 13 lists lines 3 through 13 of the source file xyz.c.

Some commands accept both line numbers and addresses as arguments. In these commands, it is not always
obvious whether a numeric constant should be interpreted as a line number or an address. The description
for these commands says which interpretation is used. However, PGDBG provides commands to convert
from source line to address and vice versa. The line command converts an address to a line, and the addr
command converts a line number to an address. Here are some examples:

l'ine 37 means “line 37"

addr 0x1000 means "address 0x1000"

addr {line 37} means "the address associated with line 37"
l'ine {addr 0x1000} means "the line associated with address 0x1000"

Lexical Blocks

Line numbers are used to name lexical blocks. The line number of the first instruction contained by a lexical
block is used to indicate the start scope of the lexical block. In the following example, there are two variables
named var. One is declared in function main, and the other is declared in the lexical block starting at line 5.
The lexical block has the unique name "lex.c"@main@5. The variable var declared in "lex.c"@main@5 has
the unique name "lex.c' @main@5@var. The output of the whereis command that follows shows how these
identifiers can be distinguished.

| ex. c:

1 main()

2 {

3 int var = 0;

4

5 int var = 1;

6 printf("var %\n", var);
7}

8 printf("var %\ n", var)
9}

pgdbg> n

St opped at 0x8048b10, function main, file
/ homre/ deno/ pgdbg/ ctest /| ex. c,
line 6

#6: printf("var %\ n", var);
pgdbg> print var

1

pgdbg> whi ch var

"l ex.c" @mai n@@ar

pgdbg> wherei s var

vari abl e: "l ex.c" @mi n@ar
vari able: "l ex.c" @mi n@@ar
pgdbg> nanes "l ex.c" @mai n@®
var = 1

29

Statements

Statements

Although PGDBG command-line input is processed one line at a time, statement constructs allow multiple
commands per line, as well as conditional and iterative execution. The statement constructs roughly
correspond to the analogous C language constructs. Statements may be of the following forms.

* Simple Statement: A command and its arguments. For example:
print

e Block Statement: One or more statements separated by semicolons and enclosed in curly braces. Note:
these may only be used as arguments to commands or as part of i f or whi | e statements. For example:

if(i>1) {print i; step }

o [f Statement: The keyword if, followed by a parenthesized expression, followed by a block statement,
followed by zero or more el se i f clauses, and at most one else clause. For example:

if(i>) {print i} else if(i<j) {print j} else {print "i==j"}

» While Statement: The keyword while, followed by a parenthesized expression, followed by a block
statement. For example:

whi | e(i ==0) {next}

Multiple statements may appear on a line separated by a semicolon. For example:
break main; break xyz; cont; where

sets breakpoints in routines main and xyz, continues, and prints the new current location. However, since the
where command does not wait until the target application has halted, this statement displays the stack at some
arbitrary execution point in the program. To control when the stack is printed, insert a wait command.

break main; break xyz; conwait; t; where
Any value returned by the last statement on a line is printed.

Statements can be parallelized across multiple threads of execution. See “Parallel Statements,” on page 77
for details.

Events

Breakpoints, watchpoints and other mechanisms used to define the response to certain conditions are
collectively called events.

* An event is defined by the conditions under which the event occurs and by the action taken when the event
occurs.

e A breakpoint occurs when execution reaches a particular address. The default action for a breakpoint is
simply to halt execution and prompt the user for commands.

e A watchpoint occurs when the value of an expression changes.

0 ° A hardware watchpoint occurs when the specified memory location is accessed or modified.

Chapter 4. PGDBG Command Language

PGDBG supports six basic commands for defining events. Each command takes a required argument and may
also take one or more optional arguments. The basic commands are break, watch, hwatch, trace, track,
and do.

¢ The break command takes an argument specifying a breakpoint location. Execution stops when that
location is reached.

* The watch command takes an expression argument. Execution stops and the new value is printed when the
value of the expression changes.

* The hwatch command takes a data address argument, which can be either an identifier or a variable name.
Execution stops when memory at that address is written.

¢ The trace command activates source line tracing, as specified by the arguments you supply.
¢ The track command is like watch except that execution continues after the new value is printed.

* The do command takes a list of commands as an argument. The commands are executed whenever the
event occurs.

The do command takes a list of commands as an argument. The commands are executed whenever the event
occurs.

The six event commands share a common set of optional arguments. The optional arguments provide the
ability to make the event definition more specific. They are:

atli ne
Event occurs at indicated line.

at addr
Event occurs at indicated address.

inroutine
Event occurs throughout indicated routine.

if (condi ti on)
Event occurs only when condition is true.

do {comuands}
When event occurs execute commands.

The optional arguments may appear in any order after the required argument and should not be delimited by
commas.

Here are some event definition examples:

watch i at 37 if(y>1) This event definition says to stop and print the value
of I whenever line 37 is executed and the value of y is
greater than 1.

do {print xyz} in f This event definition says that at each line in the routine
f print the value of xyz.

31

Events

break funcl if (I ==37) This event definition says to print the value of a[37]
do {print a[37]; stack} and do a stack trace when i is equal to 37 in routine
funcl.

Event commands that do not explicitly define a location occur at each source line in the program. Here are
some examples:

do {where} prints the current location at the start of each source line.
trace a.b prints the value of a.b each time the value has changed.
track a.b prints the value of a.b at the start of each source line if the

value has changed.

Note

Events that occur at every line can be useful, but they can make program execution very slow.
Restricting an event to a particular address minimizes the impact on program execution speed, and
restricting an event that occurs at every line to a single routine causes execution to be slowed only
when that routine is executed.

PGDBG supports instruction-level versions of several commands, such as breaki, watchi, tracei, tracki,
and doi. The basic difference in the instruction-level version is that these commands interpret integers as
addresses rather than line numbers, and events occur at each instruction rather than at each line.

When multiple events occur at the same location, all event actions are taken before the prompt for input.
Defining event actions that resume execution is allowed but discouraged, since continuing execution may
prevent or defer other event actions.

For example, the following syntax creates an ambiguous situation:

break 37 do {continue}

break 37 do {print i}
With this sequence, it is not clear whether i should ever be printed.

Events only occur after the continue and run commands. They are ignored by step, next, call, and other
commands.

Identifiers and line numbers in events are bound to the current scope when the event is defined.

For example, the following command sets a breakpoint at line 37 in the current file.
break 37

The following command tracks the value of whatever variable i is currently in scope.

track i

Ifi is alocal variable, then it is wise to add a location modifier (at or in) to restrict the event to a scope where
i is defined. Scope qualifiers can also specify lines or variables that are not currently in scope. Events can be
parallelized across multiple threads of execution. See “Parallel Events,” on page 76 for details.

32

Chapter 4. PGDBG Command Language

Expressions

The debugger supports evaluation of expressions composed of constants, identifiers, commands that return
values, and operators.

To use a value returned by a command in an expression, the command and arguments must be enclosed in
curly braces. For example, the following command invokes the pc command to compute the current address,
adds 8 to it, and sets a breakpoint at that address.

breaki {pc}+8
Similarly, the following command compares the start address of the current routine with the start address of
routine xyz. It prints the value 1 if they are equal and 0 if they are not.

print {addr {func}}=={addr xyz}

The @ operator, introduced previously, may be used as a scope qualifier. Its precedence is the same as the C

language field selection operators "." and "->" .

PGDBG recognizes a range operator ":" which indicates array sub-ranges or source line ranges. The
precedence of ;" is between 'll' and '=".

Here are a few examples that use the range operator:

print a[1:10] prints elements 1 through 10 of the array a.
l'ist 5:10 lists source lines 5 through 10.
list "xyz.c"@: 10 lists lines 5 through 10 in file xyz.c.

The general format for the range operator is [lo : hi : step] where:

lo is the array or range lower bound for this expression.
hi is the array or range upper bound for this expression.

step s the step size between elements.

An expression can be evaluated across many threads of execution by using a prefix p/t-set. For more details,
refer to “Current vs. Prefix p/t-set,” on page 66.

Table 4.1, “PGDBG Operators” shows the C language operators that PGDBG supports. The operator
precedence is the same as in the C language.

Table 4.1. PGDBG Operators

Operator |Description Operator |Description

* indirection <= less than or equal
direct field selection >= greater than or equal

-> indirect field selection I= not equal

[] “C” array index && logical and

33

Control-C

Operator |Description Operator |Description

0 routine call I logical or

& address of ! logical not

+ add I bitwise or

(type) cast & bitwise and

- subtract ~ bitwise not

/ divide A bitwise exclusive or

* multiply << left shift

= assignment >> right shift

== comparison 0 FORTRAN array index
<< left shift % FORTRAN field selector
>> right shift

Control-C

34

If the target application is not running, control-C can be used to interrupt long-running PGDBG commands.
For example, a command requesting disassembly of thousands of instructions might run for a long time, and it
can be interrupted by control-C. In such cases the target application is not affected.

If the target application is running, entering control-C at the PGDBG command prompt halts execution of the
target. This is useful in cases where the target “hangs” due to an infinite loop or deadlock.

Sending a SIGINT (control-C) to a program while it is in the middle of initializing its threads, by calling
omp_set_num_threads() or entering a parallel region, may kill some of the threads if the signal is sent before
each thread is fully initialized. Avoid sending SIGINT in these situations. Note that when the number of threads
employed by a program is large, thread initialization may take a while.

Sending SIGINT (control-C) to a running MPICH-1 program is not recommended. See “MPI Listener
Processes,” on page 85, for details. Use the PGDBG halt command as an alternative to sending SIGINT to

a running program. The PGDBG command prompt must be available in order to issue a halt command. The
PGDBG command prompt is available while threads are running if pgienv threadwait none is set.

When debugging an MPI job via the command:
pgdbg -npi ...

as described in “Invoking PGDBG for MPI Debugging,” on page 87, PGDBG spawns the job in a manner
that prevents console-generated interrupts from directly reaching the MPI job launcher or any of the MPI
processes. In this case, typing Control-C only interrupts PGDBG, leaving the MPI processes running. When
PGDBG’s thread wait mode is not set to none, you can halt the MPI job after using Control-C by entering
PGDBG’s halt command, even if no PGDBG prompt is generated.

Chapter 5. PGDBG Command
Summary

This chapter contains a brief summary of the PGDBG debugger commands. For a detailed description of each
command, grouped by category of use, refer to Chapter 13, “PGDBG Command Reference”.

If you are viewing an online version of this manual, you can select the hyperlink under the selection category to
jump to that section in the manual.

Notation Used in Command Sections

The command sections that follow use these conventions for the command names and arguments, when the
command accepts one.

e Command names may be abbreviated by omitting the portion of the command name enclosed in brackets

(1.

* Argument names are chosen to indicate what kind of argument is expected.

e Arguments enclosed in brackets([]) are optional.

 Two or more arguments separated by a vertical line (1) indicate that any one of the arguments is acceptable.
* An ellipsis (...) indicates an arbitrarily long list of arguments.

e Other punctuation (commas, quotes, etc.) should be entered as shown.

For example, the following syntax indicates that the command list may be abbreviated to lis, and that it can
be invoked without any arguments or with one of the following arguments: an integer count, a line range, a
routine name, or a line and a count.

lis[t] [count | lo:hi | routine | |ine,count]

35

Command Summary

Command Summary

Table 5.1. PGDBG Commands

Name Arguments Category

adldr] [nlline n | routine | var | arg | “Conversions,” on page 115

Creates an address conversion under certain conditions.

allias] [name [string] “Miscellaneous,” on page 116

Create or print aliases.

arrifve] “Program Locations,” on page 104

Print location information for the current location.

asclii] exp [,...exp] “Printing Variables and Expressions,” on
page 106
Evaluate and print as an ascii character.
as[sign] var=exp “Symbols and Expressions,” on page
109

Set variable var to the value of the expression exp.

attlach] pid [exe [host]] “Process Control,” on page 94

Attach to a running process with process ID pid. If the process is not running on
the local host, then specify the absolute path of the executable file exe and the host
machine name.

bin exp [,...exp] “Printing Variables and Expressions,” on
page 106
Evaluate and print the expressions. Integer values are printed in binary.
b[reak] [line | routine] [if (condition)] [do “Events,” on page 97
{commands}]

When arguments are specified, sets a breakpoint at the indicated line or routine. When
no arguments are specified, prints the current breakpoints.

breaki [addr | routine] [if (condition)] [do “Events,” on page 97
{commands}]

When arguments are specified, sets a breakpoint at the indicated address or routine.
When no arguments are specified, prints the current breakpoints.

breaks “Events,” on page 97

Displays all the existing breakpoints

call routine [(exp,...)] “Symbols and Expressions,” on page
109

Call the named routine.

36

Chapter 5. PGDBG Command Summary

Name Arguments Category

catch [number [,number...]] “Events,” on page 97
With arguments, catches the signals and runs target as though signal was not sent. With
no arguments, prints the list of signals being caught.

cd [dir] “Program Locations,” on page 104
Change to the $HOME directory or to the specified directory dir.

clear [all | routine | line | addr {addr}] “Events,” on page 97
With arguments, clears the indicated breakpoints. When no arguments are specified,
this command clears all breakpoints at the current location.

clont] “Process Control,” on page 94
Continue execution from the current location.

crlead] addr “Memory Access,” on page 113
Fetch and return an 8-bit signed integer (character) from the specified address.

de[bug | [target [argl _ argn]] “Process Control,” on page 94
Load the specified target program with optional command-line arguments.

dec exp [,...exp] “Printing Variables and Expressions,” on

page 106

Evaluate and print the expressions. Integer values are printed in decimal

decl[aration] |name “Symbols and Expressions,” on page
Print the declaration for the symbol based on its type according to symbol table.

decls [routine | "sourcefile" | {global}] “Scope,” on page 111
Print the declarations of all identifiers defined in the indicated scope. If no scope is
given, print the declarations for global scope

defset name [p/t-set] “Process-Thread Sets,” on page 97
Assign a name to a process/thread set. Define a named set.

del[ete] event-number | all | 0 | event-number “Events,” on page 97
[,.event-number. |
Delete the event event-number or all events (delete 0 is the same as delete all).
Multiple event numbers can be supplied if they are separated by commas.

det[ach] “Process Control,” on page 94
Detach from the current running process.

dir[ectory] [pathname] “Miscellaneous,” on page 116

Add the directory pathname to the search path for source files. If no argument is
specified, the currently defined directories are printed.

37

Command Summary

38

Name Arguments Category

dis[asm] [count | lo:hi | routine | addr, count] “Program Locations,” on page 104
Disassemble memory. If no argument is given, disassemble four instructions starting at
the current address.

disab[le] event-number | all “Printing Variables and Expressions,” on

page 106

With arguments, disables the event event - nunber or all events. When no arguments
are specified, prints both enabled and disabled events.

display exp [,...exp] “Printing Variables and Expressions,” on

page 106

With an argument or several arguments, print expression exp at every breakpoint.
Without arguments, list the expressions for PGDBG to automatically display at
breakpoints.

do {commands} [at line | in routine] [if “Events,” on page 97
(condition) |
Define a do event. Without the optional arguments at or in, the commands are
executed at each line in the program.

doi {commands} [at addr | in routine] [if “Events,” on page 97
(condition) |
Define a doi event. If neither the at or in argument is specified, then the commands are
executed at each instruction in the program.

down “Scope,” on page 111
Enter scope of routine down one level or number levels on the call stack.

dr[ead] addr “Memory Access,” on page 113
Fetch and return a 64 bit double from the specified address.

du[mp] address, count, "format-string" “Memory Access,” on page 113
Dumps the contents of a region of memory. The output is formatted according to a
printf-like format descriptor.

edit [filename | routine] “Program Locations,” on page 104
Edit the specified file or file containing the routine. If no argument is supplied, edit the
current file starting at the current location.

enab[le] event-number | all “Events,” on page 97
With arguments, this command enables the event event - nunber or all events. When
no arguments are specified, prints both enabled and disabled events.

en|ter] routine | "sourcefile" | {global} “Scope,” on page 111

Set the search scope to be the indicated symbol, which may be a routine, source file or
global. Using no argument is the same as using enter global

Chapter 5. PGDBG Command Summary

Name Arguments Category
entr[y] routine “Symbols and Expressions,” on page
109
Return the address of the first executable statement in the program or specified
routine.
fille] “Program Locations,” on page 104
Change the source file to the file filename and change the scope accordingly. With no
argument, print the current file.
files “Scope,” on page 111
Return the list of known source files used to create the executable file
focus [p/t-set] “Process-Thread Sets,” on page 97
Set the target process/thread set for commands. Subsequent commands are applied to
the members of this set by default.
b “Register Access,” on page 112
Return the current value of the frame pointer.
fr[ead] addr “Memory Access,” on page 113
Fetch and print a 32-bit float from the specified address.
func[tion] [addr | line] “Conversions,” on page 115
Return a routine symbol. If no argument is specified, return the current routine.
glob[al] “Global Commands,” on page 71
Return a symbol representing global scope.
balt [command] “Process Control,” on page 94
Halt the running process or thread.
he[lp] “Miscellaneous,” on page 116
If no argument is specified, print a brief summary of all the commands. If a command
name is specified, print more detailed information about the use of that command.
hex Exp [,...exp] “Printing Variables and Expressions,” on
page 106
Evaluate and print expressions as hexadecimal integers.
hi[story] [num] “Miscellaneous,” on page 116
List the most recently executed commands. With the num argument, resize the history
list to hold num commands.
bwatch addr | var [if (condition)] [do “Events,” on page 97
{commands}]

Define a hardware watchpoint.

39

Command Summary

Name Arguments Category

hwatchb[oth] addr | var [if (condition)] [do “Events,” on page 97
{commands}]
Define a hardware read/write watchpoint.

hwatchr[ead] addr | var [if (condition)] [do “Events,” on page 97
{commands}]
Define a hardware read watchpoint.

ignore [number [,number...]] “Events,” on page 97
Ignores the specified signals and does not deliver them to the target. When no
arguments are specified, prints the list of signals being ignored.

ir[ead] addr “Memory Access,” on page 113
Fetch and print a signed integer from the specified address.

language “Miscellaneous,” on page 116
Print the name of the language of the current file.

linfe] [n | routine | addr] “Conversions,” on page 115
Create a source line conversion. If no argument is given, return the current source
line.

lines routine “Program Locations,” on page 104
Print the lines table for the specified routine.

lis[t] [count | line,count | lo:hi | routine] “Program Locations,” on page 104
With no argument, list 10 lines centered at the current source line. If an argument is
specified, lists lines based on information requested.

Ir[ead] addr “Memory Access,” on page 113
Fetch and print an address from the specified address.

log filename “Miscellaneous,” on page 116
Keep a log of all commands entered by the user and store it in the named file.

lvlal] exp “Symbols and Expressions,” on page

109

Return the Ivalue of the expression expr.

mq[dump] “Memory Access,” on page 113
Dump MPI message queue information for the current process.

names [routine | "sourcefile" | {global}] “Scope,” on page 111
Print the names of all identifiers defined in the indicated scope. If no scope is
specified, use the search scope.

40

Chapter 5. PGDBG Command Summary

Name Arguments Category
nfext] [count] “Process Control,” on page 94
Stop after executing one or count source line(s) in the current routine.
nexti [count] “Process Control,” on page 94
Stop after executing one or count instruction(s) in the current routine.
nop[rint] exp “Miscellaneous,” on page 116
Evaluate the expression but do not print the result.
oct exp [,...exp] “Printing Variables and Expressions,” on
page 106
Evaluate and print expressions as octal integers.
pc “Register Access,” on page 112
Return the current program address.
pgienv [command] “Miscellaneous,” on page 116
Define the debugger environment. With no arguments, display the debugger settings.
plrint] expl [,...expn] “Printing Variables and Expressions,” on
page 106
Evaluate and print one or more expressions.
printf "format_string", expr,...expr “Printing Variables and Expressions,” on
page 106
Print expressions in the format indicated by the format string.
proc [id] “Process Control,” on page 94
Set the current process to the process identified by id. When issued with no argument,
proc lists the location of the current thread of the current process in the current
program.
procs “Process Control,” on page 94
Print the status of all active processes, listing each process by its logical process ID.
pwd “Program Locations,” on page 104
Print the current working directory.
qluit] “Process Control,” on page 94
Terminate the debugging session.
regs [xIfld] “Register Access,” on page 112
Print a formatted display of the names and values of the integer, float, and double
registers. If the format parameter is omitted, then PGDBG prints all of the registers.
rep[eat] [first, last] | [first: last:n] | [num] | [-num] | “Miscellaneous,” on page 116

Repeat the execution of one or more previous history list commands.

41

Command Summary

Name Arguments Category

rer[un] [arg0 argl ... argn] [< inputfile] [[> | >&|“Process Control,” on page 94
| >> | >>&] outputfile]

Like the run command, except if no args are specified, the previously used target
arguments are not re-used.

ret [addr] “Register Access,” on page 112
Return the current return address.

rufn] [arg0 argl ... argn] [< inputfile] [> “Process Control,” on page 94
outputfile]

Execute program from the beginning. If arguments arg0, argl, and so on are specified,
they are set up as the command-line arguments of the program.

rvfal] expr “Symbols and Expressions,” on page
109

Return the rvalue of the expression expr.

sco[pe] “Scope,” on page 111

Return a symbol for the search scope.

scrlipt] filename “Miscellaneous,” on page 116

Open the indicated file and execute the contents as though they were entered as
commands. If you use ~ before the filename, it is expanded to the value of the
environment variable HOME.

set var = ep “Symbols and Expressions,” on page
109

Set variable var to the value of expression.

setenv name | name value “Miscellaneous,” on page 116

Print value of environment variable name. With a specified value, set name to value.

shlell] arg0 [... argn] “Miscellaneous,” on page 116

Fork a shell (defined by $SHELL) and give it the indicated arguments (the default shell
is sh). Without arguments, invokes an interactive shell, and executes until 2 "~D" is
entered.

sizfeof] name “Symbols and Expressions,” on page
109

Return the size, in bytes, of the variable type name; o, if the name refers to a routine,
returns the size in bytes of the subprogram.

slefep] time “Miscellaneous,” on page 116

Pause for time seconds. If no time is specified, pause for one second

source filename “Miscellaneous,” on page 116

Open the indicated file and execute the contents as though they were entered as
commands. If you use ~ before the filename, it is expanded to the value of $HOME.

42

Chapter 5. PGDBG Command Summary

Name Arguments Category

sp “Register Access,” on page 112
Return the current stack pointer address.

srlead] addr “Memory Access,” on page 113
Fetch and print a short signed integer from the specified address

stackd{ump] [count] “Program Locations,” on page 104
Print a formatted dump of the stack. This command displays a hex dump of the stack
frame for each active routine.

stack[trace] [count] “Program Locations,” on page 104
Print a stacktrace. For each active routine print the routine name, source file, line
number, current address, provided that information is available.

stat[us] “Events,” on page 97
Display all the event definitions, including an event number by which the event can be
identified.

s[tep] [count | up] “Process Control,” on page 94
Step into the current routine and stop after executing one or count source line(s). If
the up argument is specified, stops execution after stepping out of the current routine.

stepi [count | up] “Process Control,” on page 94
Step into the current routine and stop after executing one or count source line(s). If
the up argument is specified, stops execution after stepping out of the current routine.

stepo[ut] “Process Control,” on page 94
Stop after returning to the caller of the current routine.

stop [at line | in routine] [var] [if (condition)] |“Events,” on page 97
[do {commands}]
Set a breakpoint at the indicated routine or line. Break when the value of the indicated
variable var changes.

stopi [at addr | in routine] [var] [if (condition)] | “Events,” on page 97
[do {commands}]
Set a breakpoint at the indicated address or routine. Break when the value of the
indicated variable var changes.

sync [routine | line] “Process Control,” on page 94
Advance the current process/thread to a specific program location, ignoring any user-
defined events.

synci [routine | addr] “Process Control,” on page 94

Advance the current process/thread to a specific program location, ignoring any user-
defined events.

43

Command Summary

44

Name Arguments Category
strfing] exp [,...exp] “Printing Variables and Expressions,” on
page 106
Evaluate and print expressions as null-terminated character strings, up to 2 maximum
of 70 characters.
thread number “Process Control,” on page 94
Set the current thread to the thread identified by number; where number is a logical
thread id in the current process’ active thread list. When issued with no argument,
thread lists the current program location of the currently active thread.
threads “Process Control,” on page 94
Prints the status of all active threads, grouped by process.
trace [at line | in routine] [var | routine] [if “Events,” on page 97
(condition) | do {commands}
Activates source line tracing as specified by the arguments supplied.
tracei [at addr | in routine] [var] [if (condition)] | “Events,” on page 97
do {commands}
Activates instruction tracing as specified by the arguments supplied.
track expression [at line | in routine] [if “Events,” on page 97
(condition)] [do {commands}]
Define a track event.
tracki expression [at addr | in routine] [if “Events,” on page 97
(condition)] [do {commands}]
Define an assembly-level track event.
type expr “Symbols and Expressions,” on page
109
Return the type of the expression.
unalfias| name “Miscellaneous,” on page 116
Remove the alias definition for name, if one exists.
undefset [name | -all | “Process-Thread Sets,” on page 97
Remove a previously defined process/thread set from the list of process/thread sets.
undisplay [alll0]lexp] “Printing Variables and Expressions,” on

page 106

Remove all expressions specified by previous display commands. With an argument or
several arguments, remove the expression exp from the list of display expressions.

Chapter 5. PGDBG Command Summary

Name Arguments Category
unb[reak] line | routine | all “Events,” on page 97
Remove a breakpoint from the statement line, the routine r out i ne, or remove all
breakpoints.
unbreaki addr | routine | all “Events,” on page 97
Remove a breakpoint from the address addr, the routine r out i ne, or remove all
breakpoints.
up “Scope,” on page 111
Enter scope of routine up one level or number levels on the call stack.
use [dir] “Miscellaneous,” on page 116
Print the current list of directories or add dir to the list of directories to search. If the
first character in pathname is ~, the value of $HOME is substituted for this character.
viewset name “Process-Thread Sets,” on page 97
List the members of a process/thread set that currently exist as active threads or list
defined p/t-sets.
wait [any | all | none | “Process Control,” on page 94
Inserts explicit wait points in a command stream.
waftch] expression [at line | in routine] [if “Events,” on page 97
(condition)] [do {commands}]
Define a watch event. The given expression is evaluated, and subsequently, each time
the value of the expression changes, the program stops and the new value is printed.
watchi expression [at addr | in routine] “Events,” on page 97
[if (condition)] [do {commands}]
Define an assembly-level watch event.
whatis [name] “Symbols and Expressions,” on page
109
With no arguments, prints the declaration for the current routine. With argument
name, prints the declaration for the symbol name.
when [at line | in routine] [if (condition)] do “Events,” on page 97
{commands}
Execute commands at every line in the program, at a specified line in the program or
in the specified routine.
wheni [at addr | in routine] [if(condition)] do | “Events,” on page 97
{commands}

Execute commands at each address in the program. If an addr is specified, the
commands are executed each time the address is reached.

45

Command Summary

46

Name Arguments Category

w(here] [count] “Program Locations,” on page 104
Print a stacktrace. For each active routine print the routine name, routine arguments,
source file, line number, current address, provided that information is available.

whereis name “Symbols and Expressions,” on page

109

Print all declarations for name.

which name “Scope,” on page 111
Print full scope qualification of symbol name.

whichsets [p/t-set] “Process-Thread Sets,” on page 97
List all defined p/t-sets to which the members of a process/thread set belong.

/ / [string] / “Program Locations,” on page 104

Search forward for a string (st ri ng) of characters in the current source file

?[string] ?

“Program Locations,” on page 104

Search backward for a string (st ri ng) of characters in the current source file.

History modification

“Miscellaneous,” on page 116

Executes 2 command from the command his
on the information that follows the !.

tory list. The command executed depends

History modification

“Miscellaneous,” on page 116

Quick history command substitution *old”new” <modifier> this is equivalent to !:s/

old/new/

Chapter 6. PGDBG Assembly-Level
Debugging

This section provides information about PGDBG assembly-level debugging, including an overview and what to
expect if you are using assembly-level debugging or if you did not compile your program for debugging.

Assembly-Level Debugging Overview

PGDBG does not require that the program under debug be compiled with debugging information, using - g.
It can debug code that is lacking debug information, but because it is missing information about symbols and
line numbers, it can only access the program at the assembly level.

As described in “Building Applications for Debug,” on page 2, the most information is available when the
program is compiled using - g or - gopt with no optimization. When a program is compiled at higher levels
of optimization, less information about source-level symbols and line numbers is available, even if the program
was compiled with - g or - gopt . In such cases, if you want to find the source of a problem without rebuilding
the program, you may need to debug at the assembly level.

If a program has been "stripped" of all symbols, either by the linker or a separate utility, then debugging is at
the assembly level. PGDBG is only able to examine or control the program in terms of memory addresses and
registers.

Assembly-Level Debugging on Microsoft Windows Systems

When applications are built without - g on Windows systems, the resulting binary, the . exe file, does not
contain any symbol information. Microsoft stores symbol information in a program database, a . pdb file.
To generate a . pdb file using the PGI compiler drivers, you must use - g during the link step. You can do
this even if you did not use - g during the compile step. Having this . pdb file available provides PGDBG with
enough symbol information to map addresses to routine names.

Assembly-Level Debugging with Fortran

To refer to Fortran symbol names when debugging at the assembly level, you must translate the names to use
the naming convention that matches the calling convention in use by the compiler. For code compiled by the

47

Assembly-Level Debugging Overview

PGI compilers, in most cases this means translating to lower case and appending an underbar. For example, a
routine that appears in the source code as "VADD" would be referred to in the debugger as "vadd_".

On 32-bit Windows systems there are alternative calling conventions. The one described above matches the
convention used when the compiler is invoked with - Muni x' For details of other 32-bit Windows calling
conventions, refer to the PGI User's Guide.

Note

Name translation is only necessary for assembly-level debugging. When debugging at the source level,
you may refer to symbol names as they appear in the source.

A special symbol, MAI N_, is created by PGI Fortran to refer to the main program. PGI Fortran generates this
special symbol whether or not there is a PROGRAM statement. One way to run to the beginning of a Fortran
program is to set a breakpoint on MAIN_, then run.

Assembly-Level Debugging with C++

C++ symbol names are "mangled" names. For the names of C++ methods, the names are modified to include
not only the name as it appears in the source code, but information about the enclosing class hierarchy,
argument and return types, and other information. The names are long and arcane. At the source level these
names are translated by PGDBG to the names as they appear in the source. At the assembly level, these names
are in the mangled form. Translation is not easy and not recommended. If you have no other alternative, you
can find information about name mangling in the PGI User's Guide.

Assembly-Level Debugging Using the PGDBG GUI

This section describes some basic operations for assembly-level debugging using the PGDBG GUL When you
invoke PGDBG using this command:

pgdbg nyprog

you are presented with a dialog telling you that PGDBG " Can' t find main function conpiled -g".
No source is displayed.

To get into the program, you can select the Options | Set Breakpoint... menu option. To stop at program entry,
for example, in Fortran you could enter MAI N_ in response to the dialog query; in C or C++ you could enter
mai n.

Assembly-Level PGDBG Menu Options

PGDBG menu options that are useful in assembly-level debugging:

Window | Registers Window | Memory
Display all the registers Display memory locations
Window | Stack Window | Disassembly
Display a stack traceback Display disassembly

If disassembly is not automatically displayed in the code panel when the program stops at a breakpoint or after
a single step, use Window | Disassembly and enter the name of the routine of interest. Answer "Yes" when
asked if you want to display disassembly in the source window.

48

Chapter 6. PGDBG Assembly-Level Debugging

Assembly-Level Debugging Using the PGDBG Command-line Interface

This section describes some basic operations for assembly-level debugging using the PGDBG command-line
interface. When you invoke PGDBG using this command:

pgdbg -text myprog
you are presented with a message telling you that PGDBG " Can' t find mai n function conpiled -
g".

To get into the program, you can set a breakpoint at a named routine. To stop at program entry, for example, in
Fortran you could use
break MAI N_

and in C/C++ you could use
break main

Some useful commands for assembly-level debugging using the PGDBG command-line interface include:

run
run the program from the beginning

cont
continue program execution from the current point

nexti
single-step one instruction, stepping over calls

stepi
single-step one instruction, stepping into calls

breaki
set a breakpoint at a given address

regs
display the registers

print $<regname>
display the value of the specified register

For more information on register names, refer to “Register Symbols,” on page 49.

dump
dump memory locations

stacktrace
display a stack traceback

stackdump
display a traceback/dump of stack frame

Register Symbols

This section describes the register symbols defined for X86 processors and Intel 64/AMDG64 processors
operating in compatibility or legacy mode.

49

Register Symbols

X86 Register Symbols

This section describes the X86 register symbols.

Table 6.1. General Registers

Name Type Description
$edi unsigned General purpose
$esi unsigned General purpose
$eax unsigned General purpose
$ebx unsigned General purpose
$ecx unsigned General purpose
$edx unsigned General purpose
Table 6.2. x87 Floating-Point Stack Registers
Name Type Description
$do - $d7 80-bit IEEE Floating-point
Table 6.3. Segment Registers
Name Type Description
$gs 16-bit unsigned Segment register
$fs 16-bit unsigned Segment register
$es 16-bit unsigned Segment register
$ds 16-bit unsigned Segment register
$ss 16-bit unsigned Segment register
$cs 16-bit unsigned Segment register
Table 6.4. Special Purpose Registers
Name Type Description
$ebp 32-bit unsigned Frame pointer
$efl 32-bit unsigned Flags register
$eip 32-bit unsigned Instruction pointer
$esp 32-bit unsigned Privileged-mode stack pointer
$uesp 32-bit unsigned User-mode stack pointer

50

Chapter 6. PGDBG Assembly-Level Debugging

AMDG4/EM64T Register Symbols

This section describes the register symbols defined for AMD64/EMO4T processors operating in 64-bit mode.

Table 6.5. General Registers

Name Type Description
$18 - $r15 64-bit unsigned General purpose
$rdi 64-bit unsigned General purpose
$rsi 64-bit unsigned General purpose
$rax 64-bit unsigned General purpose
$rbx 64-bit unsigned General purpose
$rex 64-bit unsigned General purpose
$rdx 64-bit unsigned General purpose
Table 6.6. Floating-Point Registers
Name Type Description
$do - $d7 80-bit IEEE Floating-point
Table 6.7. Segment Registers
Name Type Description
$gs 16-bit unsigned Segment register
$fs 16-bit unsigned Segment register
$es 16-bit unsigned Segment register
$ds 16-bit unsigned Segment register
$ss 16-bit unsigned Segment register
$cs 16-bit unsigned Segment register
Table 6.8. Special Purpose Registers
Name Type Description
$ebp 64-bit unsigned Frame pointer
$rip 64-bit unsigned Instruction pointer
$rsp 64-bit unsigned Stack pointer
$eflags 04-bit unsigned Flags register

51

Register Symbols

Table 6.9. SSE Registers

Name Type Description
$mxcsr 64-bit unsigned SIMD floating-point control
$xmm0 - $xmm15 Packed 4x32-bit IEEE |SSE floating-point registers
Packed 2x064-bit IEEE
SSE Register Symbols

52

On AMD64/EM64T, Pentium III, and compatible processors, an additional set of SSE (Streaming SIMD
Enhancements) registers and a SIMD floating-point control and status register are available.

Each SSE register may contain four IEEE 754 compliant 32-bit single-precision floating-point values. The
PGDBG regs command reports these values individually in both hexadecimal and floating-point format. PGDBG
provides syntax to refer to these values individually, as members of a range, or all together. There is no support
for SSE2 or packed integers.

The component values of each SSE register can be accessed using the same syntax that is used for array
subscripting. Pictorially, the SSE registers can be thought of as follows:
127 96 95 64 63 3231 0
$xmmO0(3) $xmmO0(2) $xmmO0(1) $xmmO0(0)
$xmm1(3) $xmm1(2) $xmm1(1) $xmm1(0)
$xmm?7(3) $xmm7(2) |$xmm7(1) |$xmm7(0)

To access a $xmm0(3), the 32-bit single-precision floating point value that occupies bits 96 — 127 of SSE
register 0, use the following PGDBG command:

pgdbg> print $xmm0(3)

To set $xmm2(0) to the value of $xmm3(2), use the following PGDBG command:
pgdbg> set $xmmR2(3) = $xmMB(2)

SSE registers can be subscripted with range expressions to specify runs of consecutive component values, and
access an SSE register as a whole. For example, the following are legal PGDBG commands:

pgdbg> set $xmD(0: 1) = $xmil(2: 3)
pgdbg> set $xmmb = 1.0/3.0

The first command above initializes elements 0 and 1 of $xmmO0 to the values in elements 2 and 3 respectively
in $xmm1. The second command above initializes all four elements of $xmm6 to the constant 1.0/3.0
evaluated as a 32-bit floating-point constant.

In most cases, PGDBG detects when the target environment supports the SSE registers. In the the event PGDBG
does not allow access to SSE registers on a system that should have them, set the PGDBG_SSE environment
variable to “on’ to enable SSE support.

Chapter 7. PGDBG Source-Level
Debugging

This chapter describes source-level debugging, including debugging Fortran and Debugging C++.
Debugging Fortran

Fortran Types

PGDBG displays Fortran type declarations using Fortran type names. The only exception is Fortran character
types, which are treated as arrays of the C type char.

Arrays

Fortran array subscripts and ranges are accessed using the Fortran language syntax convention, denoting
subscripts with parentheses and ranges with colons.

PGI compilers for the linux86-64 platform (AMD64 or Intel 64) support large arrays (arrays with an
aggregate size greater than 2GB). You can enable large array support by compiling using these options: —
mcnodel =nedi um —M ar ge_ar r ays. PGDBG provides full support for large arrays and large subscripts.

PGDBG supports arrays with non-default lower bounds. Access to such arrays uses the same subscripts that are
used in the target application.

PGDBG also supports adjustable arrays. Access to adjustable arrays may use the same subscripting that is used
in the target application.

Operators

In general, PGDBG uses C language style operators in expressions. The Fortran array index selector “()”
and the Fortran field selector “%” for derived types are supported. However, . eq. , . ne. , and so forth are
not supported. The analogous C operators ==, !=, etc. must be used instead. Note that the precedence of
operators matches the C language, which may in some cases be different than for Fortran. See Table 5.1,
“PGDBG Commands” for a complete list of operators and their definition.

53

Debugging Fortran

Name of the Main Routine

If 2 PROGRAM statement is used, the name of the main routine is the name in the program statement. You can
always use the following command to set a breakpoint at the start of the main routine.

break MAIN

Common Blocks

Each subprogram that defines a common block has a local static variable symbol to define the common.
The address of the variable is the address of the common block. The type of the variable is a locally-defined
structure type with fields defined for each element of the common block. The name of the variable is the
common block name, if the common block has a name, or _BLNK_ otherwise.

For each member of the common block, a local static variable is declared which represents the common block
variable. Thus given declarations:
common /xyz/ a, b

i nteger a
i nteger b

then the entire common block can be printed out using,
print xyz

Individual elements can be accessed by name. For example:,

print a, b

Internal Procedures

54

To unambiguously reference an internal procedure, qualify its name with the name of its host using the scoping
operator @.

For example:

subroutine subl ()
call internal _proc ()
cont ai ns
subroutine internal _proc ()
print *, "internal _proc in subl"
end subroutine internal _proc
end subroutine

subroutine sub2 ()

call internal _proc ()
cont ai ns
subroutine internal _proc ()
print *, "internal _proc in sub2"

end subroutine internal _proc
end subroutine
program mai n

call subl ()

call sub2 ()
end program

pgdbg> wherei s internal _proc
function: "/path/ip.f90" @ubl@ nternal _proc

Chapter 7. PGDBG Source-Level Debugging

function: "/path/ip.f90" @ub2@ nt er nal _proc

pgdbg> break subl@ nternal _proc

(1) breakpoint set at: internal_proc line: "ip.f90"@ address: 0x401E3C 1
pgdbg> break sub2@ nternal _proc

(2) breakpoint set at: internal_proc line: "ip.f90" @3 address: Ox401EEC 2

Modules

A member of a Fortran 90 module can be accessed during debugging.

nodul e nod
i nteger i Mod
end nodul e

subrouti ne useMd()
use nod
i Mod = 1000
end subroutine

program nai n
call useMod()
end program

If the module is in the current scope, no qualification is required to access the module's members.
pgdbg> b uselbd

(1) breakpoint set at: usenmpd line: "nodv.f90"@ address: 0x401CC4
1

Br eakpoi nt at 0x401CC4, function usenod, file nodv.f90, line 7
#7: i Mod = 1000

pgdbg> p i Mod
0

If the module is not in the current scope, use the scoping operator @ to qualify the member's name.

Br eakpoi nt at O0x401CFO, function main, file nodv.f90, |ine 11
#11: call useMbod()

pgdbg> p i Mod
"i Mod" is not defined in the current scope

pgdbg> p nod@ Mod
0

Module Procedures

A module procedure is a subroutine contained within a module. A module procedure itself can contain
internal procedures. The scoping operator @ can be used when working with these types of subprograms to

prevent ambiguity.
nodul e nod
cont ai ns
subroutine nod_procl()
call internal _proc()
cont ai ns

subroutine internal _proc()

99

Debugging C++

print *, "internal _proc in nmod_procl"
end subroutine
end subroutine
subrouti ne nod_proc2()

call internal _proc()
cont ai ns
subroutine internal _proc()
print *, "internal proc in nod_proc2"

end subroutine
end subroutine
end nodul e

program mai n
use nod
call nod_procl
cal |l nod_proc2
end program

pgdbg> wherei s internal _proc
function: "/ pat h/ modp. f 90" @rd@rod_pr ocl@ nt er nal _pr oc
function: "/ pat h/ modp. f 90" @mod@rod_pr oc2@ nt er nal _pr oc

pgdbg> break nod@mwd_procl@ nternal _proc

(1) breakpoint set at: internal_proc |line: "nodp.f90"@ address: 0x401E3C
1

pgdbg> break nod@mwd_proc2@ nt er nal _proc

(2) breakpoint set at: internal_proc |ine: "nodp.f90"@4 address: O0x401EEC
2

Debugging C++

Calling C++ Instance Methods

To use the call command to call a C++ instance method, the object must be explicitly passed as the first
parameter to the call. For example, given the following definition of class Person and the appropriate
implementation of its methods:

cl ass Person

{
publi c:
char nange[10] ;
Person(char * inNane);
void print();

int main ()
Person * pierre
pierre = new Person("Pierre");
pierre->print();
return O;
}
Call the instance method print on object Pierre as follows:
pgdbg> cal | Person::print(pierre)

Notice that pierre must be explicitly passed into the method because it is the this pointer. You can also specify
the class name to remove ambiguity.

56

Chapter 8. PGDBG Platform-Specific
Features

This chapter describes the PGDBG features that are specific to particular platforms, such as pathname
conventions, debugging with core files, and signals.

Pathname Conventions

PGDBG uses the forward slash character (/) as the path component separator on all platforms. The backslash
(\) is used as the escape character in the PGDBG command language.

On Windows systems, a drive letter specifier may be used whenever specifying a full path, but the forward slash
separator convention is still in effect. For example, to add the Windows pathname "C:\Temp\src" to the list of
searched source directories, use the command:

pgdbg> dir C./Tenp/src
To set a breakpoint at line 10 of the source file specified by the relative path sub1\ mai n. c, use this
command:

pgdbg> break "subl/main.c":10

Debugging with Core Files

PGDBG supports debugging of core files on the linux86 and linux86-64 platforms. To invoke PGDBG for core
file debugging, use the following options:

$ pgdbg —core coreFil eNanme prograniName

Core files (or core dumps) are generated when a program encounters an exception or fault. For example,
one common exception is the segmentation violation, which can be caused by referencing an invalid memory
address. The memory and register states of the program are written into a core file so that they can be
examined by a debugger.

The shell environment in which the application runs must be set up to allow core file creation. On many
systems, the default user setting ul i ni t does not allow core file creation.

Check the ulimit as follows:

o7

Signals

For sh/bash users:
$ulinmt -c
For csh/tcsh users:

%limt coredunpsize
If the core file size limit is zero or something too small for the application, it can be set to unlimited as follows:

For sh/bash users:

$ulimt -c unlimted

For csh/tcsh users:

%limt coredunpsize unlimted

See the Linux shell documentation for more details. Some versions of Linux provide system-wide limits on core
file creation.

Core files (or core dumps) are generated when a program encounters an exception or fault. For example,
one common exception is the segmentation violation, which can be caused by referencing an invalid memory
address. The memory and register states of the program are written into a core file so that they can be
examined by a debugger.

The core file is normally written into the current directory of the faulting application. It is usually named core
or core.pid where pid is the process ID of the faulting thread. If the shell environment is set correctly and a
core file is not generated in the expected location, the system core dump policy may require configuration by a
system administrator.

Different versions of Linux handle core dumping slightly differently. The state of all process threads are written
to the core file in most modern implementations of Linux. In some new versions of Linux, if more than one
thread faults, then each thread’s state is written to separate core files using the core.pid file naming convention
mentioned above. In older versions of Linux, only one faulting thread is written to the core file.

If a program uses dynamically shared objects (i.e., shared libraries named lib*.s0), as most programs on
Linux do, then accurate core file debugging requires that the program be debugged on the system where the
core file was created. Otherwise, slight differences in the version of a shared library or the dynamic linker
can cause erroneous information to be presented by the debugger. Sometimes a core file can be debugged
successfully on a different system, particularly on more modern linux systems, but you should take care when
attempting this.

PGDBG supports all non-control commands when debugging core files. It performs any command that does
not cause the program to run. Any command that causes the program to run generates an error message in
PGDBG. Depending on the type of core file created, PGDBG may provide the status of multiple threads. PGDBG
does not support multi-process core file debugging.

Signals

PGDBG intercepts all signals sent to any of the threads in a multi-threaded program and passes them on
according to that signal's disposition as maintained by PGDBG (see the catch and ignore commands), except
for signals that cannot be intercepted or signals used internally by PGDBG.

58

Chapter 8. PGDBG Platform-Specific Features

Signals Used Internally by PGDBG

SIGTRAP and SIGSTOP are used by Linux for communication of application events to PGDBG. Management of
these signals is internal to PGDBG. Changing the disposition of these signals in PGDBG (via catch and ignore)
result in undefined behavior.

Signals Used by Linux Libraries

Some Linux thread libraries use SIGRT1 and SIGRT?3 to communicate among threads internally. Other Linux
thread libraries, on systems that do not have support for real-time signals in the kernel, use SIGUSR1 and
SIGUSR2. Changing the disposition of these signals in PGDBG (via catch and ignore) result in undefined
behavior.

Target applications built for sample-based profiling (compiled with *-pg’) generate numerous SIGPROF signals.
Although SIGPROF can be handled by PGDBG, debugging of applications built for sample-based profiling is not
recommended.

59

60

Chapter 9. PGDBG Parallel
Debugging Overview

This chapter provides an overview of how to use PGDBG to debug parallel applications. It includes important
definitions and background information on how PGDBG represents processes and threads.

Overview of Parallel Debugging Capability

PGDBG is a parallel application debugger capable of debugging multi-process MPI applications, multi-thread
and OpenMP applications, and hybrid multi-thread/multi-process applications that use MPI to communicate
between multi-threaded or OpenMP processes.

For specific information on Multi-thread and OpenMP debugging, refer to Chapter 10, “PGDBG - Parallel
Debugging with OpenMP,” on page 79.

For specific information on Multi-process MPI debugging, refer to Chapter 11, “PGDBG Parallel Debugging
with MPL,” on page 83.
Graphical Presentation of Threads and Processes

PGDBG graphical user interface components that provide support for parallelism are described in detail in
“The PGDBG Graphical User Interface”.

Basic Process and Thread Naming

Because PGDBG can debug multi-threaded applications, multi-process applications, and hybrid multi-
threaded/multi-process applications, it provides a convention for uniquely identifying each thread in each
process. This section gives a brief overview of this naming convention and how it is used to provide adequate
background for the subsequent sections. A more detailed discussion of this convention, including advanced
techniques for applying it, is provided in “Thread and Process Grouping and Naming,” on page 62.

PGDBG identifies threads in an OpenMP application using the OpenMP thread IDs. Otherwise, PGDBG assigns
arbitrary IDs to threads, starting at zero and incrementing in order of thread creation.

61

Thread and Process Grouping and Naming

PGDBG identifies processes in an MPI application using MPI rank (in communicator MPI_COMM_WORLD).
Otherwise, PGDBG assigns arbitrary IDs to processes; starting at zero and incrementing in order of process
creation. Process IDs are unique across all active processes.

In 2 multi-threaded/multi-process application, each thread can be uniquely identified across all processes by
prefixing its thread ID with the process ID of its parent process. For example, thread 1.4 identifies the thread
with ID 4 in the process with ID 1.

An OpenMP application (single-process) logically runs as a collection of threads with a single process, process
0, as the parent process. In this context, a thread is uniquely identified by its thread ID. The process ID prefix
is implicit and optional. See “Threads-only Debugging,” on page 63.

An MPI program logically runs as a collection of processes, each made up of a single thread of execution.
Thread 0 is implicit to each MPI process. A process ID uniquely identifies a particular process, and thread ID
is implicit and optional. See “Process-only Debugging,” on page 63.

A hybrid, or multilevel, MPI/OpenMP program requires the use of both process and thread IDs to uniquely
identify a particular thread. See “Multilevel Debugging,” on page 63.

A serial program runs as a single thread of execution, thread 0, belonging to a single process, process 0. The
use of thread IDs and process IDs is allowed but unnecessary.

Thread and Process Grouping and Naming

This section describes how to name a single thread, how to group threads and processes into sets, and how to
apply PGDBG commands to groups of processes and threads.

PGDBG Debug Modes

62

PGDBG can operate in four debug modes. The mode determines a short form for uniquely naming threads and
processes. The debug mode is set automatically or by the pgienv command.

Table 9.1. PGDBG Debug Modes

Debug Mode Program Characterization

Serial A single thread of execution

Threads-only A single process, multiple threads of execution

Process-only Multiple processes, each process made up of a single thread of execution
Multilevel Multiple processes, at least one process employing multiple threads of execution

PGDBG initially operates in serial mode reflecting a single thread of execution. Thread IDs can be ignored in
serial debug mode since there is only a single thread of execution.

The PGDBG prompt displays the ID of the current thread according to the current debug mode. See “The
PGDBG Command Prompt,” on page 75 for a description of the PGDBG prompt.

The pgienv command is used to change debug modes manually.

pgi env node [serial |thread| process|nultilevel]

Chapter 9. PGDBG Parallel Debugging Overview

The debug mode can be changed at any time during a debug session.

Threads-only Debugging

Enter threads-only mode to debug a program with a single multi-threaded process. As a convenience the
process ID portion can be omitted. PGDBG automatically enters threads-only debug mode from serial debug
mode when it detects and attaches to new threads.

Example 9.1. Thread IDs in Threads-only Debug Mode

1 Thread 1 of process 0 (*.1)
N All threads of process 0 (*. *)
0.7 Thread 7 of process 0 (multilevel names are valid in threads-only mode)

In threads-only debug mode, status and error messages are prefixed with thread IDs depending on context.

Process-only Debugging

Enter process-only mode to debug an application consisting of single-threaded processes. As a convenience,
the thread ID portion can be omitted. PGDBG automatically enters process-only debug mode from serial debug
mode when the target program returns from MPI_Init.

Example 9.2. Process IDs in process-only debug mode

0 All threads of process 0 (0.%)
N All threads of all processes (*.*)
1.0 Thread 0 of process 1 (multilevel names are valid in process-only mode)

In process-only debug mode, status and error messages are prefixed with process IDs depending on context.

Multilevel Debugging

The name of a thread in multilevel debug mode is the thread ID prefixed with its parent process ID. This forms
a unique name for each thread across all processes. This naming scheme is valid in all debug modes. PGDBG
changes automatically to multilevel debug mode from process-only debug mode or threads-only debug mode
when at least one MPI process creates multiple threads.

Example 9.3. Thread IDs in multilevel debug mode

0.1 Thread 1 of process 0
0.* All threads of process 0
i All threads of all processes

In multilevel debug, mode status and error messages are prefixed with process/thread IDs depending on
context.

63

Process/Thread Sets

Process/Thread Sets

You use a process/thread set (p/t-set) to restrict a debugger command to apply to just a particular set of
threads. A p/t-set is a set of threads drawn from all threads of all processes in the target program. Use p/t-set
notation (described in “p/t-set Notation,” on page 64) to define a p/t-set.

Named p/t-sets

In the following sections, you will notice frequent references to three named p/t-sets:

o The target p/t-set is the set of processes and threads to which a debugger command is applied. The target
p/t-set is initially defined by the debugger to be the set [all] which describes all threads of all processes.

» A prefix p/t-set is defined when p/t-set notation is used to prefix a debugger command. For the prefixed
command, the target p/t-set is the prefix p/t-set.

 The current p/t-set is the p/t set currently set in the PGDBG environment. You can use the focus
command to define the current p/t-set. Unless a prefix p/t-set overrides it, the current p/t set is used as the
target p/t-set.

p/t-set Notation

The following rules describe how to use and construct p/t-sets:

Use a prefix p/t-set with a simple command:

[p/t-set prefix] command parnD, parnil, ...

Use a prefix p/t-set with a compound command:

[p/t-set prefix] sinple-command [;sinple-conmand . ..]
p/t-id:

{integer|*}.{integer|*}

Use p/t-id optional notation when process-only or threads-only debugging is in effect. For more information,
refer to the pgienv command.

{integer|*}

p/t-range:

p/t-id:p/t-id

p/t-list:

{p/t-id|p/t-range} [, {p/t-id|p/t-range} ...]

p/t-set

[[']{p/t-list]|set-nane}]

64

Chapter 9. PGDBG Parallel Debugging Overview

Example 9.4. p/t-sets in Threads-only Debug Mode

[0, 4:6] Threads 0,4,5, and 6
[*] All threads
[*.1] Thread 1. Multilevel notation is valid in threads-only mode
[*.*] All threads
Example 9.5. p/t-sets in Process-only Debug Mode
[0,2:3] Processes 0, 2, and 3 (equivalent to [0.%,2:3.%])
[*] All processes (equivalent to [*.*])
[0] Process 0 (equivalent to [0.%])
[*.0] Process 0. Multilevel syntax is valid in process-only mode.
[0:2.%] Processes 0, 1, and 2. Multilevel syntax is valid in process-only debug mode.

Example 9.6. p/t-sets in Multilevel Debug Mode

[0.1,0.3,0.5]

Thread 1,3, and 5 of process 0

[0.*] All threads of process 0
[1.1:3] Thread 1,2, and 3 of process 1
[1:2.1] Thread 1 of processes 1 and 2
[clients]

All threads defined by named set clients

[1]

Incomplete; invalid in multilevel debug mode

Dynamic vs. Static p/t-sets

The defset command can be used to define both dynamic and static p/t-sets. The members of a dynamic
p/t-set are those active threads described by the p/t-set at the time that the p/t-set is used. By default, a p/t-
set is dynamic. Threads and processes are created and destroyed as the target program runs and, therefore,

membership in a dynamic set varies as the target program executes.

Example 9.7. Defining a Dynamic p/t-set

defset clients [*.1:3]

Defines a named set clients whose members are threads 1, 2, and 3 of
all processes that are currently active when clients is used. Membership
in clients changes as processes are created and destroyed.

The members of a static p/t-set are those threads described by the p/t-set at the time that p/t-set is defined. Use
a ! to specify a static set. Membership in a static set is fixed at definition time.

Example 9.8. Defining a Static p/t-set

defset clients [!*.1:3]

Defines a named set clients whose members are threads 1, 2, and 3 of
those processes that are currently active at the time of the definition.

65

Process/Thread Sets

Note

p/t-sets defined with defset are not mode dependent and are valid in any debug mode.

Current vs. Prefix p/t-set

p/t-set Commands

66

The current p/t-set is set by the focus command. The current p/t-set is described by the debugger prompt and
depends on debug mode. For a description of the PGDBG prompt, refer to “The PGDBG Command Prompt,”
on page 75. You can use a p/t-set to prefix a command that overrides the current p/t-set. The prefix p/t-set
becomes the target p/t-set for the command. The target p/t-set defines the set of threads that will be affected by

a command.

e In the following command line, the target p/t-set is the current p/t-set:

pgdbg [all] 0.0> cont
Continue all threads in all processes

e In contrast, a prefix p/t-set is used in the following command so that the target p/t-set is the prefix p/t-set,

shown in this example in bold:

pgdbg [all] 0.0> [0.1:2] cont
Continue threads 1 and 2 of process 0 only

In both of the above examples, the current p/t-set is the debugger-defined set [all]. In the first case, [all] is
the target p/t-set. In the second case, the prefix p/t-set overrides [all] and becomes the target p/t-set. The
continue command is applied to all active threads in the target p/t-set. Also, using a prefix p/t-set does not

change the current p/t-set.

You can use the following commands to collect threads and processes into logical groups.

* Use defset and undefset to manage a list of named p/t-sets.

e Use focus to set the current p/t-set.

* Use viewset to view the active members described by a particular p/t-set, or to list all the defined p/t-sets.

¢ Use whichsets to describe the p/t-sets to which a particular process/thread belongs.

Table 9.2. p/t-set Commands

Command Description

defset Define 2 named p/t-set. This set can later be referred to by name. A list of
named sets is stored by PGDBG.

focus Set the target process/thread set for commands. Subsequent commands are
applied to the members of this set by default.

undefset Undefine a previously defined process/thread set. The set is removed from the
list. The debugger-defined p/t-set [all] cannot be removed.

viewset List the members of a process/thread set that currently exist as active threads,
or list all the defined p/t-sets.

Chapter 9. PGDBG Parallel Debugging Overview

Command Description

whichsets List all defined p/t-sets to which the members of a process/thread set belongs.

Examples of the p/t-set commands in the previous table follow.

Use defset to define the p/t-set initial to contain only thread 0:

pgdbg [all] 0> defset initial [O0]
“initial" [0] : [O]

Use the focus command to change the current p/t-set to initial:

pgdbg [all] 0> focus [initial]

[initial] : [0]

[0]

Advance the thread. Currently the code is not using a prefix p/t-set, and the target p/t-set is the current p/t-set,
which is initial:

pgdbg [initial] 0> next

The whichsets command shows that thread 0 is 2 member of two defined p/t-sets:

pgdbg [initial] 0> whichsets [initial]

Thread 0 bel ongs to:

al |

initial

The viewset command displays all threads that are active and are members of defined p/t-sets:
pgdbg [initial] 0> viewset

"all™ [*.*] : [0.0,0.1,0.2,0.3]

"initial" [0] : [0]

You can use the focus command to set the current p/t-set back to [all]:

pgdbg [initial] 0> focus [all]
[all] : [0.0,0.1,0.2,0.3]
[*.*]

The undefset command undefines the initial p/t-set:

pgdbg [all] 0> undefset initial
p/t-set nane "initial" deleted.

The previous examples illustrate how to manage named p/t-sets using the command-line interface. A similar
capability is available in the PGDBG GUL. “Focus Panel,” on page 8 contains information about the Focus Panel.
This panel, shown in Figure 2.2, “PGDBG GUI with All Control Panels Visible,” on page 7, contains a table
labeled Focus with two columns: a Name column and a p/t-set column. The entries in this table are p/t-sets
exactly like the p/t-sets used in the command-line interface.

To create a p/t set in the Focus Panel:

1. Click the Add button. This opens a dialog box similar to the one in Figure 9.1.
2. Enter the name of the p/t-set in the Focus Name text field and enter the p/t-set in the p/t-set text field.
3. Click the left mouse button on the OK button to add the p/t-set.

67

Process/Thread Sets

The new p/t-set appears in the Focus Table. Clicking the Cancel button or closing the dialog box aborts the
operation. The Clear button clears the Focus Name and p/t-set text fields.

To select a p/t-set, click the left mouse button on the desired p/t-set in the table. The selected p/t-set is also
known as the Current Focus. PGDBG applies all commands entered in the Source Panel to the Current Focus
when you choose Focus in the Apply Selector (“Source Panel Combo Boxes,” on page 16). Current Focus can
also be used in a GUI subwindow. Choose Current Focus in a subwindow’s View Selector (“Subwindows,” on
page 19) to display data for the Current Focus only.

To modify an existing p/t-set, select the desired group in the Focus Table and click the Modify button. A dialog
box similar to that in Figure 9.1 appears, except that the Focus Name and p/t-set text fields contain the selected
group’s name and p/t-set respectively. You can edit the information in these text fields and click OK to save the
changes.

To remove an existing p/t-set, select the desired item in the Focus Table and click the Remove button. PGDBG
displays a dialog box asking for confirmation of the request for removal of the selected p/t-set. Click either the
Yes button to confirm or the No button to cancel the operation.

Note

p/t-sets defined in the Focus Panel of the PGDBG GUI are only used by the Apply and View Selectors
in the GUL They do not affect focus in the Command Prompt Panel. Conversely, focus changes made
in the Command Prompt Panel affect only the Command Prompt Panel and not the rest of the PGDBG
GUL.

For example, in Figure 9.1 there is a p/t-set named “process 0 odd numbered threads”. The p/t-set is [0.1,
0.3] which indicates threads 1 and 3 in process 0.

Figure 9.1. Focus Group Dialog Box

| PGDBG pft-set Editor »

Enter Focus Mame and p/t-set.

Example p/t-sets:

[.1,0.2,0.3] - thread 1, 2, and 3 of process 0
[.*] - all threads of process 0

[1.1, 2.1] - thread 1 of processes 1 and 2
[1:2.1] - thread 1 of processes 1 and 2

Focus Name>|prnu:ess 0 odd numbered threads |

pit-sets |[0.1, 0.3] |

| clear || ok || cancer |

Figure 9.2, “Focus in the GUL” on page 69 shows this p/t-set in the Focus Table. We also chose Focus in the
Apply Selector. Any command issued in the Source Panel is applied to the Current Focus, or thread 1 and 3 on
process 0 only. All other threads remain idle until either the All p/t-set is selected in the Focus Panel or All is

68

Chapter 9. PGDBG Parallel Debugging Overview

selected in the Apply Selector. Note that “process 0 odd numbered threads” is not available in the Command
Prompt Panel.

Figure 9.2. Focus in the GUI

(m] PGDBG - The Portland Group x
File Settings Help
I pi-set Focus

Mame I pf-set I
al & [
process O odd numbered thread :[0 1, 0.3]

i ﬂj M odlify Remuve:

All Processes

>

T

|
LProcess Grid L-S.ummar i |

e T e

Process 0 Thread 1

=laldl 2IBE 288 e

‘Process.Thread 0.1 " Data Window Contrel Options |empmpic ¥

Line Mo. | Ewent | PC | fhomejsw/demaos/TOOLS_DEMOJOMPMPIfomprnpi.c

3 int myrank,threadrank; =

9 char hname[32];

10 int i;

11

12 @ MPI_Init({ &argc, &argv J;

13

14 gethostnamne(hnane, 323 ;

15 MPI_Comm_rank (MPI_COWM_WORLD, &myrank);

16

17 omp_set_num_threads(4);

18

19 #pragnma omp parallel

20

21 int i;

22 int num;

23 nun = omp_get_thread_numg);

24 Fori=0;i<3;i+3{

25 ¥ printf("¥s:%d:¥dW\n" , hname, myrank, num) ;

26 5

27 ¥

28

29 MPI_Finalize();

30

31 return;

32

33 TAoRmaint s =
| [v] .
#0 main Tine: 25 in "onpnpi.c" address: Ox4030af '»%{ |Source -l

Stopped at line 25 faddress 0x4030af) in file thome/swidemos/TOOLE_DEMO] OMPMPLfompmpi.c

Command Set

For the purpose of parallel debugging, the PGDBG command set is divided into three disjoint subsets
according to how each command reacts to the current p/t-set. Process level and thread level commands can be
parallelized. Global commands cannot be parallelized.

Table 9.3. PGDBG Parallel Commands

Commands Action

Process Level Commands Parallel by current p/t-set or prefix p/t-set

Thread Level Commands Parallel by prefix p/t-set only; current p/t-set is ignored.

69

Command Set

Commands Action

Global Commands Non-parallel commands

Process Level Commands

The process level commands are the PGDBG control commands.

The PGDBG control commands apply to the active members of the current p/t-set by default. A prefix set can be
used to override the current p/t-set. The target p/t-set is the prefix p/t-set if present.
cont next step stepout synci

halt nexti stepi sync wait

Apply the next command to threads 1 and 2 of process 0:

pgdbg [all] 0.0> focus [0.1:2]
pgdbg [0.1:2] 0.0> next

Apply the next command to thread 3 of process 0 using a prefix p/t-set:
pgdbg [all] 0.0> [0.3] n

Thread Level Commands

70

The following commands are not concerned with the current p/t-set. When no p/t-set prefix is used, these
commands execute in the context of the current thread of the current process by default. That is, thread level
commands ignore the current p/t-set. Thread level commands can be applied to multiple threads by using a
prefix p/t-set. When a prefix p/t-set is used, the commands in this section are executed in the context of each
active thread described by the prefix p/t-set. The target p/t-set is the prefix p/t-set if present, or the current
thread (not the current p/t-set) if no prefix p/t set exists.

The thread level commands are:

addr do hwatch print stack

ascii doi iread regs stackdump
assign dread line retaddr string

bin dump lines rval track
break* entry lval scope tracki
cread fp noprint set watch

dec fread oct sizeof watchi
decl func pc sp whatis
disasm hex pf sread where

* breakpoints and variants (stop, stopi, break, breaki): if no prefix p/t-set is specified, [all] is used
(overriding current p/t-set).

The following actions occur when a prefix p/t-set is used:

e The threads described by the prefix are sorted per process by thread ID in increasing order.

Chapter 9. PGDBG Parallel Debugging Overview

e The processes are sorted by process ID in increasing order, and duplicates are removed.

* The command is then applied to the threads in the resulting list in order.

Without a prefix p/t-set, the print command executes in the context of the current thread of the current
process, thread 0.0, printing rank 0:

pgdbg [all] 0.0> print mnyrank

0

With a prefix p/t-set, the thread members of the prefix are sorted and duplicates are removed. The print
command iterates over the resulting list:

pgdbg [all]
[1.0] print
1
[2.0] print
2
[2.1] print
2
[2.2] print
2
[3.0] print
3
[3.2] print
3
[3.1] print
3

0.0> [2:3.*,1:2.*] print nyrank

myr ank:
myr ank:
myr ank:
myr ank:
myr ank:
myr ank:

myr ank:

Global Commands

The rest of the PGDBG commands ignore threads and processes, or are defined globally for all threads across
all processes. The current p/t-set and prefix p/t-set (if any) are ignored.

The following is a list of commands that are defined globally.

?

call

delete
enable
history

procs

run

thread

use

/ alias
catch cd
directory disable
files focus
ignore log
pwd quit
script shell
threads unalias
viewset wait

Process and Thread Control

arrive
debug
display
funcs
pgienv
repeat
source
unbreak

whereis

breaks
defset
edit
help
proc
rerun
status
undefset

whichsets

PGDBG supports thread and process control everywhere in the program. Threads and processes can be
advanced in groups anywhere in the program.

The PGDBG control commands are:

71

Configurable Stop Mode

cont next step stepout synci

halt nexti stepi sync wait

To describe those threads to be advanced, set the current p/t-set or use a prefix p/t-set.

A thread inherits the control operation of the current thread when it is created. If the current thread single-
steps over an _mp_init call (found at the beginning of every OpenMP parallel region) using the next
command, then all threads created by _np_i ni t step into the parallel region as if by the next command.

A process inherits the control operation of the current process when it is created. So if the current process
returns from a call to MPI_Init under the control of a cont command, the new process does the same.

Configurable Stop Mode

PGDBG supports configuration of how threads and processes stop in relation to one another. PGDBG defines
two pgienv environment variables, threadstop and procstop, for this purpose. PGDBG defines two stop modes,
synchronous (sync) and asynchronous (async).

Table 9.4. PGDBG Stop Modes

Command Result

sync Synchronous stop mode; when one thread stops at a breakpoint (event),
all other threads are stopped soon after.

async Asynchronous stop mode; each thread runs independently of the other
threads. One thread stopping does not affect the behavior of another.

Thread stop mode is set using the pgienv command as follows:

pgi env t hreadstop [sync|async]

Process stop mode is set using the pgienv command as follows:

pgi env procstop [sync|async]

PGDBG defines the default to be asynchronous for both thread and process stop modes. When debugging
an OpenMP program, PGDBG automatically enters synchronous thread stop mode in serial regions, and
asynchronous thread stop mode in parallel regions.

The pgienv environment variables threadstopconfig and procstopconfig can be set to automatic (auto) or user
defined (user) to enable or disable this behavior:

pgi env t hreadst opconfig [auto| user]

pgi env procstopconfig [auto|user]

Selecting the user-defined stop mode prevents the debugger from changing stop modes automatically.
Automatic stop configuration is the default for both threads and processes.

Configurable Wait Mode

72

Wait mode describes when PGDBG accepts the next command. The wait mode is defined in terms of the
execution state of the program. Wait mode describes to the debugger which threads/processes must be
stopped before it will accept the next command.

Chapter 9. PGDBG Parallel Debugging Overview

In certain situations, it is desirable to be able to enter commands while the program is running and not
stopped at an event. The PGDBG prompt does not appear until all processes/threads are stopped. However, a
prompt may be available before all processes/threads have stopped. Pressing <enter> at the command line
brings up a prompt if it is available. The availability of the prompt is determined by the current wait mode and
any pending wait commands.

PGDBG accepts 2 compound statement at each prompt. Each compound statement is a sequence of semicolon-
separated commands, which are processed immediately in order.

The wait mode describes when to accept the next compound statement. PGDBG supports three wait modes,
which can be applied to processes and/or threads.

Table 9.5. PGDBG Wait Modes

Command Result

all The prompt is available only after all threads have stopped since the
last control command.

any The prompt is available only after at least one thread has stopped
since the last control command.

none The prompt is available immediately after a control command is
issued.

e Thread wait mode describes which threads PGDBG waits for before accepting new commands.

Thread wait mode is set using the pgienv command as follows:

pgi env threadwait [any]|all|none]

* Process wait mode describes which processes PGDBG waits for before accepting new commands.

Process wait mode is set using the pgienv command as follows:

pgi env procwait [any|all|none]
If process wait mode is set to none, then thread wait mode is ignored.

In TEXT mode, PGDBG defaults to:

threadwait all
procwait any

If the target program goes MPI parallel, then procwait is changed to none automatically by PGDBG.

If the target program goes thread parallel, then threadwait is changed to none automatically by PGDBG. The
pgienv environment variable threadwaitconfig can be set to automatic (auto) or user defined (user) to enable
or disable this behavior.

pgi env t hreadst opconfig [auto|user]

Selecting the user defined wait mode prevents the debugger from changing wait modes automatically.
Automatic wait mode is the default thread wait mode.

73

Configurable Wait Mode

74

PGDBG defaults to the following in GUI mode:

threadwait none
procwait none

Setting the wait mode may be necessary when invoking the debugger using the - s (script file) option in GUI
mode (to ensure that the necessary threads are stopped before the next command is processed).

PGDBG also provides a wait command that can be used to insert explicit wait points in a command stream.
Wait uses the target p/t-set by default, which can be set to wait for any combination of processes/threads. You
can use the wait command to insert wait points between the commands of 2 compound command.

The threadwait and procwait pgienv variables can be used to configure the behavior of wait. For more
information, refer to pgienv usage in “Configurable Wait Mode,” on page 72.

Table 9.6, “PGDBG Wait Behavior” describes the behavior of wait.
Suppose S is the target p/t-set. In the table,

e Pis the set of all processes described by S.

* pis asingle process.

e Tis the set of all threads described by S.

e t isasingle thread.

Table 9.6. PGDBG Wait Behavior

Command |threadwait |procwait |Wait Set
wait all all Wait for T
any
none
wait all any Wait for all threads in at least one p in P
none
wait any any Wait for all tin T for at least one p in P
none none
wait all all all Wait for T
any
none
wait all all any Wait for all threads of at least one p in P
none
wait all any any Wait for all tin T for at least one p in P
none none
wait any all all Wait for at least one thread for each process p in P
wait any all any Wait for at least one tin T
any none
none

Chapter 9. PGDBG Parallel Debugging Overview

Command |threadwait |procwait |Wait Set

wait any any all Wait for at least one thread in T for each process p in P
none

wait none |all all Wait for no threads
any any
none none

Status Messages

PGDBG can produce a variety of status messages during a debug session. This feature can be useful in text

mode in the absence of the graphical aids provided by the GUI. Use the pgienv command to enable or disable

the types of status messages produced by setting the verbose environment variable to an integer-valued bit

mask using pgienv:

pgi env verbose <bitmask>

The values for the bit mask, listed in the following table, control the type of status messages desired.

Table 9.7. PGDBG Status Messages

Value

Type

Information

0x1

Standard

Report status information on current process/thread only. A
message is printed when the current thread stops and when threads
and processes are created and destroyed. Standard messaging is the
default and cannot be disabled.

0x2

Thread

Report status information on all threads of current processes. A
message is reported each time a thread stops. If process messaging
is also enabled, then a message is reported for each thread across
all processes. Otherwise, messages are reported for threads of the
current process only.

0x4

Process

Report status information on all processes. A message is reported
each time a process stops. If thread messaging is also enabled,
then a message is reported for each thread across all processes.
Otherwise, messages are reported for the current thread only of
each process.

0x8

SMP

Report SMP events. A message is printed when a process enters or
exits a parallel region, or when the threads synchronize. The PGDBG
OpenMP handler must be enabled.

0x16

Parallel

Report process-parallel events (default).

0x32

Symbolic debug
information

Report any errors encountered while processing symbolic debug
information (e.g. ELF, DWARF2).

The PGDBG Command Prompt

The PGDBG command prompt reflects the current debug mode, as described in “PGDBG Debug Modes,” on

page 62.

75

Parallel Events

In serial debug mode, the PGDBG prompt looks like this:
pgdbg>

In threads-only debug mode, PGDBG displays the current p/t-set in square brackets followed by the ID of the
current thread:

pgdbg [all] 0>
Current thread is O

In process-only debug mode, PGDBG displays the current p/t-set in square brackets followed by the ID of the
current process:

pgdbg [all] 0>
Current process is O

In multilevel debug mode, PGDBG displays the current p/t-set in square brackets followed by the ID of the
current thread prefixed by the id of its parent process:

pgdbg [all] 1.0>
Current thread 1.0

The pgienv promptlen variable can be set to control the number of characters devoted to printing the current
p/t-set at the prompt.

Parallel Events

76

This section describes how to use a p/t-set to define an event across multiple threads and processes. Events,
such as breakpoints and watchpoints, are user-defined events. User-defined events are thread-level commands,
described in “Thread Level Commands,” on page 70.

Breakpoints, by default, are set across all threads of all processes. A prefix p/t-set can be used to set
breakpoints on specific processes and threads. For example:

i) pgdbg [all] 0> b 15

ii) pgdbg [all] 0> [all] b 15

iii) pgdbg [all] 0> [0.1:3] b 15

(i) and (i) are equivalent. (iii) sets a breakpoint only in threads 1,2,3 of process 0.

By default, all other user events are set for the current thread only. A prefix p/t-set can be used to set user
events on specific processes and threads. For example:

i) pgdbg [all] 0> watch gl ob
ii) pgdbg [all] 0> [*] watch gl ob

(i) sets a data breakpoint for glob on thread 0 only. (ii) sets a watchpoint for glob on all threads that are
currently active.

When a process or thread is created, it inherits all of the breakpoints defined for the parent process or thread.
All other events must be defined explicitly after the process or thread is created. All processes must be stopped
to add, enable, or disable a user event.

Events may contain if and do clauses. For example:

pgdbg [all] 0> [*] break func if (glob!=0) do {set f = 0}

Chapter 9. PGDBG Parallel Debugging Overview

The breakpoint fires only if glob is non-zero. The do clause is executed if the breakpoint fires. The if and do
clauses execute in the context of a single thread. The conditional in the if clause and the body of the do execute
in the context of a single thread, the thread that triggered the event. The conditional definition as above can be
restated as follows:

[0] if (glob!=0) {[0] set f
[1] if (glob!=0) {[1] set f

0}
0}

When thread 1 hits func, glob is evaluated in the context of thread 1. If glob evaluates to non-zero, f is bound
in the context of thread 1 and its value is set to 0.

Control commands can be used in do clauses, however they only apply to the current thread and are only well
defined as the last command in the do clause. For example:

pgdbg [all] 0> [*] break func if (glob!=0) do {set f = 0; c}

If the wait command appears in a do clause, the current thread is added to the wait set of the current process.
For example:

pgdbg [all] 0> [*] break func if (glob!=0) do {set f = 0; c; wait}

i f conditionals and do bodies cannot be parallelized with prefix p/t-sets. For example, the following
command is illegal:

pgdbg [all] 0> break func if (glob!=0) do {[*] set f = 0} |LLEGAL

The body of a do statement cannot be parallelized.

Parallel Statements

This section describes how to use a p/t-set to define a statement that executes for multiple threads and
processes.

Parallel Compound/Block Statements
Each command in 2 compound statement is executed in order. The target p/t-set is applied to all statements in
a compound statement. The following two examples (i) and (i) are equivalent:

i) pgdbg [all] O0>[*] break main; cont; wait; print f@l@
ii) pgdbg [all] O0>[*] break main; [*]cont; [*]wait; [*]print f@l@

Use the wait command if subsequent commands require threads to be stopped, as the print command in the
example does.

The threadwait and procwait environment variables do not affect how commands within a compound statement
are processed. These pgienv environment variables describe to PGDBG under what conditions (runstate of
program) it should accept the next (compound) statement.

Parallel If, Else Statements

A prefix p/t-set can be used to parallelize an if statement. An if statement executes in the context of the current
thread by default. The following example:

pgdbg [all] 0> [*] if (i==1) {break func; c; wait} else {sync func2}

"7

Parallel Statements

is equivalent to the following pseudo-code:

for the subset of [*] where (i==1)
break func; c; wait; for the subset of [*] where (i!=1) sync func2

Parallel While Statements

A prefix p/t-set can be used to parallelize a while statement. A while statement executes in the context of the
current thread by default. The following example:

pgdbg [all] 0> [*] while (i<10) {n; wait; print i}

is equivalent to the following pseudo-code:

| oop:

if the subset of [*] is the enpty set
got o done

endi f

for the subset [s] of [*] where (i<10)
[s]n; [s]wait; [s]print i;

endf or

goto | oop

The while statement terminates when either the subset of the target p/t-set matching the while condition is the
empty set, or a return statement is executed in the body of the while.

Return Statements

78

The return statement is defined only in serial context since it cannot return multiple values. When return is
used in a parallel statement, it returns the last value evaluated.

Chapter 10. PGDBG - Parallel
Debugging with OpenMP

This chapter provides information on how to use PGDBG to debug OpenMP applications. Before reading this
chapter, review the information in Chapter 9, “PGDBG Parallel Debugging Overview,” on page 61.

OpenMP and Multi-thread Support

PGDBG provides full control of threads in parallel regions. Commands can be applied to all threads, a single
thread, or a group of threads. Thread identification in PGDBG uses the native thread numbering scheme for
OpenMP applications; for other types of multi-threaded applications thread numbering is arbitrary. OpenMP
PRIVATE data can be accessed accurately for each thread. PGDBG provides understandable status displays
regarding per-thread state and location.

Advanced features provide for configurable thread stop modes and wait modes, allowing debugger operation
that is concurrent with application execution.

Multi-Thread and OpenMP Debugging

PGDBG automatically attaches to new threads as they are created during program execution. PGDBG reports
when a new thread is created and the thread ID of the new thread is printed.

([1] New Thr ead)

The system ID of the freshly created thread is available through the threads command. You can use the procs
command to display information about the parent process.

PGDBG maintains a conceptual current thread. The current thread is chosen by using the thread command
when the debugger is operating in text mode (invoked with the -text option), or by clicking in the thread
grid when the GUI interface is in use (the default). A subset of PGDBG commands known as thread-level
commands, when executed, apply only to the current thread. See “Thread Level Commands,” on page 70, for
more information.

The threads command lists all threads currently employed by an active program. The threads command
displays each thread’s unique thread ID, system ID (OS process ID), execution state (running, stopped,
signaled, exited, or killed), signal information and reason for stopping, and the current location (if stopped or

79

Debugging OpenMP Private Data

signaled). An arrow (=>) indicates the current thread. The process ID of the parent is printed in the top left
corner. The threads command does not change the current thread.

pgdbg [all] 2> thread 3
pgdbg [all] 3> threads
O I D PID STATE SI GNAL LOCATI ON
=> 3 18399 Stopped SIGIRAP nain line: 31 in "onp.c" address: 0x80490ab
2 18398 Stopped SIGIRAP nain line: 32 in "onp.c" address: 0x80490cf
1 18397 Stopped SIGIRAP nain line: 31 in "onp.c" address: 0x80490ab
0 18395 Stopped SIGIRAP f line: 5 in "onp.c" address: 0x8048fa0

In the GUI, thread state is represented by a color in the process/thread grid.

Table 10.1. Thread State Is Described Using Color

Thread State Description Color

Stopped If all threads are stopped at breakpoints, or were |Red
directed to stop by PGDBG

Signaled If at least one thread is stopped due to delivery of a | Blue
signal

Running If at least one thread is running Green

Exited or Killed If all threads have been killed or exited Black

Debugging OpenMP Private Data

80

PGDBG supports debugging of OpenMP private data for all supported languages. When an object is declared
private in the context of an OpenMP parallel region, it essentially means that each thread team has its own copy
of the object. This capability is shown in the following Fortran and C/C++ examples, where the loop index
variable i is private by default.

FORTRAN example:

program onp_pri vat e_dat a

i nteger array(8)

call onp_set_numt hreads(2)
I $OVP PARALLEL DO

do i=1,8

array(i) =

enddo

1 $OVP END PARALLEL DO

print *, array

end

C/C++ example:

#i ncl ude <onp. h>

int main ()
{ . .

int i;

int array[8];
onp_set _num t hr eads(2);
#pragma onp paral l el

{
#pragma onp for

for (i =0; i <8; ++i) {

Chapter 10. PGDBG - Parallel Debugging with OpenMP

array[i] =1i;

}

}

for (i =0; i < 8; ++i) {
printf("array[%] = %@\n",i, array[i]);
}

}

Display of OpenMP private data when the above examples are built with a PGI compiler and displayed by
PGDBG is as follows:

pgdbg [all] 0> [*] print i
[0] print i:
1

[1] print i:
5

The example specifies [*] for the p/t-set to execute the print command on all threads. Table 10.1 shows the
values for i in the PGDBG GUI using a Custom Window.

Note

All Threads is selected in the View Selector to display the value on both threads.

Figure 10.1. OpenMP Private Data in PGDBG GUI

™¥peoBGCustom ol x|
File Options
Command> |print i |
| =top || Clear |
[0] print i:
1
[1] print i:
]
Thread 0
Thread 1
All Threads
Focus
Current Thread
| Reset || Close | All Threads - Lipdate || Lock |

Note

All Threads is selected in the View Selector to display the value on both threads.

81

82

Chapter 11. PGDBG Parallel
Debugging with MPI

PGDBG is a parallel application debugger capable of debugging multi-process MPI applications, multi-thread
and OpenMP applications, and hybrid multi-thread/multi-process applications that use MPI to communicate
between multi-threaded or OpenMP processes. On Windows platforms, only OpenMP/multi-thread debugging
is supported. This section gives an overview of how to use PGDBG to debug parallel MPI applications. It
provides some important definitions and background information on how PGDBG represents processes and
threads.

MPI and Multi-Process Support

PGDBG supports debugging of multi-process MPI applications, whether running on a single system or
distributed on multiple systems. MPI applications can be started under debugger control using the mpirun
command, or PGDBG can attach to a running, distributed MPI application. In either case all processes

are automatically brought under debugger control. Process identification uses the MPI rank within
MPI_COMM_WORLD.

MPI debugging is supported on Linux and Windows platforms.

Process Control

PGDBG is capable of debugging parallel-distributed MPI programs and hybrid distributed multi-threaded
applications. PGDBG is invoked via MPIRUN and automatically attaches to each MPI process as it is created.
See “Multi-Process MPI Debugging,” on page 86 to get started.

Here are some things to consider when debugging an MPI program:

e Use p/t-sets to focus on a set of processes. Be mindful of process dependencies.
e For a running process to receive a message, the sending process must be allowed to run.

e Process synchronization points, such as MPI_Barrier, do not return until all processes have hit the sync
point.

83

Process Synchronization

e MPI_Finalize acts as an implicit barrier, though on MPICH-1 process 0 returns while Processes 1 through
n-1 exit.

You can apply a control command, such as cont or step, to a stopped process while other processes are
running. A control command applied to a running process is applied to the stopped threads of that process
and is ignored by its running threads. Those threads held by the OpenMP event handler also ignore the control
command in most situations.

PGDBG automatically switches to process wait mode none as soon as it attaches to its first MPI process. See the
pgienv command and “Configurable Wait Mode,” on page 72 for details.

Use the run command to rerun an MPI program. The rerun command is not useful for debugging MPI
programs since MPIRUN passes arguments to the program that must be included. After MPI debugging is shut
down, PGDBG cleans up all of its MPI processes.

Process Synchronization

Use the PGDBG sync command to synchronize a set of processes to a particular point in the program. The
following command runs all processes to MPI_Finalize:

pgdbg [all] 0.0> sync MPI_Finalize

The following command runs all threads of process 0 and process 1 to MPI_Finalize:
pgdbg [all] 0.0> [0:1.*] sync MPl_Finalize

A synchronize command only successfully syncs the target processes if the sync address is well defined for
each member of the target process set, and all process dependencies are satisfied. If these conditions are not
met, for example, a member could wait forever for a message. The debugger cannot predict if a text address is
in the path of an executing process.

MPI Message Queues

84

PGDBG can dump the MPI message queues through the mqdump command, described in “Memory Access,”
on page 113. In the PGDBG GUI, the message queues can be viewed by selecting the Messages item under the
Windows menu. This command can also have a p/t-set prefix to specify a subset of processes and/or threads.
When using the GUI, a subwindow is displayed with the message queue output illustrated in Figure 11.1 (the
PGDBG text debugger produces the same output). Within the subwindow, you can select which process/
threads to display with the View Selector combo box located at the bottom of the subwindow (e.g., Process 1 in
Figure 11.1).

The following error message may display if you invoke mqdump:

ERROR: MPI Message Queue library not found.
Try setting ‘' PGDBG MJS_LI B_OVERRI DE' envi ronnment vari abl e
or set via the PGDBG command: pgienv ngslib <path>.

If this message is displayed, then the PGDBG_MQS_LIB_OVERRIDE environment variable should be set to the
absolute path of libtvmpich.so or another shared object that is compatible with the version of MPI being used.

Note

The default path can be overwritten via the mgslib variant of the pgienv PGDBG command.

Chapter 11. PGDBG Parallel Debugging with MPI

Note

mqdump is currently not supported on Windows.

Figure 11.1. Messages Subwindow

| PGDBG Message Queues X
File Options
[1] modump :
MPI_COWM_lWORLD
Comm_size 2
Comm_rank, 1
Fending sends: nang
Pending receives:
@]
Mon-blocking send g
Status Pending B
Saurce 0 CShomesswSdenos,TOOLS_DEMOMPI Ampi-g. 00
Tag 0 (0000000007
User Buffer hffcdeas

Buffer Length 4 COwOO0000047

Inexpected messages: nane

MPI_COMM_WORLD_collectiwve

Comn_size 2 -
‘ Feset | | Close | Process 1 - Update | | Lock |
1 1
MPI Groups
PGDBG identifies each process by its MPI_COMM_WORLD rank. In general, PGDBG currently ignores MPI
groups.

MPI Listener Processes

Entering Control-C (~C) from the PGDBG command line can be used to halt all running processes. This is not
the preferred method, however, to use while debugging an MPICH-1 program. Entering ~C at the command
line sends a SIGINT signal to the debugger’s children. This signal is never received by the MPI processes listed
by the procs command (i.e., the initial and attached processes); SIGINT is intercepted in each case by PGDBG.
However, PGDBG does not attach to the MPI listener processes paired with each MPI process. These listener
processes receive a ~C from the command line, which kills these processes and results in undefined program
behavior. For this reason, PGDBG automatically switches to process wait mode none (pgienv procwait none) as
soon as it attaches to its first MPI process.

Setting 'pgienv procwait none' allows commands to be entered while there are running processes, which
allows the use of the halt command to stop running processes without the use of ~C.

Note

halt cannot interrupt a wait command. ~C must be used for this.

85

SSH and RSH

In MPI debugging, wait should be used with care.

SSH and RSH

By default, PGDBG uses rsh for communication between remote PGDBG components. PGDBG can also use
ssh for secure environments. The environment variable PGRSH should be set to ssh or r sh, to indicate the
desired communication method.

If you use SSH as the mechanism for launching the remote components of PGDBG, you may want to do some
additional configuration. The default configuration of ssh can result in a password prompt for each remote
cluster node on which the debugger runs. You should check with your network administrator to make sure
that you comply with your local security policies when configuring ssh. The following set of steps provide one
way to configure SSH to eliminate this prompt.

$ ssh-keygen -t dsa

$ eval “ssh-agent -s°

$ ssh-add

<meke sure that $HOME i s not group-witabl e>

$ cd $HOWE . ssh
$ cp id_dsa.pub authorized_keys

Then for each cluster node you use in debugging, use:

$ ssh <host >

A few things that are important related to this example are these:
e The ssh-keygen command prompts for a passphrase. that is used to authenticate to the ssh-agent during

future sessions. The passphrase can be anything you choose.

¢ Once you answer the prompts to make the initial connection, subsequent connections should not require
further prompting.

e This example uses 'ssh-agent -s', which is correct for the sh or bash shells. For csh shells, use 'ssh-agent -

C.

After logging out and logging back in, the ssh-agent must be restarted and reauthorized. For example, in a bash
shell, this is accomplished as follows:

$ eval “ssh-agent -s°
$ ssh-add

You must enter the passphrase that was initially given to ssh-add to authenticate to the ssh-agent.

For further information, consult your SSH documentation.

Multi-Process MPI Debugging

86

When installed as part of the PGI Cluster Development Kit (CDK) on Linux platforms, PGDBG supports multi-
process MPI debugging. The PGI CDK contains versions of MPICH, MPICH2, and MVAPICH pre-configured to
support debugging cluster applications with PGDBG. Non-CDK MPI software must be configured to support
PGDBG; see http://www.pgroup.com/support/faq.htm for more information.

Chapter 11. PGDBG Parallel Debugging with MPI

Invoking PGDBG for MPI Debugging
The command used to start MPI debugging under MPICH-1 using the PGDBG GUI is:
% nmpi run -np Nprocs -dbg=pgdbg executable [argl,...argn]

For TEXT mode debugging, be certain that the DISPLAY variable is undefined in the shell that is invoking
mpirun. If this variable is set, you can undefine it by using one of the following commands:

For sh/bash users, use this command:

$ unset DI SPLAY

For csh/tcsh users, use this command:

% unset env DI SPLAY

To launch and debug an MPICH-2, MVAPICH, MSMPI, or HPMPI job, use this command:

% pgdbg [-text] -npi[:<launcher>] <npiexec_args> [-programargs argl,...argn]

The default setting for <I auncher > in - npi : <l auncher > is npi exec.

Note

If the path for <I auncher > is not part of the PATH environment variable, then you must specify the
full path to the <I auncher > command.

% pgdbg [-text] -npi:npiexec] <npiexec_args> [-programargs argl,...argn]
e For HPMPI, <I auncher > is npi r un, so the need to instead specify - npi : npi r un

¢ For MVAPICH, <I auncher > is npi r un_r sh, so you specify - npi : npi run_r sh

When debugging an MPI job by invoking PGDBG with the -mpi option, each process is stopped before the first
assembly instruction in the program. Continuing execution using st ep or next is not appropriate.; instead,
use the cont command.

Another way to invoke PGDBG for debugging an MPI job applies only to MPICH-2, though this invocation
currently does not support TEXT mode:

% npi exec -np nprocs -pgi executable [argl,...argn]

Note

You cannot restart an MPI application from within PGDBG. You must exit the debugger and start a new
debug session.

Newer versions of the Linux kernel supports a security feature that allows shared objects to be loaded at
randomized addresses. Older versions of PGDBG assumed that a shared object loaded by an MPI application
would be loaded at the same address for each process of an MPI job; thus incorrect mapping of symbols in
shared objects could occur when this mode is enabled.

PGDBG now supports debugging of MPI jobs running on Linux kernels when this address randomization
mode is enabled. However, when this mode is enabled, the current implementation of PGDBG does not share

87

Multi-Process MPI Debugging

symbol table information associated with shared objects that are loaded by each process of an MPI job, which
increases memory usage by PGDBG. Therefore, PGI recommends that this kernel mode be disabled on Linux
clusters where PGDBG is used to debug MPI applications.

You can disable randomization mode by executing the following command as root on each node of the
clusters:

sysctl -w kernel .random ze_va_space=0

Note

PGDBG emits a warning whenever it detects that it is being invoked on a multi-process MPI job when
this kernel mode is enabled.

Using PGDBG for MPI Debugging

88

PGDBG automatically attaches to new MPI processes as they are created by the running MPI application.
PGDBG displays an informational message as it attaches to the freshly created processes.

([1] New Process)

The MPI global rank is printed with the message. You can use the procs command to list the host and the PID
of each process by rank. The current process is indicated by an arrow (=>). You can use the proc command

to change the current process by process ID.
pgdbg [all] 0.0> proc 1; procs
Process 1: Thread O Stopped at 0x804a0e2, function nmain, file MPl.c, line 30
#30: aft=tine(&aft);
ID |IPID STATE THREADS HOST

0 24765 Stopped 1 | ocal
=> 1 17890 Stopped 1 red2. wil.st.com

The execution state of a process is described in terms of the execution state of its component threads. See
Table 10.1, “Thread State Is Described Using Color,” on page 80 for a description of how thread state is
represented in the GUL

The PGDBG command prompt displays the current process and the current thread. In the above example, the
current process was changed to process 1 by the proc 1 command and the current thread of process 1 is 0;
this is written as 1.0:

pgdbg [all] 1.0>

See “Process and Thread Control,” on page 71 for a complete description of the prompt format.
The following rules apply during a PGDBG debug session:

e PGDBG maintains a conceptual current process and current thread.

e Each active process has a thread set of size >=1.

e The current thread is 2 member of the thread set of the current process.

Certain commands, when executed, apply only to the current process or the current thread. See “Process Level
Commands,” on page 70 and “Thread Level Commands,” on page 70 for more information.

Chapter 11. PGDBG Parallel Debugging with MPI

A license file distributed with PGDBG restricts the total number of MPI processes that can be debugged. There
are internal limits on the number of threads per process that can be debugged.

Debugging Support for MPICH-1

PGDBG supports redirecting stdin, stdout, and stderr with the following MPICH switches:

Table 11.1. MPICH Support

Command Output

-stdout <file> Redirect standard output to <file>
-stdin <file> Redirect standard input from <file>
-stderr <file> Redirect standard error to <file>

PGDBG also provides support for the following MPICH switches:

Command Output
-nol ocal PGDBG runs locally, but no MPI processes run locally
-all-local PGDBG runs locally, all MPI processes run locally

For information about how to configure an arbitrary installation of MPICH to use PGDBG, see the PGDBG
online FAQ at http://www.pgroup.com/support/faq.htm.

When PGDBG is invoked via mpirun the following PGDBG command-line arguments are not accessible. A
workaround is listed for each.

Argument Workaround

- dbx Include 'pgienv dbx on' in .pgdbgrc file.

-S startup Use .pgdbgrc default script file and the script command.

-¢ "command” Use .pgdbgrc default script file and the script command.

-text Clear your DISPLAY environment variable before invoking npi r un.

-t <target> Add to the beginning of the PATH environment variable a path to the
appropriate PGDBG.

Debugging Support for MPICH-2, MVAPICH, HPMPI, and MSMPI

Rather than debugging an MPI application via "pgdbg -mpi", there may be situations where you may want to
run mpiexec separately from pgdbg, such as when the MPI job expects input from the user or when the user
wishes to collect output from multiple MPI jobs. For example, suppose that the user wishes to debug an MPI
job that would otherwise be invoked in this manner:

% npi exec -np n executable ...
The user can start up pgdbg in one command window:

% pgdbg -npi _|isten: <port >

89

Debugging Support for MPICH-2, MVAPICH, HPMPI, and MSMPI

90

Then npi exec can be invoked using this command, where host is the host name on which the debugger is
being invoked and por t is any free IP port number.

% npi exec -np n <full _path_for_pgserv> -mup host:<port> executable ...

Tip

Choosing a random number for the por t between 10000 and 40000 almost always works.

Debugging with pgdbg -mpi invokes each MPI process under PGDBG's debug agent, pgser v. Each debug
agent needs to communicate job size and process rank information to pgdbg on startup, which is determined
by inspecting environment variables set for debug agent by the MPI launcher.

If pgser v does not recognize which environment variables are being used to communicate size and rank
information, then the user sees a message similar to this:

pgserv: Could not determ ne rank, See PG Tool s guide
pgserv: for use with non-standard MPlI | aunchers

In this case, the user should invoke pr i nt env by the MPI launcher to determine which environment
variables are being used to communicate rank and size information. Then the user should set the environment
variables PGDBG_MPI _RANK_ENV and PGDBG_MPI _SI ZE_ENV to the associated environment variable
names generated by launcher. If the MPI launcher is not using environment variables to communicate size and
rank information to MPI processes, then PGDBG cannot be used debug MPI jobs invoked with pgdbg -mpi.

Chapter 12. PGDBG Parallel
Debugging of Hybrid Applications

PGDBG is a parallel application debugger capable of debugging multi-process MPI applications, multi-
thread and OpenMP applications, as well as hybrid multi-thread/multi-process applications that use MPI to
communicate between multi-threaded or OpenMP processes. On Windows platforms, only OpenMP/multi-
thread debugging is supported. This section concentrates on parallel debugging of hybrid applications.

Multi-threaded and OpenMP applications may be run using more threads than the available number of CPUs,
and MPI applications may allocate more than one process to a cluster node. PGDBG supports debugging the
supported types of applications regardless of how well the number of threads match the number of CPUs or
how well the number of processes match the number of cluster nodes.

PGDBG Multilevel Debug Mode

As described in “PGDBG Debug Modes,” on page 62, PGDBG can operate in four debug modes. The mode
determines a short form for uniquely naming threads and processes. The debug mode is set automatically or
by the pgienv command.

For multilevel debugging, you use the pgienv command to set the debug mode to multilevel.

pgi env node multil evel

Multilevel Debugging

[Linux Only] The name of a thread in multilevel debug mode is the thread ID prefixed with its parent process
ID. This forms a unique name for each thread across all processes. This naming scheme is valid in all debug
modes. PGDBG changes automatically to multilevel debug mode from process-only debug mode or threads-
only debug mode when at least one MPI process creates multiple threads.

Example 12.1. Thread IDs in multilevel debug mode

0.1 Thread 1 of process 0
0.* All threads of process 0
B All threads of all processes

91

Multilevel Debugging

In multilevel debug, mode status and error messages are prefixed with process/thread IDs depending on
context. Further, in multilevel debug mode, PGDBG displays the current p/t-set in square brackets followed by
the ID of the current thread prefixed by the id of its parent process:

pgdbg [all] 1.0>
Current thread 1.0

For more information on p/t sets, refer to “Process/Thread Sets,” on page 64.

92

Chapter 13. PGDBG Command
Reference

This chapter describes the PGDBG command set in detail, grouping the commands by these categories:

Process Control Program Locations Scope Conversions

Process-Thread Sets Printing Variables and Register Access Miscellaneous
Expressions

Events Symbols and Expressions ~ Memory Access

For an alphabetical listing of all the commands, with a brief description of each, refer to “Command
Summary,” on page 36 in “PGDBG Command Summary”.

Notation Used in Command Sections

The command sections that follow use these conventions for the command names and arguments, when the
command accepts one.

e Command names may be abbreviated by omitting the portion of the command name enclosed in brackets

(D.
* Argument names are italicized.
e Argument names are chosen to indicate what kind of argument is expected.
e Arguments enclosed in brackets([]) are optional.
¢ Two or more arguments separated by a vertical line (I) indicate that any one of the arguments is acceptable.
* An ellipsis (...) indicates an arbitrarily long list of arguments.

e Other punctuation, such as commas and quotes, must be entered as shown.

Example 13.1. Syntax examples

Example 1:

lis[t] [count | lo:hi | routine | |ine,count]

93

Process Control

This syntax indicates that the command list may be abbreviated to lis, and that it can be invoked without any
arguments or with one of the following: an integer count, a line range, a routine name, or a line and a count.

Example 2:
att[ach] pid [exe [host]]

This syntax indicates that the command attach may be abbreviated to att, and, when invoked, must have a
process ID argument, pid. Optionally you can specify an executable file, exe, or both an executable file and a
host name, host.

Process Control

The following commands, together with the breakpoints described in the next section, control the execution
of the target program. PGDBG lets you easily group and control multiple threads and processes. See “Basic
Process and Thread Naming,” on page 61 for more details.

attach
att[ach] pid [exe [host]]

Attach to a running process with process ID pid. If the process is not running on the local host, then specify
the absolute path of the executable file exe and the host machine name. For example, at t ach 1234
attempts to attach to a running process whose process ID is 1234 on the local host. On a remote host, you
may enter something like at t ach 1234 / home/ deno/ a. out nyhost . In this example, PGDBG tries to
attach to a process ID 1234 called / home/ deno/ a. out on a host named nyhost .

PGDBG attempts to infer the arguments of the attached target application. If PGDBG fails to infer the argument
list, then the program behavior is undefined if the run or rerun command is executed on the attached
process. This means that run and rerun should not be used for most attached MPI programs.

The stdio channel of the attached process remains at the terminal from which the program was originally
invoked.

cont

c[ont]

Continue execution from the current location.
debug

de[bug] [target [argl _ argn]]

Load the specified target program with optional command-line arguments.
detach

det [ach]

Detach from the current running process.

halt

halt [command]

94

Chapter 13. PGDBG Command Reference

Halt the running process or thread.

next
n[ext] [count]

Stop after executing one source line in the current routine. This command steps over called routines. The
count argument stops execution only after executing count source lines.

nexti
nexti [count]

Stop after executing one instruction in the current routine. This command steps over called routines. The
count argument stops execution only after executing count instructions.

proc
proc [id]

Set the current process to the process identified by id. When issued with no argument, proc lists the location
of the current thread of the current process in the current program. For information on how processes are
numbered, refer to “Multi-Process MPI Debugging,” on page 86.

procs

procs

Print the status of all active processes, listing each process by its logical process ID.

quit
ql ui t]

Terminate the debugging session.

rerun

rer[un] [argO
argl ... argn] [<inputfile] [[>| >&| > | >>&] outputfile]

The rerun command is the same as run except if no args are specified, the previously used target arguments
are not re-used.
run

ru[n] [arg0 argl
argn] [<inputfile] [[>| >&| >> | >>&] outputfile]

Execute program from the beginning. If arguments arg0, argl, and so on are specified, they are set up as the
command-line arguments of the program. Otherwise, the arguments for the previous run command are used.
Standard input and standard output for the target program can be redirected using < or > and an input or
output filename.

95

Process Control

step

s[tep] [count | count]

Stop after executing one source line. This command steps into called routines. The count argument stops
execution after executing count source lines. The up argument stops execution after stepping out of the current
routine (see stepout).

stepi

stepi [count | up]

Stop after executing one instruction. This command steps into called routines. The count argument stops
execution after executing count instructions. The up argument stops the execution after stepping out of the
current routine (see stepout).

stepout

st epo[ut]

Stop after returning to the caller of the current routine. This command sets a breakpoint at the current return
address, and does a continue. To work correctly, it must be possible to compute the value of the return
address. Some routines, particularly terminal (or leaf) routines at higher optimization levels, may not set up

a stack frame. Executing stepout from such a routine causes the breakpoint to be set in the caller of the most
recent routine that set up a stack frame. This command halts execution immediately upon return to the calling
routine.

sync
sy[nc] line | func
Advance to the specified source location, either the specified line or the first line in the specified function,
ignoring any user-defined events.

SyNci
synci addr | func

Advance to the specified address, or to the first address in the specified function, ignoring any user-defined
events.

thread
thread [nunber]

Set the current thread to the thread identified by number; where number is a logical thread id in the current
process’ active thread list. When issued with no argument, thread lists the current program location of the
currently active thread.

threads

t hr eads

Print the status of all active threads. Threads are grouped by process. Each process is listed by its logical
process id. Each thread is listed by its logical thread id.

96

Chapter 13. PGDBG Command Reference

wait
wait [any | all | none]

Return the PGDBG prompt only after specific processes or threads stop.

Process-Thread Sets

The following commands deal with defining and managing process thread sets. See “Process/Thread Sets,” on
page 64, for a detailed discussion of process-thread sets.

defset
defset nanme [p/t-set]

Assign a name to a process/thread set. Define a named set. This set can later be referred to by name. A list of
named sets is stored by PGDBG.

focus
focus [p/t-set]

Set the target process/thread set for commands. Subsequent commands are applied to the members of this set
by default.

undefset

undefset [name | -all]

Remove a previously defined process/thread set from the list of process/thread sets. The debugger-defined p/t-
set [all] cannot be removed.

viewset
vi ewset [nane]

List the active members of the named process/thread set. If no process/thread set is given, list the active
members of all defined process/thread sets.

whichsets
whi chsets [p/t-set]

List all defined p/t-sets to which the members of a process/thread set belong. If no process/thread set is
specified, the target process/thread set is used.

Events

The following commands deal with defining and managing events. See “Parallel Events,” on page 76, for a
general discussion of events and the optional arguments.

break

b[r eak]
b[reak] line [if condition)] [do {commands}]

97

Events

b[reak] routine [if(condition)] [do {conmands}]

When no arguments are specified, the break command prints the current breakpoints. Otherwise, set

a breakpoint at the indicated line or routine. If a routine is specified, and the routine was compiled for
debugging, then the breakpoint is set at the start of the first statement in the routine (after the routine’s
prologue code). If the routine was not compiled for debugging, then the breakpoint is set at the first
instruction of the routine, prior to any prologue code. This command interprets integer constants as line
numbers. To set a breakpoint at an address, use the addr command to convert the constant to an address, or
use the breaki command.

When a condition is specified with if, the breakpoint occurs only when the specified condition is true. If do is
specified with a command or several commands as an argument, the command or commands are executed
when the breakpoint occurs.

The following table provides examples of using break to set breakpoints at various locations.

This break command... Sets breakpoints...

break 37 at line 37 in the current file

break "xyz.c" @7 at line 37 in the file xyz. ¢

break main at the first executable line of routine main
break {addr Oxf0400608} at address Oxf 0400608

break {line} at the current line

break {pc} at the current address,

The following more sophisticated command stops when routine xyz is entered only if the argument n is
greater than 10.

break xyz if(xyz@ > 10)

The next command prints the value of n and performs a stack trace every time line 100 in the current file is
reached.

break 100 do {print n; stack}

breaki

br eaki
breaki routine [if (condition)] [do {conmands}]
breaki addr [if (condition)] [do {commands}]

When no arguments are specified, the breaki command prints the current breakpoints. Otherwise, this
command sets a breakpoint at the indicated address or routine.

e Ifaroutine is specified, the breakpoint is set at the first address of the routine. This means that when the
program stops at this breakpoint the prologue code which sets up the stack frame will not yet have been
executed, so values of stack arguments may not yet be correct.

* Integer constants are interpreted as addresses.

e To specify a line, use the line command to convert the constant to a line number, or use the break
command.

98

Chapter 13. PGDBG Command Reference

e The if and do arguments are interpreted in the same way as for the break command. T

The following table provides examples of setting breakpoints using breaki.

This break command... Sets breakpoints...

breaki Oxf 0400608 at address 0xf 0400608

breaki {line 37} at line 37 in the current file

breaki "xyz.c" @7 at line 37 in the file xyz. ¢

breaki main at the first executable address of routine
main

breaki {line} at the current line

breaki {pc} at the current address,

In the following slightly more complex example, when n is greater than 3, the following command stops and
prints the new value of n at address 0x6480:

breaki 0x6480 if(n>3) do {print "n=", n}

breaks

br eaks

Display all the existing breakpoints.

catch
catch [sig:sig] [sig][, sig...]1]

When no arguments are specified, the catch command prints the list of signals being caught. With the sig:sig
argument, this command catches the specified range of signals. With a list, catch signals with the specified
number(s). When signals are caught, PGDBG intercepts the signal and does not deliver it to the target
application. The target runs as though the signal was never sent.

clear
clear [all | routine| line | {addr addr}]

Clear breakpoints. With al | argument, clear all breakpoints. With a r out i ne argument, clear all
breakpoints from the first statement in the specified routine, r out i ne. With a line number argument, clear
all breakpoints from the specified line number in the current source file. With an address argument, clear
breakpoints from the specified address addr .

When no arguments are specified, the clear command clears all breakpoints at the current location.
delete
del[ete] [event-nunber | 0| all | event-nunber [, event-nunber...]]

Delete the event event - nunber or all events. delete 0 is the same as delete all. To specify multiple event
numbers, separate the even numbers by commas.

When no arguments are given, the delete command lists all defined events by event number.

99

Events

disable

do

doi

di sab[le] [event-nunber | all]
When no arguments are specified, the disable command prints both enabled and disabled events.

With arguments, this command disables the event event - nunber or all events. Disabling an event definition
suppresses actions associated with the event, but leaves the event defined so that it can be used later.

do {commands} [if (condition)]
do {commands} at line [if (condition)]
do {commands} in routine [if (condition)]

Define a do event. This command is similar to watch except that instead of defining an expression, it defines
a list of commands to be executed. Without the optional arguments at or i n, the commands are executed
at each line in the program. The at argument with a line specifies the commands to be executed each time
that line is reached. The i n argument with a routine specifies the commands are executed at each line in the
routine. The if option has the same meaning as in watch. If a condition is specified, the do commands are
executed only when the condition is true.

doi {conmands} [if (condition)]
doi {conmands} at addr [if (condition)]
doi {conmands} in routine [if (condition)]

Define a doi event. This command is similar to watchi except that instead of defining an expression, it defines
a list of commands to be executed. If an address (addr) is specified, then the commands are executed each
time that the specified address is reached. If a routine (routine) is specified, then the commands are executed
at each instruction in the routine. If neither an address nor a routine is specified, then the commands are
executed at each instruction in the program. The if option has the same meaning as for the do command,
described in the previous section.

enable

enab[l e] [event-nunber | all]
When no arguments are specified, the enable command prints both enabled and disabled events.

With arguments, this command enables the event event - nunber or all events.

hwatch

100

hwatch addr | var [if (condition)] [do {conmands}]

Define a hardware watchpoint. This command uses hardware support to create a watchpoint for a particular
address or variable. The event is triggered by hardware when the byte at the given address is written. This
command is only supported on systems that provide the necessary hardware and software support.

Note

Only one hardware watchpoint can be defined at a time.

Chapter 13. PGDBG Command Reference

When the if option is specified, the event action is only triggered if the expression is true. When the do option
is specified, then the commands are executed when the event occurs.

hwatchread

hwat chr[ead] addr | var [if (condition)] [do {comrands}]

Define a hardware read watchpoint. This event is triggered by hardware when the byte at the given address or
variable is read. As with hwatch, system hardware and software support must exist for this command to be
supported. The if and do options have the same meaning as for the hwatch command.

hwatchboth

hwat chb[ot h] addr | var [if (condition)] [do {comrands}]

Define a hardware read/write watchpoint. This event is triggered by hardware when the byte at the given
address or variable is either read or written. As with hwatch, system hardware and software support must exist
for this command to be supported. The if and do options have the same meaning as for the hwatch command.

ignore

ignore [sig:sig]l [sig][, sig...]]

When no arguments are specified, the ignore command prints the list of signals being ignored. With the sig:sig
argument this command ignores the specified range of signals. With a list of signals the command ignores
signals with the specified number.

When a particular signal number is ignored, signals with that number sent to the target application are not
intercepted by PGDBG; rather, the signals are delivered to the target.

For information on intercepting signals, refer to “catch,” on page 99.

status

stop

stopi

st at[us]

Display all the event definitions, including an event number by which the event can be identified.

stop var

stop at line [if (condition)][do {commands}]
stop in routine [if(condition)][do {comuands}]
stop if (condition)

Break when the value of the indicated variable var changes. Set a breakpoint at the indicated routine or line.
The at keyword and a number specifies a line number. The i n keyword and a routine name specifies the first
statement of the specified routine. With the i f keyword, the debugger stops when the condition is true.

stopi var

stopi at address [if (condition)][do {commands}]
stopi in routine [if (condition)][do {commands}]
stopi if (condition)

101

Events

Break when the value of the indicated variable var changes. Set a breakpoint at the indicated address or
routine. The at keyword and a number specifies an address at which to stop. The iz keyword and a routine
name specifies the first address of the specified routine at which to stop. With the if keyword, the debugger
stops when condition is true.

trace

trace var [if (condition)][do {commands}]

trace routine [if (condition)][do {commmands}]
trace at line [if (condition)][do {commands}]
trace in routine [if (condition)][do {comands}]

With the var argument, activate source line tracing when var changes. When a routine is specified, activate
source line tracing and trace when in subprogram routine. With the at keyword, activate source line tracing

to display the specified line each time it is executed. With in, activate source line tracing when in the specified
routine. If condi t i on is specified, trace is on only if the condition evaluates to true. The do keyword defines
a list of commands to execute at each trace point. Use the command pgi env speed secs to set the time in
seconds between trace points. Use the clear command to remove tracing for a line or routine.

tracei

tracei var [if (condition)][do {comands}]

tracei routine [if (condition)][do {comands}]
tracei at addr [if (condition)][do {commands}]
tracei in routine [if (condition)][do {commands}]

With the var argument, activate instruction tracing when var changes. When a r out i ne is specified, activate
instruction tracing and trace when in subprogram r out i ne. With the at keyword, activate instruction tracing
to display the specified line each time it is executed. With i n, activate instruction tracing when in the specified
routine. If condi t i on is specified, trace is on only if the condition evaluates to true. The do keyword defines
a list of commands to execute at each trace point.

Use the command pgi env speed secs to set the time in seconds between trace points. Use the cl ear
command to remove tracing for a line or routine.

track
track expression [at line | in func] [if (condition)][do {conmands}]

Define a track event. This command is equivalent to watch except that execution resumes after the new value of
the expression is printed.

tracki
tracki expression [at addr | in func] [if (condition)][do {commands}]

Define an assembly-level track event. This command is equivalent to watchi except that execution resumes after
the new value of the expression is printed.

unbreak

unb[reak] line | routine| all

Remove a breakpoint from the statement line, the routine r out i ne, or remove all breakpoints.

102

Chapter 13. PGDBG Command Reference

unbreaki

unbreaki addr | routine | all

Remove a breakpoint from the address addr , the routine r out i ne, or remove all breakpoints.

watch

wa[tch] expression

wa[tch] expression [if (condition)][do {comuands}]

wa[tch] expression at line [if (condition)][do {commands}]
wa[tch] expression in routine [if (condition)][do {comrands}]

Define a watch event. The given expression is evaluated, and subsequently, each time the value of the
expression changes, the program stops and the new value is printed. If a particular line is specified, the
expression is only evaluated at that line. If a routine r out i ne is specified, the expression is evaluated at each
line in the routine. If no location is specified, the expression is evaluated at each line in the program. If a
condition is specified, the expression is evaluated only when the condition is true. If commands are specified,
they are executed whenever the expression is evaluated and the value changes.

The watched expression may contain local variables, although this is not recommended unless a routine or
address is specified to ensure that the variable is only evaluated when it is in the current scope.

NOTE

Using watchpoints indiscriminately can dramatically slow program execution.

Using the at and in options speeds up execution by reducing the amount of single-stepping and expression
evaluation that must be performed to watch the expression. For example:

watch i at 40

barely slows program execution at all, while

wat ch i

slows execution considerably.

watchi

wat chi expr essi on

wat chi expression [if (condition)][do {commands}]

wat chi expression at addr [if (condition)][do {conmands}]
wat chi expression in routine [if (condition)][do {comuands}]

Define an assembly-level watch event. This is just like the watch command except that the at option interprets
integers as addresses rather than line numbers and the expr essi on is evaluated at every instruction rather
than at every line.

This command is useful if line number information is limited (i.e. code not compiled ‘-g’ or assembly code). It
causes programs to execute more slowly than watch.

when

when do {commands} [if (condition)]
when at |ine do {commands} [if (condition)]

103

Program Locations

when in routine do {commands} [if (condition)]

Execute commands at every line in the program, at a specified line in the program or in the specified routine.
If the optional condition is specified, conmands are executed only when the expression evaluates to true.

wheni

wheni do {commands} [if (condition)]
wheni at addr do {commands} [if (condition)]
wheni in routine do {commands} [if (condition)]

Execute commands at each address in the program. If an addr is specified, the commands are executed each
time the address is reached. If a routine is specified, the commands are executed at each line in the routine. If
the optional condi t i on is specified, commands are executed whenever the expression is evaluated true.

Events can be parallelized across multiple threads of execution. See “Parallel Events,” on page 76, for details.

Program Locations

This section describes PGDBG program location commands.

arrive

cd

arri[ve]

Print location information for the current location.

cd [dir]

Change to the $HOME directory or to the specified directory dir.

disasm

edit

104

dis[asn] [count | lo:hi | routine | addr, count]
Disassemble memory.

If no argument is given, disassemble four instructions starting at the current address. If an integer count is
given, disassemble count instructions starting at the current address. If an address range (lo:hi) is given,
disassemble the memory in the range. If a routine name is given, disassemble the entire routine. If the routine
was compiled for debugging (- g), and source code is available, the source code is interleaved with the
disassembly. If an address and a count are given, disassemble count instructions starting at address addr.

edit
edit fil enanme
edit routine

Edit a file.

If no argument is supplied, edit the current file starting at the current location. With a filename argument, edit
the specified file filename. With the func argument, edit the file containing routine r out i ne.

Chapter 13. PGDBG Command Reference

This command uses the editor specified by the environment variable $EDITOR.

In the PGDBG GUI, command-line editors like v are launched in the Program I/0 Window. On Windows
platforms, arguments to the editor may need to be quoted to account for spaces in pathnames.

file
file [fil enane]
Change the source file to the file filename and change the scope accordingly. With no argument, print the
current file.

lines
lines routine
Print the lines table for the specified routine.

list
lis[t] [count | line,num| lo:hi | routine[,num]
Lists source code.
With no argument, list 10 lines centered at the current source line. If a count is given, list count lines centered
at the current source line. If a line and count are given, list number lines starting at line number line. In dbx
mode, this option lists lines from start to number. If a line range is given, list the indicated source lines in the
current source file (this option is not valid in the dbx environment). If a routine name is given, list the source
code for the indicated routine. If a number is specified with routine, list the first num lines of the source code
for the indicated routine.

pwd
pwd
Print the current working directory.

stacktrace
stack[trace] [count]
Print a stacktrace. For each active routine print the routine name, source file, line number, current address (if
that information is available). This command also prints the names and values of the arguments, if available. If
a count is specified, display 2 maximum of count stack frames.

stackdump
stackd[unp] [count]
Print a formatted dump of the stack. This command displays a hex dump of the stack frame for each active
routine. This command is an assembly-level version of the stacktrace command. If a count is specified, display
a maximum of count stack frames.

where

w here] [count]

105

Printing Variables and Expressions

Print a stacktrace. For each active routine print the routine name, source file, line number, current address (if
that information is available). This command also prints the names and values of the arguments, if available. If
a count is specified, display 2 maximum of count stack frames.

/ (search forward)
[[string] [/]
Search forward for a string (st ri ng) of characters in the current source file. With just / , search for the next
occurrence of string in the current source file.

? (search backward)
?[string] [?]

Search backward for a string (st ri ng) of characters in the current source file. With just ?, search for the
previous occurrence of string in the current source file.

Printing Variables and Expressions

This section describes PGDBG commands used for printing and setting variables. The primary print commands
are print and printf, described at the beginning of this section. The remainder of the commands are alternate
commands that provide similar functionality to the print and printf commands.

print
plrint] expl [,...expn]

Evaluate and print one or more expressions. This command is invoked to print the result of each line of
command input. Values are printed in a format appropriate to their type. For values of structure type, each
field name and value is printed. Character pointers are printed as a hex address followed by the character
string.

Character string constants print out literally using a comma-separated list. For example:

pgdbg> print "The value of i is ", i

Prints this:

"The value of i is", 37

The array sub-range operator : prints a range of an array. The following examples print elements 0 through 9
of the array a:

C/C++ example 1:
pgdbg> print af0: 9]
a[0:4]: 01234
a[5:9]: 567 89
FORTRAN example 1:
pgdbg> print a(0:9)
a(0:4): 012 3 4
a(5:9): 567 89

106

Chapter 13. PGDBG Command Reference

Note that the output is formatted and annotated with index information. PGDBG formats array output into
columns. For each row, the first column prints an index expression which summarizes the elements printed
in that row. Elements associated with each index expression are then printed in order. This is especially useful
when printing slices of large multidimensional arrays.

PGDBG also supports strided array expressions. Below are examples for C/C++ and FORTRAN.

C/C++ example 2:

pgdbg> print af0:9: 2]
a[0:8] 02 4 6 8

FORTRAN example 2:

pgdbg> print a(0:9:2)
a(0:8): 0246 8

The print statement may be used to display members of derived types in FORTRAN or structures in C/C++.
Below are examples.

C/C++ example 3:

typedef struct tt {

int a[10];

}TT,

TT d = {0,1,2,3,4,5,6, 7, 8, 9};
TT * p = &d;

pgdbg> print d.a[0:9: 2]
d.a[0:8:2]: 02 46 8

pgdbg> print p->a[0:9: 2]

p->a[0:7:2]: 02 46
p->a[8]: 8

FORTRAN example 3:

type tt

integer, dinmension(0:9) :: a

end type

type (tt) :: d

data d% / O, 1, 2, 3, 4, 5 6, 7, 8, 9/
pgdbg> print d%a(0: 9: 2)

d%a(0:8:2): 0 2 46 8

printf

printf "format_string", expr,...expr
Print expressions in the format indicated by the format string. Behaves like the C library function printf. For
example:

pgdbg> printf "f[%]=%5",i,f[i]
f[3]=3.14

The pgienv command with the stringlen argument sets the maximum number of characters that print with a
print command. For example, the char declaration below:

char *c="a whol e bunch of chars over 1000 chars long....";

107

Printing Variables and Expressions

By default, the print ¢ command only prints the first 512 (or stringlen) bytes. Printing of C strings is usually
terminated by the terminating null character. This limit is a safeguard against unterminated C strings.

ascii
asc[ii] exp [,...exp]
Evaluate and print as an ascii character. Control characters are prefixed with the '*' character; for example, 3
prints as ~c. Otherwise, values that cannot be printed as characters are printed as integer values prefixed by
\". For example, 250 prints as \250.
bin
bin exp [,...exp]
Evaluate and print the expressions. Integer values are printed in binary.
dec
dec exp [,...exp]
Evaluate and print the expressions. Integer values are printed in decimal.
display
display [exp [,...exp] 1
Without arguments, list the expressions for PGDBG to automatically display at breakpoints. With an argument
or several arguments, print expression exp at every breakpoint. For more information, refer to the undisplay
command.
hex
hex exp [,...exp]
Evaluate and print expressions as hexadecimal integers.
oct
oct exp [,...exp]
Evaluate and print expressions as octal integers.
string
str[ing] exp [,...exp]
Evaluate and print expressions as null-terminated character strings. This command prints 2 maximum of 70
characters.
undisplay
undisplay 0 | all | exp [,...exp]

Remove all expressions specified by previous display commands. With an argument or several arguments,
remove the expression exp from the list of display expressions.

108

Chapter 13. PGDBG Command Reference

Symbols and Expressions

This section describes the commands that deal with symbols and expressions.

assign

call

as[sign] var = exp

Set variable var to the value of the expression exp. The variable var can be any valid identifier accessed
properly for the current scope. For example, given a C variable declared ‘int * i’, you can use the following
command to assign the value 9999 to it.

as *i = 9999

call routine [(exp,...)]

Call the named routine. C argument passing conventions are used. Breakpoints encountered during execution
of the routine are ignored. Fortran functions and subroutines can be called, but the argument values are
passed according to G conventions. PGDBG may not always be able to access the return value of a Fortran
function if the return value is an array. In the example below, PGDBG calls the routine f oo with four
arguments:

pgdbg> call foo(1,2,3,4)

If a signal is caught during execution of the called routine, PGDBG stops the execution and asks if you want to
cancel the call command. For example, suppose a command is issued to call f oo as shown above, and for
some reason a signal is sent to the process while it is executing the call to f oo. In this case, PGDBG prints the
following prompt:

PGDBG Message: Thread [0] was signalled while executing a function

reachabl e fromthe nost recent PGDBG conmand line call to foo. Wuld you

like to cancel this command line call? Answering yes will revert the register

state of Thread [0] back to the state it had prior to the last call to foo

fromthe command |line. Answering no will |eave Thread [0] stopped in the cal

to foo fromthe conmmand Iine.

Pl ease enter 'y' or 'n' >y
Command |ine call to foo cancell ed

Answering yes to this question returns the register state of each thread back to the state they had before
invoking the call command. Answering no to this question leaves each thread at the point they were at when
the signal occurred.

Note

Answering no to this question and continuing execution of the called routine may produce
unpredictable results.

declaration

decl [arati on] nane

Print the declaration for the symbol based on its type according to symbol table. The symbol must be a
variable, argument, enumeration constant, routine, a structure, union, enum, or typedef tag.

109

Symbols and Expressions

For example, given the C declarations:

int i, iar[10];

struct abc {int a; char b[4]; struct
abc *c;}val;

the decl command provides the following output:
pgdbg> decl |

int i

pgdbg> decl i ar

int iar[10]

pgdbg> decl val

struct abc val

pgdbg> decl abc
struct abc {
int a;
char b[4];
struct abc *c;
¥
entry
entr[y] [routine]
Return the address of the first executable statement in the program or specified routine. This is the first
address after the routine's prologue code.

lval

Ivial] expr

Return the Ivalue of the expression expr. The Ivalue of an expression is the value it would have if it appeared
on the left hand of an assignment statement. Roughly speaking, an lvalue is a location to which a value can be
assigned. This may be an address, a stack offset, or a register.

rval

rvial] expr

Return the rvalue of the expression expr. The rvalue of an expression is the value it would have if it appeared
on the right hand of an assignment statement. The type of the expression may be any scalar, pointer, structure,
or function type.

set
set var =expr essi on

Set variable var to the value of expression. The variable var can be any valid identifier accessed properly for the
current scope. For example, given a C variable declared ‘int * i, the command ‘set *i = 9999’ could be used
to assign the value 9999 to it.

sizeof

si z[eof] nanme

Return the size, in bytes, of the variable type name. If name refers to a routine, si zeof returns the size in
bytes of the subprogram.

110

Chapter 13. PGDBG Command Reference

type

type expr

Return the type of the expression. The expression may contain structure reference operators (. , and ->),
dereference (*), and array index ([]) expressions. For example, given the C declarations:

int i, iar[10];
struct abc {int a; char b[4];
struct abc *c;}val;

the type command provides the following output:

pgdbg> type i

i nt

pgdbg> type iar
int [10]

pgdbg> type val
struct abc

pgdbg> type val . a
i nt

pgdbg> type val . abc->b[2]
char

pgdbg> whati s
whati s nanme

With no arguments, print the declaration for the current routine. With argument name, print the declaration
for the symbol name.

Scope
The following commands deal with program scope. See “Scope”, for a discussion of scope meaning and
conventions.

decls
decls [routine | "sourcefile" | {global}]

Print the declarations of all identifiers defined in the indicated scope. If no scope is given, print the
declarations for the current search scope.

down

down [nunber]

Enter scope of routine down one level or number levels on the call stack.

enter

en[ter] [routine | "sourcefile" | {global}]

Set the search scope to be the indicated symbol, which may be a routine, source file or global. Using enter with
no argument is the same as using enter global.

files

files

1M

Register Access

Return the list of known source files used to create the executable file.
global
gl ob[al]

Return a symbol representing global scope. This command is useful in combination with the scope operator @
to specify symbols with global scope.

names

names [routine | "sourcefile" | {global}]

Print the names of all identifiers defined in the indicated scope. If no scope is specified, use the search scope.
scope

scol pe]

Return a symbol for the search scope. The search scope is set to the current routine each time program
execution stops. It may also be set using the enter command. The search scope is always searched first for
symbols.

up

up [nunber]

Enter scope of routine up one level or number levels on the call stack.
whereis

wher ei s nane

Print all declarations for name.
which

whi ch name

Print full scope qualification of symbol name.

Register Access

System registers can be accessed by name. See “Register Symbols,” on page 49, for the complete set of
registers and how to refer to them in PGDBG. A few commands exist for convenient access to common
registers.

fo

fp

Return the current value of the frame pointer.
pc

pc

112

Chapter 13. PGDBG Command Reference

Return the current program address.
regs
regs [format]

Print a formatted display of the names and values of the integer, float, and double registers. If the format
parameter is omitted, then PGDBG prints all of the registers. Otherwise, regs accepts the following optional

parameters:
f

Print floats as single precision values (default)
d

Print floats as double precision values

Add hexadecimal representation of float values

retaddr
ret[addr]

Return the current return address.
Sp
sp

Return the current value of the stack pointer.

Memory Access

The following commands display the contents of arbitrary memory locations. Note that for each of these
commands, the addr argument may be a variable or identifier.

cread
cr [ead] addr

Fetch and return an 8-bit signed integer (character) from the specified address.

dread
dr [ead] addr

Fetch and return a 64 bit double from the specified address.

dump

du[mp] address, count, "format-string"

This command dumps the contents of a region of memory. The output is formatted according to a printf-like
format descriptor. Starting at the indicated address, values are fetched from memory and displayed according
to the format descriptor. This process is repeated count times.

113

Memory Access

fread

iread

114

Interpretation of the format descriptor is similar to printf. Format specifiers are preceded by %.

The meaning of the recognized format descriptors is as follows:

%, W, %, %O W, WX, W, W

Fetch and print integral values as decimal, octal, hex, or unsigned. Default size is machine dependent. The

size of the item read can be modified by either inserting 'h', or '1' before the format character to indicate half
word or long word. For example, if your machine’s default size is 32-bit, then %hd represents a 16-bit quantity.
Alternatively, a 1, 2, or 4 after the format character can be used to specify the number of bytes to read.

%

Fetch and print a character.
%, %, %, % %, %G
Fetch and print a float (lower case) or double (upper case) value using printf f, e, or g format.

%

Fetch and print a null terminated string.

%p<f or mat - char s>

Interpret the next object as a pointer to an item specified by the following format characters. The pointed-to
item is fetched and displayed. Examples:

Y%px

Pointer to int. Prints the address of the pointer, the value of the pointer, and the contents of the pointed-to
address, which is printed using hexadecimal format.

%

Fetch an instruction and disassemble it.

%v, YW

Display address about to be dumped.

% <n>, %<n>, %<-n>, %W<-n>

Display nothing but advance or decrement current address by n bytes.

%a<n>, %A<n>

Display nothing but advance current address as needed to align modulo n.

fr[ead] addr

Fetch and print a 32-bit float from the specified address.

ir[ead] addr

Fetch and print a signed integer from the specified address.

Chapter 13. PGDBG Command Reference

Iread
Ir[ead] addr

Fetch and print an address from the specified address.
mqdump
[dunp]

Dump MPI message queue information for the current process. For more information on mqdum, refer to
“MPI Message Queues,” on page 84.

sread
sr [ead] addr

Fetch and print a short signed integer from the specified address.

Conversions

The commands in this section are useful for converting between different kinds of values. These commands
accept a variety of arguments, and return a value of a particular kind.

addr
ad[dr] [n | {line n} | routine | var | arg]

Create an address conversion under these conditions:

e If an integer is given return an address with the same value.

e If a line is given, return the address corresponding to the start of that line.

e If aroutine is given, return the first address of the routine.

e If a variable or argument is given, return the address where that variable or argument is stored.

For example,
breaki {line {addr 0x22f0}}

function
func[tion] [[addr...] | [line...]]

Return a routine symbol. If no argument is specified, return the current routine. If an address is given, return
the routine containing addr. An integer argument is interpreted as an address. If a line is specified, return the
routine containing that line.

line
linf[e] [n| routine | addr]

Create a source line conversion. If no argument is given, return the current source line. If an integer n is given,
return it as a line number. If a routine is given, return the first line of the routine. If an address addr is given,
return the line containing that address.

115

Miscellaneous

For example, the following command returns the line number of the specified address:
i ne {addr 0x22f 0}

Miscellaneous

alias

The following commands provide shortcuts, mechanisms for querying, customizing and managing the PGDBG
environment, and access to operating system features.

al[ias] [name [string]]

Create or print aliases.

e If no arguments are given print all the currently defined aliases.
e If just a name is given, print the alias for that name.

e If both 2 name and string are given, make name an alias for string. Subsequently, whenever name is
encountered it is replaced by string.

Although string may be an arbitrary string, name must not contain any space characters.

For example, the following statement creates an alias for xyz.

alias xyz print "x=",x,"y=",y,"z=",z;
cont

Now whenever xyz is typed, PGDBG responds as though the following command was typed:

print "x=",x,"y=",y,"z= ", z;
cont

directory

help

116

dir[ectory] [pathnane]
Add the directory pathname to the search path for source files.

If no argument is specified, the currently defined directories are printed. This command assists in finding
source code that may have been moved or is otherwise not found by the default PGDBG search mechanisms.

For example, the following statement adds the directory mor est uf f to the list of directories to be searched.

dir norestuff
Now, source files stored in mor est uf f are accessible to PGDBG.

If the first character in pathname is ~, then $HOME replaces that character.

hel p [command]

If no argument is specified, print a brief summary of all the commands. If a command name is specified, print
more detailed information about the use of that command.

Chapter 13. PGDBG Command Reference

history
history [num

List the most recently executed commands. With the num argument, resize the history list to hold num
commands.

History allows several characters for command substitution:

I' [modifier] Execute the previous command
! num [modifier] Execute command number num
I-num [modifier] Execute command -num from the most current command
Istring [modifier] Execute the most recent command starting with string
I?string? [modifier] Execute the most recent command containing string
A Quick history command substitution

Aold*new” <modifier> this is equivalent to !:s/old/new/

The history modifiers may be:

:s/old/new/
Substitute the value new for the value old.

P
Print but do not execute the command.

The command pgienv history off tells the debugger not to display the history record number. The command
pgienv history on tells the debugger to display the history record number.

language
| anguage

Print the name of the language of the current file.

log

log fil enane

Keep a log of all commands entered by the user and store it in the named file. This command may be used in
conjunction with the script command to record and replay debug sessions.

noprint

nop[rint] exp

Evaluate the expression but do not print the result.
pgienv

pgi env [command]

117

Miscellaneous

118

Define the debugger environment. With no arguments, display the debugger settings.

Table 13.1. pgienv Commands

Use this command...

To do this...

help pgienv Provide help on pgienv

pgienv Display the debugger settings

pgienv dbx on Set the debugger to use dbx style commands
pgienv dbx off Set the debugger to use pgi style commands
pgienv history on Display the “history' record number with prompt
pgienv history off Do NOT display the “history' number with prompt
pgienv exe none Ignore executable’s symbolic debug information

pgienv exe symtab

Digest executable’s native symbol table (typeless)

pgienv exe demand

Digest executable’s symbolic debug information incrementally on
command

pgienv exe force

Digest executable’s symbolic debug information when executable is
loaded

pgienv solibs none

Ignore symbolic debug information from shared libraries

pgienv solibs symtab

Digest native symbol table (typeless) from each shared library

pgienv solibs demand

Digest symbolic debug information from shared libraries
incrementally on demand

pgienv solibs force

Digest symbolic debug information from each shared library at load
time

pgienv mode serial

Single thread of execution (implicit use of p/t-sets)

pgienv mode thread

Debug multiple threads (condensed p/t-set syntax)

pgienv mode process

Debug multiple processes (condensed p/t-set syntax)

pgienv mode multilevel

Debug multiple processes and multiple threads

pgienv omp [onloff]

Enable/Disable the PGDBG OpenMP event handler. This option

is disabled by default. The PGDBG OpenMP event handler, when
enabled, sets breakpoints at the beginning and end of each parallel
region. Breakpoints are also set at each thread synchronization
point. The handler coordinates threads across parallel constructs to
maintain source level debugging. This option, when enabled, may
significantly slow down program performance. Enabling this option
is recommended for localized debugging of a particular parallel
region only.

pgienv prompt <name>

Set the command-line prompt to <name>

pgienv promptlen <num>

Set maximum size of p/t-set portion of prompt

pgienv speed <secs>

Set the time in seconds <secs> between trace points

Chapter 13. PGDBG Command Reference

Use this command...

To do this...

pgienv stringlen <num>

Set the maximum # of chars printed for “char *'s

pgienv termwidth <num>

Set the character width of the display terminal.

pgienv logfile <name>

Close logfile (if any) and open new logfile <name>

pgienv threadstop sync

When one thread stops, the rest are halted in place

pgienv threadstop async

Threads stop independently (asynchronously)

pgienv procstop sync

When one process stops, the rest are halted in place

pgienv procstop async

Processes stop independently (asynchronously)

pgienv threadstopconfig auto

For each process, debugger sets thread stopping mode to 'sync' in
serial regions, and 'async' in parallel regions

pgienv threadstopconfig user

Thread stopping mode is user defined and remains unchanged by
the debugger.

pgienv procstopconfig auto

Not currently used.

pgienv procstopconfig user

Process stop mode is user defined and remains unchanged by the
debugger.

pgienv threadwait none Prompt available immediately; no wait for running threads
pgienv threadwait any Prompt available when at least a single thread stops

pgienv threadwait all Prompt available only after all threads have stopped

pgienv procwait none Prompt available immediately; no wait for running processes
pgienv procwait any Prompt available when at least a single process stops

pgienv procwait all Prompt available only after all processes have stopped

pgienv threadwaitconfig auto

For each process, the debugger sets the thread wait mode to ‘all’ in
serial regions and ‘none’ in parallel regions. (default)

pgienv threadwaitconfig user

The thread wait mode is user-defined and remains unchanged by the
debugger.

pgienv mgslib default Determine MPI message queue debug library by inspecting
executable.
pgienv mqslib <path> Determine MPI message queue debug library to <path>.

119

Miscellaneous

Use this command... To do this...

pgienv verbose <bitmask> Choose which debug status messages to report. Accepts an integer
valued bit mask of the following values:

 0x1 - Standard messaging (default). Report status information on
current process/thread only.

 (x2 - Thread messaging. Report status information on all threads
of (current) processes.

* (x4 - Process messaging. Report status information on all
processes.

* (x8 - OpenMP messaging (default). Report OpenMP events.
 0x10 - Parallel messaging (default). Report parallel events.

 (x20 - Symbolic debug information. Report any errors
encountered while processing symbolic debug information (e.g.
STABS, DWARF). Pass 0x0 to disable all messages.

e Pass 0x0 to disable all messages.

repeat

rep[eat] [first, |ast]
rep[eat] [first,:last:n]
rep[eat] [nhum]

rep[eat] [-num]

Repeat the execution of one or more previous history list commands. With the num argument, re-execute the
command number num, or with -num, the last num commands. With the first and last arguments, re-execute
commands number first to last (optionally n times).

script
scr[ipt] filenane

Open the indicated file and execute the contents as though they were entered as commands. If you use ~
before the filename, it is expanded to the value of the environment variable $HOME.

setenv

setenv nane | nane val ue

Print value of environment variable name. With a specified value, set name to value.
shell

shell [arg0O, argl,... argn]

Fork a shell (defined by $SHELL) and give it the indicated arguments (the default shell is sh). If no arguments
are specified, an interactive shell is invoked, and executes until 2 "AD" is entered.

sleep

sle[ep] [tine]

120

Chapter 13. PGDBG Command Reference

Pause for time seconds. If no time is specified, pause for one second.

source

sou[rce] filename

Open the indicated file and execute the contents as though they were entered as commands. If you use ~
before the filename, it is expanded to the value of $HOME.

unalias

unal [ias] nane

Remove the alias definition for name, if one exists.
use

use [dir]

Print the current list of directories or add dir to the list of directories to search. If the first character in
pathname is ~, then the value of $HOME replaces that character.

121

122

Part | 1. PGPROF Profiler

In Part I you learned how to use the PGI debugger, PGDBG. Part II of the PGI Tools Guide is about the PGPROF
profiler. The information in this part describes PGPROF, a tool that analyzes data generated during execution of
specially compiled C, C++, F77, F95, and HPF programs. The PGPROF profiler displays information about which
routines and lines were executed, how often they were executed, and how much of the total execution time they
consumed.

e Chapter 14, “Getting Started with the PGPROF Profiler,” starting on page 123, contains information on how to
start using the profiler, including a description of the profiling process, as well as how to invoke and initialize the
profiler.

e Chapter 15, “Using PGPROF ,” starting on page 129, describes how to choose a profiling method, build your
program, and execute it to collect profile data.

e Chapter 16, “Command Line Options for Profiling,” starting on page 143, describes both compiler and PGPROF
command-line options used for profiling, and provides sample invocations and startup commands.

e Chapter 17, “PGPROF Environment Variables,” starting on page 147, contains information on environment
variables that you can set to control the way profiling is performed in PGPROF.

e Chapter 18, “PGPROF Data and Precision,” starting on page 149, contains descriptions of the profiling mechanism
that measures time, how statistics are collected, and the precision of the profiling results.

e Chapter 19, “PGPROF Reference,” starting on page 153, provides reference information about each of the features
of the PGPROF performance profiler.

e Chapter 20, “The PGPROF Command Line Interface,” starting on page 171, describes the PGPROF profiler
command line interface, providing both a summary table and then more details about the commands. The table
includes the command name, the arguments for the command, as well as a brief description of the command.

e Chapter 21, “pgcollect Reference,” starting on page 177, describes the PGPROF command line options and how to
use them to configure and control collection of application performance data.

Chapter 14. Getting Started with the
PGPROF Profiler

This chapter describes the PGPROF profiler. PGPROF provides a way to visualize and diagnose the performance
of the components of your program. Using tables and graphs, PGPROF associates execution time with the
source code and instructions of your program, allowing you to see where and how execution time is spent.
Through resource utilization data and compiler feedback information, PGPROF also provides features for
helping you to understand why certain parts of your program have high execution times.

You can also use the PGPROF profiler to profile parallel programs, including multiprocess MPI programs,
multi-threaded programs such as OpenMP programs, or a combination of both. PGPROF provides views of
the performance data for analysis of MPI communication, multiprocess and multi-thread load balancing, and
scalability.

Using the Common Compiler Feedback Format (CCFF), PGI compilers save information about how your
program was optimized, or why a particular optimization was not made. PGPROF can extract this information
and associate it with source code and other performance data, allowing you to view all of this information
simultaneously. PGPROF also supports a feedbackonly mode, which allows you to browse Compiler Feedback
in the absence of a performance profile.

Each performance profile depends on the resources of the system where it is run. PGPROF provides a
summary of the processor(s) and operating system(s) used by the application during any given performance
experiment.

Methods of Profiling

There are a variety of ways to use PGPROF to analyze the performance of your application. We divide these
methods into two categories: instrumentation-based profiling and sample-based profiling.

Note

Instrumentation-based profiling is the only type of profiling supported by PGPROF on platforms other
than Linux.

123

Methods of Profiling

Most of the profiling methods that PGPROF supports require that you rebuild your program. However, event-
based sampling using pgcollect does not require you to rebuild, and time-based sampling only requires you
to re-link the program.

For more information on each of the compilation options, refer to “Profiling Compilation Options,” on page
143.

Instrumentation-based Profiling

Instrumentation-based profiling is one way to measure time spent executing the functions or source lines
of your program. The compiler inserts timer calls at key points in your program and does the bookkeeping
necessary to track the execution time and execution counts for routines and source lines. This method is
available on all platforms on which PGI compilers are supported.

Instrumentation-based profiling:

Provides exact call counts.

Provides exact line/block execution counts

Reports time attributable to only the code in a routine

Reports time attributable to the code in a routine and all the routines it called.
This method requires that you recompile and relink your program using one of these compiler options:

e Use - Mpr of =f unc for routine-level profiling.

Routine-level profiling can be useful in identifying which portions of code to analyze with line-level
profiling.

e Use - Mor of =I i nes for source line-level profiling.

The overhead of using line-level profiling can be high, so it is more suited for fine-grained analysis of small
pieces of code, rather than for analysis of large, long-running applications.

Sample-based Profiling

Note

Sample-based profiling is only available on Linux systems.

Sample-based profiling uses statistical methods to determine the execution time and resource utilization of
the routines, source lines, and assembly instructions of the program. Sample-based profiling is less intrusive
than instrumentation-based profiling, so profiling runs take much less time. Further, in some cases it is not
necessary to rebuild the program.

For information on the differences in how instrumentation- and sample- based profiling measure time, refer to
“Measuring Time,” on page 149.

124

Chapter 14. Getting Started with the PGPROF Profiler

Time-based Sampling

With time-based sampling, using one of several methods, the program's current instruction address (program
counter) is read, and tracked, at statistically significant intervals. Instruction addresses where a lot of time is
spent during execution are read numerous times. The profiler can map these addresses to source lines and/or
functions in your program, providing an easy way to navigate from the function where the most time is spent,
to the line, to the assembly instruction.

e Use - Mor of =t i ne for time-based sampling of single-threaded Linux programs.

When using - Mpr of =t i ne, you are required only to re-link your program. However, unless you compile
with - Mpr of =ti me or - M nf o=ccf f , compiler feedback is not available.

For information on the differences in how instrumentation- and sample-based profiling measure time, refer to
“Measuring Time,” on page 149.

Event-based Sampling

As well as reading the program's instruction address, event-based sampling uses various methods to read and
track the values of selected hardware counters. These counters track processor events such as data cache
misses and floating point operations. You can use this information to help determine not just that time is being
spent in a particular block of code, but why so much time is spent there. If there is contention for a particular
resource, such as the L2 data cache, these counters can help you discover where the contention is occurring.

Event-based sampling requires that certain system software be co-installed with the PGI software on the Linux
system. Either the Linux kernel must have been built to support PAPI (the Performance API), or the kernel
must have a performance tool named OProfile installed and operational.

OProfile is a performance profiling utility for Linux systems. It runs in the background collecting information
at a low overhead and providing profiles of code based on processor hardware events. pgcollect uses OProfile
for collecting this type of performance data for analysis with PGPROE For more information on OProfile, see
http://oprofile.sourceforge.net/.

PAPI, Performance Application Programming Interface, provides the tool designer and application engineer
with a consistent interface and methodology for use of the performance counter hardware found in most
major microprocessors. PAPI enables software engineers to collect low level performance metrics, such

as instruction counts, clock cycles, and cache misses, of computer systems running UNIX/Linux operating
systems.

e Use - Mpr of =hwet s for event-based sampling with PAPI
e Use the pgcollect command for event-based sampling with OProfile.

You do not need to rebuild when you use pgcollect unless you want line-level views of the performance
data. For line-level views, rebuild using the - Mpr of =dwar f compiler option.

Note

MPI performance data may be collected in concert with all of these methods except pgcollect
sampling.

125

Select a Profile Method

Select a Profile Method

You must consider a number of factors in determining which profiling method to use. One of these
considerations is the platform you are using.

Profiling on Non-Linux Platforms

To profile on non-Linux platforms, follow this process:

1. Compile using - Mpr of =f unc, run, and profile to find the top two or three routines in which time is being
spent.

2. Recompile the routines identified in step 1 using - Mpr of =I i nes; then run, and profile to find the lines in
those routines where time is being spent.

Profiling on Linux Platforms

To profile on Linux platforms, the process depends on whether your program is single- or multi-threaded as
well as whether PAPI or OProfile are installed on your system.

e If your program is single-threaded, compile using - Mpr of =t i ne to quickly collect and view a time-based
sample of where time is being spent in your program.

e If your program is multi-threaded and you have PAPI or OProfile installed on the system, compile using -
Mpr of =hwet s or using the pgeollect command, respectively, to collect the CPU_CLK_UNHALTED counter
for a time-based profile of where time is being spent in your program.

e If your program is multi-threaded and neither PAPI or OProfile is installed on the system, then profile your
program using the method listed for non-Linux platforms in the preceding section.

On Linux platforms on which either PAPI or OProfile is installed, once you have collected a time-based profile
using either instrumentation- or sampling-based profiling, consider further examining the resource utilization
of those portions of code where the most time is spent. Do this with event-based sampling, using either the -
Mpr of =hwct s compiler option or the pgcollect command.

Collect Performance Data

To obtain the performance data required for PGPROE, you must run your program.

e If you use any method other than the pgcollect command to collect data, run your program normally using
a representative input data set.

e If you use the pgcollect command to collect data, refer to Chapter 21, “pgcollect Reference,” on page
177 for specific information of how to execute a profiling run of your program.

Profiling Output File

In all profiling methods, once the program's profiling run is complete, a file named pgpr of . out is written
to the program's working directory. This file contains the performance data used by the PGPROF profiler to
analyze the program's performance.

126

Chapter 14. Getting Started with the PGPROF Profiler

Using System Environment Variables

You can use system environment variables to change the way profiling is performed. For more information on
these variables, refer to Chapter 17, “PGPROF Environment Variables,” on page 147.

Profiling MPI and Multi-threaded Programs

MPI profiling is available only on Linux and Windows Compute Cluster Server. To learn more about profiling
MPI programs, refer to “Profiling MPI Programs”.

To learn more about profiling multi-threaded programs, refer to “Profiling Multi-threaded Programs”.

Profiling with Hardware Event Counters

You can also profile using hardware event counters. For more specific information on this type of profiling,
refer to “Profiling Resource Utilization with Hardware Event Counters,” on page 138.

Profiler Invocation and Initialization

The PGPROF profiler is invoked as follows:
% pgprof . exe [options] [datafil e]

If invoked without any options or arguments, the PGPROF profiler attempts to open a data file named

pgpr of . out , and assumes that application source files are in the current directory. The program executable
name, specified when the program was run, is usually stored in the profile data file. If all program-related
activity occurs in a single directory, the PGPROF profiler needs no options.

Probably the most common method to invoke the profiler is this:

% pgpr of -exe <execname>

When you use this command to launch PGPROF:

e Ifapgprof . out file exists in the current directory, PGPROF tries to open it and use <execname>.
Further, the GUI is populated according to profile data, if valid.

e Ifno pgpr of . out file exists in the current directory, the GUI is not populated and no dialog appears.
Further, when the user selects the menu Fi | e | New Profiling Session...,then the Text Field
for Execut abl e is set with <execname> in the dialog.

For information on all available profiler options and how they are interpreted, refer to Chapter 16, “Command
Line Options for Profiling,” on page 143. Also in that chapter are additional launch commands; refer to
“Profiler Invocation and Startup,” on page 146.

Application Tuning
So how do you make your program faster? Tuning your program ranges from simple to complex.

e In the simple case, you may be able to easily tune the application and improve performance dramatically
simply by adding a compiler option when you build. The Compiler Feedback and System Information tabs in
the PGPROF user interface contain information that can help identify these situations.

127

Troubleshooting

e In a slightly more challenging scenario, you may need to restructure part of your code to allow the compiler
to optimize it more effectively. For instance, the Compiler Feedback for a given loop may provide a hint
to remove a call from the loop. If the call can be moved out of the loop or inlined, the loop might be
vectorized by the next compile.

¢ More difficult cases involve memory alignment and algorithm restructuring. These issues are beyond the
scope of this manual.

Troubleshooting

If you are having trouble during invocation or the initialization process, use the following sections for tips on
what might be causing your problem.

Selecting a Version of Java

PGPROF (both GUI and command line) depends on Java. PGPROF requires that the Java Virtual Machine be

a specific minimum version or above. For the MAC OS X, PGPROF uses the JAVA that comes with the system.
For all other systems, by default, PGPROF uses the version of Java installed with your PGI software. If you
chose not to install Java when installing your PGI software, PGPROF looks for Java on your PATH. These default
Java executables can be overridden by setting the PGI_JAVA environment variable to the full path of the Java
executable you wish to use.

For example, on a Linux system using the bash shell, use this command to specify the location of Java:

$ export PG _JAVA=/ hone/ myuser/ nyj aval bi n/ j ava

Slow Network

If you are viewing a profile across a slow network connection, of a connection that does not support remote
display of Java GUI, consider using the PGPROF command-line interface, described in Chapter 20, “The
PGPROF Command Line Interface,” on page 171.

128

Chapter 15. Using PGPROF

In Chapter 14, “Getting Started with the PGPROF Profiler” you learned how to choose a profiling method,
build your program, and execute it to collect profile data. This chapter provides a more detailed description of
how to use the features of PGPROF, in particular:

e Profile navigation

HotSpot navigation

Sorting profile data

Compiler Feedback

Profiling parallel programs. including multi-threaded and MPI programs

Scalability comparison

Profiling resource utilization with hardware event counters

129

Profile Navigation

Figure 15.1. PGPROF Overview

Menu Bar — File Settings Processes Miew Sort Search Help

ToolBar— = & & ¢~ [Fina:] ® @ [Hotspot: CPU_CLK_UNHALTED P& %9
Line srofwmonbon. c@_nanbon CPU_CLK_UNHALTED DATA_CACHE_MISSES DAT A CACHE_REFILLS_F
412 {aaerror{"cannot allocate memar... 219,200 = 0% [a]
413
414 | for{ 9=0; Gk imax; G+ 44,278,400 = 0X 43,840 = 0% 43,840 = 0%
415 i
416 (*atomalli[i] = a_nextiil; ||
417 T
418 Wpragma omp parallel defaultinone) ... =
419 11 21,920 = 0%
420 imax = a_number;
) 421
Statistics 427 Wpragma onp for schedulefguided)
Table — 423 | far(i= 03 i< imax; i+ B 1,426,550,000 = 4% | 20,933,600 = 8% (M 21,547,400 = 9%
424 B
425 T =00 Br=-0s; Tro= Dy
426 al = (*atomalli[il;
427 @ifdet _OPEMMP
428 onp_set_lock{&{al->lock)};
429 Wendif
430 alTy = al-»Tu;
431 alfy = al-»>Tw;
432 alfz = al-»fz; ol
433 al->fx = 0; |
[« I [»]

Sort By Cost

Focus Display 3
Panel Process CPU_CLE_UMHALTED DATA_CACHE_MISSES {DATACACHE_REFILIS ... |DATA_CACHE_REFILLS .
Focus Panel || O (414} 44, 43, 840 =10 o0 50 =10
Tabs ™~
[G;rallelism LHistugram l @ Compiler Feedback l System Information |)
Information - -
Bar | Profiled: ./ammp on Mon Gct 06 15:39:11 PDT 2008 for 0 seconds | Profile: ./pgprof-1T.out

Profile Navigation

130

When you first invoke PGPROF, it displays a flat profile, with the Statistics Table containing a routine list
and performance data associated with each routine. This list is sorted by the Time value, assuming there is
such a value in the profile data. Time values may include hardware counters associated with time, such as
CPU_CLK_UNHALTED.

If you built your program with —Mpr of =f unc or if you built it without any debug information, then the
routine-level view is all you can see in the Statistics Table. However, if you built your program with any other—
Mpr of option, such as —Mpr of =dwar f adequate debug information is included to allow you to zoom in to at
least the source line level.

* To zoom in to the line level for a particular routine:

Double-click on the row of the Statistics Table containing the routine's name. PGPROF displays the source
code for that routine, together with the performance data for each line.

Because your program is probably optimized, you may notice that performance data is only shown for a
subset of the source lines. For example, a multi-line loop may only have line-level data for the first line

of the loop. In the optimization process, the compiler may significantly reorder the assembly instructions
used to implement the loop, making it impossible to associate any given instruction with a line in the loop.
However, it is possible to associate all of a loop's instructions with that loop, so all of the performance data
for the loop is associated with a single "line". For example, in Figure 15.1, line 414 contains the information
for the entire for loop, and again on line 423 the information displayed is for the entire for loop.

Chapter 15. Using PGPROF

* To zoom in to the assembly level for a particular source line:

Double-click on the row of the Statistics Table containing that source line. PGPROF displays the routine with
assembly code interspersed with the source lines with which that assembly code is associated.

Given the loop described previously, you see the source code for the loop, followed by the assembly
instructions that implement that loop. PGPROF displays performance data associated with a specific
assembly instruction in the row of the Statistics Table containing that instruction.

¢ To return to a previous view:

Use the Back button ("<") in the Toolbar, just below the Menus. The Back and Forward buttons work much
like those found in web browsers, moving to previous and next views, respectively.

Figure 15.2. View Navigation Buttons

Forward

Back

’

£ 1{%;-
Diow N Arrows

e To select and jump to a specific view.

Use the down arrow on each of the Forward and Back buttons.

HotSpot Navigation

In addition to the HotSpot navigation controls on the toolbar, you can find the performance-critical parts of
your program using the Histogram tab which shows clickable bar graphs of the performance data plotted
against the address range of the program.

e The HotSpot navigation controls in the Toolbar are usually the quickest way to locate a hot spot. By hot

spot we mean a program location that has a high value for some performance measurement such as Time,
Count, and so on.

Figure 15.3. HotSpot Navigation Controls

Dropdown List HotSpot one higher
of Performance than where you are
Measurements

Hottest Mext Lower
HotSpot HotSpot

(HutSplit: Time |:rJ B ¢ %‘:—

131

Sorting Profile Data

To locate the hotspot, select the desired performance measurement in the HotSpot drop-down menu in the
Toolbar, then click on the "Hottest" button ("<<+") to select the highest value for that measurement in the
current view.

* To find a HotSpot using the Histogram, click on the Histogram tab. In the histogram for the measurement
you are interested in, click on the tallest bar. The corresponding row in the Statistics Table will be selected.

Sorting Profile Data

PGPROF maintains a consistent sort order for the Statistics Table and the Histogram tab. Changing the sort
order for any one of these changes it for all of them. The sort order can be changed by using the Sort Menu, as
described in “Sort Menu,” on page 160 or by clicking the column header in the Statistics Table or the row
header in the Histogram tab.

Figure 15.4. Time Sort View

File Settings Processes Miew Sort Search Help
- - = =

Bs € (Find: |:] & [HutSput: Coverage I:]
Function Scale CPU_CLK_UNHALTED DAT A_CACHE_MISSES DAT A_CACHE_REFILLS_|
mm_Ty_Lpdate_nonbon 0.4 - 14 0 = 64% 5,05 = B = =S
f_nohbon o.44 R B 18,727,100,000 = 9% (M 425,905,000 = 7% | 432,502,000 = [|
a_next B .45 W 16,400,800,000 = 7% || 112,033,000 = 2% | 105, 216,000 =
tpac I 0.z W 14,721,500,000 = 7% [118,324,000 = 2% | 122,200,000 =
f_torsion B 0.1 I 5,410,480,000 = 4% 27,005,400 = 0% 26,939,700 = |=
f_angle B 0.4z I 6,001,260,000 = 3% | 50,087,200 = 1% | 50, 306,400 =
t_hond B 0.4 | 4,433,320,000 = 2% || 49,517,300 = 1% | 49,539, 200 =
T_hox N o.s | 2,702,740,000 = 1% 24,000,100 = 0% 24,002,400 =
fy_update_nonbon B .- | 2,420,840,000 = 1% || 33,756,800 = 1% | 33,660,100 = ||
T_tihrid B .. | 1,652,550,000 = 1% 10,784,600 = 0% 10,083,200 =
an_serial .25l | 1,571,010,000 = 1% 526,080 = O% 723,360 =
_init o.42 I 1,028,710,000 = 0% 6,904,800 = 0% |l 95,987,700 =
eval B -0.12 286,275,000 = 0% 563,520 = 0% 326,800 =
read_eval_do B 0.:s 241,997,000 = 0% 284,960 = 0% 241,120 =
v_nonbon B -0.15 114,861,000 = 0% 1,139,840 = 0% 1,183,680 = [
atom | 67,075,200 = 0% 657,600 = 0% 560,920 = |¥|

-

q i |

Sort By CPU_CLE_UNHALTED

isplay @hcess][Thread]@éﬁsﬁhreads]

Thread CPU_CLE_UMHALTED DAT A CACHE_MISSES DATA_CACHE_REFILLS_FR... |DATA_CACHE _REFILLS _FR...
O Cmm_tv_update_nonbond 5,000,000 = 33% it 170,000 = 32% |EWEEE, 190,000 = 32% EEWE 563,000 = 298
2 (nm_fy_update_nonbon) [EEEEETS, 000,000 = 26% ao0,000 = 2a% (EEWEES, 100,000 = zo% (EEEEEE.015,000 = 26%
1 nn_fv_update_nonbon) ([IEEERL74,500,000 = 22% (LS, 500,000 = 22% (NS4, 780,000 = 22w |EEERL, 572,000 = 23%
3 mn_fv_update_nonbon) [EEE0E, 200,000 = 20% (IEEECD, 250,000 = 21% (EEEEL7, 020,000 = 21% EEERF, 188,000 = 23%

Sort By CPU_CLK_UMHALTED

H\Parallelism LHistugram | Compiler Feedback LSystem Information |
Profiled: ammp on Mon Oct 06 13:17:29 PDT 2008 for 0 seconds

Profile: /home/donh/screenshots/ammp_omp_time/pgprof-4T.out

The current sort order is displayed at the bottom of each table. For example, the message Sort By
CPU_CLK_UNHALTED s present at the bottom of both tables in Figure 15.4.

Compiler Feedback

The PGI compilers generate a special kind of information that is saved inside the executable file so that it is
available to tools, such as PGPROF, to help with program analysis. A compiler discovers a lot about a program

132

Chapter 15. Using PGPROF

during the build process. Most compilers use such information for compilation, then discard it. However,
when the —Mpr of or —M nf o=ccf f options are used, the PGI compilers save this information in the object
and executable files using the Common Compiler Feedback Format, or CCFE

Feedback messages provide information about what the compiler did in optimizing the code, as well as
describe obstacles to optimization. Most feedback messages have associated explanations or hints that explain
what the message means in more detail. Further, these messages sometimes provide suggestions for improving
the performance of the program.

In PGPROF you can access Compiler Feedback using the Compiler Feedback tab in the Focus Panel.
Messages are categorized according to the type of information that they contain.

For more information on the Compiler Feedback tab, refer to “PGPROF Focus Panel,” on page
167. For more information on the Common Compiler Feedback Format (CCFF), refer to the
website:ww. pgr oup. cond ccf f/

Special Feedback Messages

There are some Compiler Feedback messages that deserve some explanation, specifically intensity messages
and messages for inlined routines.

Intensity Messages

Computational intensity has been defined as the number of arithmetic operations performed per memory
transfer. "The key idea is this: a high compute intensity value means that the time spent on data transfer is low
compared to the time spent on arithmetic; a low compute intensity value suggests that memory traffic involving
data transfer may dominate the overall time used by the computer.

The PGI Compiler emphasizes floating point operations, if they are present, to calculate the compute intensity
ratio within a particular loop. If floating point operations are not present, the PGI compiler uses integer
operations.

In some cases it is necessary to build programs using profile-guided optimization by building with —Mpf i or—
Mpf o, as described in the section Profile-Feedback Optimization using -Mpfi/Mpfo in the Optimizing and
Parallelizing chapter of the PGI User’s Guide. Profile-guided optimization can often determine loop counts and
other information needed to calculate the Compute Intensity for a given statement or loop.

Messages for Inlined Routines

Inlined functions are identified by CCFF messages. These Compiler Feedback messages for routines that have
been inlined are associated with the source line where the routine is called. Further, these messages are
prefixed with the routine and line number, and are indented to show the level of inlining. Currently there is not
a way to view the source code of that inlined instance of the routine.

Profiling Parallel Programs

You can use PGPROF to analyze the performance of parallel programs, including multi-threaded and OpenMP
programs, multi-process MPI programs, and programs that are a combination of the two. PGPROF also

'R.W. Hockney and C. R. Jesshope, Parallel Computers 2: Architecture, Programming and Algorithms 1988

133

Profiling Parallel Programs

provides a Scalability Analysis feature that allows you to compare two profiling runs, and thus determine how
well different parts of your program scale as the number of threads or processes changes.

Profiling Multi-threaded Programs

Multi-threaded programs that you can profile using PGPROF include OpenMP programs that are built with —
nmp, auto-parallelized programs that are built with —Mconcur , and programs that use native thread libraries
such as pthreads.

Collecting Data from Multi-Threaded Programs

Some methods of performance data collection work better with multi-threaded programs than others.
Specifically, the compiler options —Mpr of =I i nes and —Mpr of =hwct s create programs that collect
accurate performance profiles from multi-threaded programs.

Alternatively, on Linux systems that support OProfile, described in“Event-based Sampling,” on page 125,
you can build the program using —Mpr of =dwar f —M nf o=ccf f , and collect data using the pgcollect
command.

The —Mpr of =f unc option works with multi-threaded programs. However, routines that contain one or more
parallel regions appear to be run on a single thread; because when the parallelism is not active, the data
collection is at the entry and exit of the routine.

The —Mpr of =t i e and —pg options generate programs that only collect data on a single thread.

To collect data, run your program normally. Upon successful termination, a pgpr of . out file is created.

Analyzing the Performance of Multi-Threaded Programs

The display of profile data for a multi-threaded program differs from that of a single-threaded program in a
couple of ways, as illustrated in Figure 15.4, “Time Sort View ,” on page 132.

e In the Statistics Table, the data shown is the maximum value for any single thread in the process.

e The Parallelism tab shows the thread-specific performance data for the row selected in the Statistics Table,
whether the Statistics Table is in the routine-level, line-level, or assembly-level view.

You can use thread-specific data to determine how well-balanced the application is. Ideally, each thread
would spend exactly the same amount of time on a given part of the program. If there are large disparities
in the time spent by the various threads, this points to a load imbalance, where some threads are left idle
while other threads are working. In this case, the resources of the system are not being used with 100%
efficiency.

Display @f‘f’bcess][Thread]@Eﬁéﬁsﬁhreads]

Thread |cPU_CL ACHE_MISSES !DATACACHE_REFILS_FR...‘_IZ_)_A A_CACHE_ REFILLS_FR...|
O (mn_fv_update_nonban) | ,170,000 = 32% .150,000 = 32% 563,000 = 2%

2 (nn_fv_update_nonbor) [EERETS, 000,006 = 26% /600,000 = 26% |NEEEE, 100,000 = 26% |MENEEE,515,000 = 26%
1 (nn_fv_update_nonbon) |MEEEM174,5067000 = 22 |MEEEELZ,800,000 = 22% |EEEES4, 780,000 = 2% |NEEEEEL,572,000 = 23%
3 {mu_fu_update_nonbon) |[MEERE2E7200,000 = 20% |39, 250,000 = 21% (EEEEE17,020,000 = 21% |NENERY, 138,000 = 23%

Thread 0 - 33% Thread 3 - 20%

Sort By CPU_CLK_UNHALTED

|L_Parallelism Histogram ! Compiler Feggi__lgg:_h_i System Information |

134

Chapter 15. Using PGPROF

For example, in the program illustrated here, we can see that thread 0 spent 33% of the time in the
routine, while thread 3 spent only 20% of the time there. Performance might improve if the work could be
distributed more evenly.

Profiling MPI Programs

Important

MPI profiling is supported only on Linux and Windows. Further, MPI profiling with the pgcollect
command is not supported.

You can profile MPI programs using PGI compilers and tools by building with the - Mpr of option, which
allows you to specify the implementation of MPI you want to use. Many implementations of MPI are supported,
for the latest list of supported MPI implementations and MPI profiling options, refer to the PGI Release Notes.

PGPROF MPI profiling collects counts of the number of messages and bytes sent and received. You can then
use this information to analyze a program's message passing behavior.

Collecting Data from MPI Programs

To collect MPI performance data, you must build your program using one of the MPI suboptions to the -
Mpr of option. These suboptions include:

* - Mprof =npi ch1 (Linux only)

e - Mor of =npi ch2 (Linux only)

* - Mpr of =mvapi chl (Linux only)
e - Mor of =hpnpi (Linux only)

* - Mor of =nsnpi (Wil’ldOWS OIIIY)

Important

The MPI profiling options cannot be used alone. They may only be used in concert with another
suboption of - Mpr of , such as lines, func, time, and hwcts.

For example, to do time-based sampling of an MPICH-2 Fortran program on Linux, you might build with the
following command:

pgf 95 -fast -Mrof=tine, npich2 -o nyprog nyprog.f90

To collect MPI profile data, run your program normally. On successful program termination, one profile data
file is created for each MPI process. The master profile data file is named pgpr of . out . The other files have
names similar to pgpr of . out , but they are numbered.

Analyzing the Performance of MPI Programs

Figure 15.5 illustrates an MPI profile.

135

Scalability Comparison

Figure 15.5. Sample MPI Profile

Eile Settings Processes Yiew Sort Search Help
A= A [Find: |E] db gp [HutSpnt: Time |E] : o

Function |Pr0cess Time Messages recvd
gmain ‘ (Max) IS e

i [Max)

[4] i T*]

Sort By Time

EEEVAl Processes || Thiessd vesdibireads |

Processes Time Count Meszag... |Meszages recvd Brvies sent Bytes recwd
o (maind EEREEEE - o L = 25k B A0y |- 40% - - 3% |12 -
1 {main} 703 = 33% (Il = 25% = z0% Il 1= 20% Il s =22 4= 17%
2 (maind . 12459 = 17% (ML = 25% = z20x Il L= 20% Il s = 22% Ml ¢ = 17%
3 {mainj | 0.045247 = 1% (M1 = 25% = z20x% Il 1= 20% Il c = 22 ¢ =17
Sor By Time

|L Parallelism LHistugram L@ Compiler Feedback L System Information
|Prufi|ed: Jcpl on Mon Oct 13 12:14:24 PDT 2008 for 3.367656 seconds with 4 processes | Profile: ./pgprof.out

For MPI profiles, the Statistics Table displays an extra column, titled Process. The values in this column
denote whether the other values shown in the Statistics Table are the max, min, or avg values. You can use the
Processes menu, described in “Processes Menu,” on page 157, to customize the display of max, min, or avg
values.

The Parallelism tab for MPI programs is used in the same way that it is used for multi-threaded programs, as
described in “Analyzing the Performance of Multi-Threaded Programs,” on page 134.

You can use the send and receive counts for messages, and the byte counts to identify potential communication
bottlenecks, and use the process-specific data to find load imbalances.

Scalability Comparison

136

PGPROF provides a Scalability Comparison feature that measures changes in the program's performance
between multiple executions of an application. Generally this information is used to measure the performance
of the program when it is run with a varying number of processes or threads. To use scalability comparison,
first generate two or more profiles for a given application. For best results, compare profiles from the same
application using the same input data.

Chapter 15. Using PGPROF

Scalability is computed using the maximum time spent in each thread/process. Depending on how you profiled
your program, this measurement may be displayed in the Statistics Table in a column with one of these heading

titles:

Time

CPU_CLK_UNHALTED

TOT_CYC

Important

if you used - Mpr of =f unc, - Mpr of =l i nes, or - Mpr of =t i me

if you used pgcollect

if you used - Mpr of =hwct s

Profiling multi-process MPI programs with the pgcollect command is not supported.

The number of processes and/or threads used in each execution can be different. After generating two or more
profiles, load one of them into PGPROE Select the Scalability Comparison item under the File menu, described
in“File Menu,” on page 154, or click the Scalability comparison button in the Toolbar. Choose a second

profile for comparison. A new instance of PGPROF appears, with a column named Scal e in the Statistics

Table.

Figure 15.6. Profile of an Application Run with 4 Threads

File

Settings Processes Miew Sort Search Healp
F- =T R [Fin: |5] db o [Hl:ltSpl:lt: Cowverage F]
Function Scale CPU_CLK_UNHALTED DATA_CACHE_MISSES DATA_CACHE_REFILLS.|
mn_Tv_update_nonban 0.4 [N 141,27 [0 = A% 5,05] 4,804,0090,000 = &
t_nonkon 0. 44 [N B 15,727,100,000 = o% (W 425,905,000 = 7% |H 432,502,000 = | |
a_next - -0.46 W 16,400,300,000 = 74 || 112,033,000 = 2% || 105,216,000 =
Tpac - -0.4 W 14,721,500,000 = 74 | 115,324,000 = 2% || 123,300,000 =
f_tarsian 0.4 B 5,410,4580,000 = 4% 27,005,400 = 0% 26,930,700 = |=
T_angle .43 I 6,001,260,000 = 3% | 50,087,200 = 1% | 50, 306,400 =
t_hond B 0.4 | 4,433,320,000 = 2% | 49,517,300 = 1% | 49,539,200 =
T_hox | R | 2,702,740,000 = 1% 24,090,100 = 0% 24,002,400 =
fy_update_nonbon N s | 2,420,840,000 = 1% | 33,756,800 = 1% | 33,669,100 = [
T_hybrid N 0.4 | 1,652,550,000 = 1% 10,784,600 = 0% 10,083,200 =
a_n_serial 0_25- | 1,571,010,000 = 1% 526,080 = 0% 23,360 =
it 0_42- 1,028,710,000 = O 6,904,800 = 0%] 95,987,700 =
eval . -0.12 286,275,000 = 0% 569,920 = 0% 328,800 =
read_sval_do Bl 0.2 241,887,000 = 0% 284,060 = 0% 241,120 =
w_nonkon M -0.15 114,861,000 = 0% 1,139,840 = 0% 1,183,680 = |
aton W 0. 67,075,200 = 0% 657,600 = 0% 569,920 = |~
[4] [| []
Sor By CPU_CLK_UNHALTED

isplay @hcess][Th

]Eﬁss.Threads]

Thread

DATA_CACHE REFILLS_FR. ..

DATA_CACHE REEFILLE_FR... |

0 Cmm_Tw_update_nonbon’]
2 (mm_fv_update_nonbon) |EEERETS, 000,000
1 (mm_fv_update_nonbon) |IEEERL74, 500, 000
3 (mm_fv_update_nonbon) |IEER 656, 200,000

CPU_CLE_UNHALTED

EE:S
26%
22%
200

L 170,000

L2, 590,000
R 5o, 250,000

DATA_CACHE MISSES

2%
263
22%
21%

IEREETE, 190, 000

WG 17,020,000

, 100,000
, 780,000

32K
260
22%
21%

DY 563,000
EE 615,000
L, 572,000
W, 155,000

Sort By

29
260
23%
23%

CPU_CLE_UNHALTED

Parallelism LHistugram | Compiler Feedback LSystem Information |

Profiled: ammp on Mon Oct 06 13:17:29 PDT 2008 for 0 seconds

Profile: /home/donb/screenshots jammp_omp_time,pgprof-4T.out

Figure 15.6 shows the profile of a run that used four threads with Scalability Comparison to the same program
run with a single thread.

137

Profiling Resource Utilization with Hardware Event Counters

Each profile entry that has timing information has a Scale value. The scale value measures how well these parts
of the program scaled, or improved their performance as a result of parallelism.

e A scale value of zero indicates no change in the execution time between the two runs.

e A scale value of one means that part of the program achieved perfect scalability. For example, if a routine
had a Time value of 100 seconds with one thread, and 25 seconds with four threads, it would have a Scale
value of one.

* A negative value is the relative slowdown without taking the number of threads or processes into account. If

a routine takes 20% more time to execute using four threads than it took using one thread, the Scale value
is -0.2.

* A question mark ('?') in the Scale column indicates that PGPROF is unable to perform the scalability
comparison for this profile entry. For example, scalability comparison may not be possible if the two
profiles do not share the same executable or input data.

Profiling Resource Utilization with Hardware Event Counters

Important

Profiling with hardware counters is available only on Linux.

Modern x86 and x64 processors provide low-level hardware counters that can be used to track the resource
utilization of a program. Tracking this information can be useful in tuning program performance because it
allows you to go beyond just knowing where the program is spending the most time and examine why it is
spending time there.

Linux systems do not provide hardware counter support by default. These systems must either have the
OProfile package installed or have a kernel patch that enables PAPI, as described in “Profiling with Hardware
Event Counters using PAPL,” on page 139

Profiling with Hardware Event Counters (Linux Only)

PGPROF supports two methods of hardware counter data collection:

e Execution of the program under the control of the pgcollect command.

Collection of profile data using pgcollect may be done on any linux86 or linux86_64 system where
Oprofile is installed. OProfile is included as an install-time option with most Linux distributions; it may also
be downloaded from http.//oprofile.sourceforge.net/.

* Building the program with the - Mpr of =hwct s compiler option and executing it independently.

Profiling by compiling with the - Mpr of =hwct s option is only available on linux86_64 systems where PAPI
has been installed. PAPI is available for download from http.//icl.cs.utk.edu/papi/.

Profiling with Hardware Event Counters using pgcollect

You can use PGPROF to display time-based and hardware event-based profiles generated via the OProfile
package, which is available on most current Linux distributions.

138

Chapter 15. Using PGPROF

No special build options are required to enable profiling, though compiling with —Mpr of =dwar f and —
M nf o=ccf f allows viewing profiles with source code annotations under PGPROE

For specific information on using PGPROF with hardware event counters, refer to Chapter 21, “pgcollect
Reference,” on page 177.

Profiling with Hardware Event Counters using PAPI

To use PAPI-style profiling, PAPI must be installed. Installation of PAPI requires rebuilding the Linux kernel.
PGI compiler and tools releases are built with the version of PAPI that is current at the time of the PGI release.
Normally, the profiling support code for - Mpr of =hwct s supports profiling against that current version and
the previous version of PAPI, though a warning message is generated if the previous version is used.

To bypass the version check, set the environment variable PGPROF_PAPI_VER to m.n where m and n
respectively are the major and minor numbers associated with your PAPI library.

To profile using hardware counters, compile with the option - Mpr of =hwect s. This option adds the PAPI and
PGI profiling libraries to the application’s linker command. By default, this option uses the PAPI_TOT_CYC
counter to profile total CPU cycles executed by the application. PGPROF converts the cycle counts into CPU
time (seconds). The PGPROF_EVENTS environment variable can be set to specify up to four counters to use.
The format for the PGPROF_EVENTS variable is this:

event O[. over] [: event 1. over]]

The event field is the name of the event or hardware counter and the optional over field specifies the overflow
value. The overflow value is the number of events to be counted before collecting profile information. Overflow
provides some control on the sampling rate of the profiling mechanism. The default overflow is 1000000.

To determine which hardware counters are available on the system, compile and run the following simple
program. This program uses the PAPI and PGI libraries to dump the available hardware counters to standard
output.

int main(int argc, char *argv[]) {
__pgevents();

exit(0);
}

This program uses the PAPI and PGI libraries to dump the available hardware counters to standard output.
Save the code in the previous example in a file called pgevent s. ¢ and compile it as follows:

pgcc pgeventc.c -o pgevents -l pgnod_prof _papi -I papi

To display the available events, run the newly created program called pgevents. The pgevents utility shows the
format of the PGPROF_EVENTS environment variable, the list of PAPI preset events, and the list of native (or
processor specific) events.

The following example, which uses tcsh or csh shell, specifies four events with the PGPROF_EVENTS
environment variable:

% set env PGPROF_EVENTS \
PAPI _TOT_CYC. 1593262939: PAPI _FP_OPS: PAPI L1 DCM PAPI L2 I CM

139

Profiling Resource Utilization with Hardware Event Counters

To specify the same four events using the sh or bash shell, use this command:

$ set PGPROF_EVENTS=\
PAPI _TOT _CYC. 1593262939: PAPI _FP_OPS: PAPI L1 DCM PAPI L2 | CM
$ export PGPROF_EVENTS

If PGPROF_EVENTS is not defined, then, by default, the profiling mechanism counts CPU cycles
(PAPL_TOT_CYC event).

The following example shows a partial output from pgevents:

Example 15.1. Partial Output from pgevents

Sel ecting Events

Har dwar e | nf or mati on
cpus/ node - 4

nodes - 1

total cpus - 4
vendor - Aut henti cAVMD
nodel - AMD K8 Revision C
speed 1593. 262939nhz
event counters 4
Preset Events

PAPI L1 DCM - Level
PAPI L1 ICM - Level
PAPI L2 DCM - Level
PAPI L2 ICM - Level
PAPI L1 TCM - Level
PAPI L2 TCM - Level

data cache mni sses
instruction cache ni sses
data cache ni sses
instruction cache ni sses
cache nisses

cache nisses

NFENNPE P

PAPI _TOT_CYC - Total Cycles

Native Events

FP_ADD PI PE - Di spatched FPU ops - Revision B

and later revisions - Add pi pe ops excluding junk ops.
FP_MULT_PI PE - Di spatched FPU ops - Revision B

and later revisions - Miltiply pipe ops excluding junk ops.

CPU_CLK_UNHALTED - Cycl es processor is running
(not in HLT or STPCLK st ate)

Analyzing Event Counter Profiles

If you executed your program under the control of pgcollect or if you compiled your program with the —
Mpr of =hwct s option, then you can profile up to four event counters and view them in PGPROE

140

Chapter 15. Using PGPROF

Figure 15.7. Profile with Hardware Event Counter

hgplrlif'
File Settings Processes Yiew Sort Search Help
S iHE- [Find: |E] &b g [HutSput: Coverage |E]

Function CPU_CLE_UNHALTED

DAT A_CACHE MISSES

DAT A CACHE_REFILLS_FRO. . |DATA_CACHE _REFILLS .

mn_Tv_update_nonban) T 2 54 00 = 5 a
T_nanbon | EES , : =11% W 5 : = 7% @ 5 : = Bl 51,673,900 = 1] |
a_next I 8,873,000,000 = 3% || 67,973,900 = 2% || 63,326,900 = B 55,789,400 =
Tpac I 5,847,790,000 = 3% || 74,067,700 = 2% || 77,837,800 = B 71,531,800 = 1
f_torsion I 5,000,390,000 = 2% 16,681,100 = 0% 16,700,700 = | 7,058,240 = |
f_angle | 3,444,510,000 = 1% | 30,600,300 = 1% | 31,104,500 =] 21,284,300 = [T
T_hand | 2,503,040,000 = 1% | 30,666,100 = 1% | 30,271,500 =] 22,709,100 =
_init | 1,734,000,000 = 1% 4,077,120 = 0% |l 71,261,800 = | 4,011,360 =
a_m_serial | 1,572,320,000 = 1% 372,640 = 0% 328,800 =
T_box 1,359,040,000 = 0¥ 14,664,500 = 0% 15,037,100 =] 16,374,200 = | |
Tw_update_nonhon 1,214,810,000 = 0% | 20,473,300 = 1% | 21,109,000 =] 19,706,100 =
T_hwbrid 059,438,000 = 0% 6,597,920 = 0% 6,115,680 = | 4,822,400 =
eval 250,765,000 = 0% 65,760 = 0% 65,760 = 21,820 =
read_eval_do 174,483,000 = 0% 219,200 = 0% 108,600 = 65,760 =
W_honbon 07,763,200 = 0% 1,161,760 = 0¥ 1,117,920 = 328,800 = |
Tisvariable 69,267,200 = OX B
[4] I I [y
Sort By CPU_CLK_UMHALTED
e

Display

Frocess
O (mm_fv_update_nonh. ..

Sort By CPU_CLE_UNHALTED

Parallelism LHistugram L Compiler Feedback LSystem Information |

Profiled: ammp on Mon Oct 06 15:39:11 PDT 2008 for 0 seconds | Profile: pgprof-1T.out

Figure 15.7 shows a profile of four event counters: CPU_CLK_UNHALTED, DATA_CACHE_MISSES,
DATA_CACHE_REFILLS _ FROM_L2, DATA_CACHE_REFILLS _ FROM_SYSTEM.

In this example, the routine using the most time is also getting many cache misses. Investigating the memory
access behavior in that routine, and looking at the Compiler Feedback, may offer some clues for improving its
performance.

141

142

Chapter 16. Command Line Options
for Profiling

This chapter describes the PGI compiler options that are used to control profiling options as well as PGPROF
command-line options and how they are interpreted.

Profiling Compilation Options

You can use the following compiler options to control data collection. Most of these options are related to -
Mpr of , for which the syntax is:
- Mpr of [=option[, option,...]]

You use - Mpr of to set performance profiling options. Use of these options causes the resulting executable to
create a performance profile that can be viewed and analyzed with the PGPROF performance profiler.

In the descriptions that follow, PGI-style profiling implies compiler-generated source instrumentation. MPICH-
style profiling implies the use of instrumented wrappers for MPI library routines.

—Minfo=ccff
Generate compiler feedback information and store it in object and executable files for later access by
performance tools. Use =M nf o=ccf f when collecting performance data using pgcollect. All -Mpr of
options except —Mpr of =dwar f imply —-M nf o=ccff.

—Mprof=dwarf
Generate a subset of DWARF symbol information adequate for viewing source line information with most
performance profilers. Use —Mpr of =dwar f when collecting performance data with pgcollect. All other
—Mor of options imply —Mpr of =dwar f .

—Mprof=func

Perform routine-level instrumentation-based profiling.
—Mprof=hpmpi

[Linux only] Use the profiled HPMPI communication library. Implies —Mpi =hpnpi .
—Mprof=hwcts

[linux86_64 Only - PAPI must be installed] Generate a profile using event-based sampling of hardware
counters via the PAPI interface. Compiling and linking with this option produces an executable that

143

PGPROF Command Line Options

generates a pgpr of . out file which contains routine, line, and assembly-level profiling data. See
“Profiling with Hardware Event Counters using PAPI,” on page 139 for more information on profiling with
hardware counters.

—Mprof=lines
Perform PGI-style line-level profiling.

—Mprof=mpichl
Perform MPICH-style profiling for MPICH-1. Implies —Mhpi =npi ch1.

—Mprof=mpich2
Perform MPICH-style profiling for MPICH-2. Implies —Mhpi =npi ch2.

—Mprof=msmpi
[Microsoft HPC Server only] Perform MPICH-style profiling for Microsoft MSMPI. Implies option —
Mrpi =nsnpi .

For —Mpr of =nsnpi to work, the CCP_SDK environment variable must be set. This variable is typically
set when the Microsoft HPC Server SDK is installed.

—Mprof=mvapich1
[Linux only] Perform MPICH-style profiling for MVAPICH-1. Implies —Mpi =mvapi chl.

—Mprof=time
[Linux only] Generate a profile using time-based assembly-level statistical sampling. This is equivalent to -
pg except the profile is saved in a file named pgpr of . out rather than in gnon. out .

—Pg
[Linux Only] Enable gprof-style (sample-based) profiling. Running an executable compiled with this
option produces a gnon. out profile file which contains routine, line, and assembly-level profiling data.

PGPROF Command Line Options

144

As we stated in Chapter 14, “Getting Started with the PGPROF Profiler”, PGPROF can interpret command-
line options when present on the command line. The following list describes the options and how PGPROF
interprets them.

datafile
A single datafile name may be specified on the command line. For profiled MPI applications, the specified
datafile should be that of the initial MPI process. Access to the profile data for all MPI processes is
available in that case, and data may be filtered to allow inspection of the data from a subset of the
processes.

The default datafile name is pgpr of . out . If no datafile argument is used, PGPROF attempts to use
pgpr of . out in the current directory.

—exe <filename>
Set the executable to filename. The default filename is a. out .

—feedbackonly
Only browse source code and Compiler Feedback information. Do not load any performance data from
profile runs.

Chapter 16. Command Line Options for Profiling

—help

Prints a list of available command-line arguments.

—I <srcpath>

Specify the source file search path. The PGPROF profiler always looks for a program source file in the
current directory first. If it does not find the source file in the current directory, it consults the search path
specified in sr cpat h. The sr cpat h argument is a string containing one or more directories separated
by a path separator. The path separator is platform dependent: on Linux and MAC OS X, it is a colon (:),
and on Windows it is a semicolon (;). Directories in the path are then searched in order from left-to-
right. When a directory with a filename that matches a source file is found, that directory is used. Below is
an example for Linux and MAC OS X.

—| ../src: STEPS

In the example above, the profiler first looks for source files in the current directory, then in the ../src
directory, followed by the STEPS directory. The following is the same example for Windows:

—| ..\src; STEPS

For more information, see the New Profiling Session.. . item in the description of the “File Menu,” on page
154.

—jarg, argl [, arg2,..., argn]

Pass specified arguments, separated by commas, to java. For example, the following passes the argument -
Xmx256mto java.

-jarg, -Xnmx256m

This option is provided for troubleshooting purposes and is expected to rarely be used. If you do use this
option, be certain not to forget the comma between the option and the first argument.

—scale “file(s)”

Compare scalability of datafile with one or more files. A list of files may be specified by enclosing the list
within quotes and separating each filename with a space. For example:

—scal e one. out two. out

This example compares the profiles one.out and two.out with datafile (or pgprof.out by default). If only
one file is specified quotes are not required.

For sample based profiles (e.g., gmon.out) specified with this option, PGPROF assumes that all profile
data was generated by the same executable. For information on how to specify multiple executables in a
sample-based scalability comparison, see the Scalability Comparison. .. item in the description of the “File
Menu,” on page 154.

—text

-V

Use the PGPROF Command-Line Interface (CLI).

Print version information.

145

Profiler Invocation and Startup

Profiler Invocation and Startup
Let’s take a look at some common ways to invoke the profiler, describing what each launch command means.

% pgprof
e Ifapgprof . out file exists in the current directory, PGPROF tries to open it.

e If an executable name can be determined from the pgpr of . out file, the GUI is populated
according to profile data, if valid.

e If an executable name can NOT be determined from the pgpr of . out file, then a dialog is opened
on top of the main window with following message:Can' t det er mi ne execut abl e for
file 'pgprof.out' Please use '"File | New Profiling Session...' menu to
speci fy one

e If no pgpr of . out file exists in the current directory, the GUI is not populated and no dialog appears.
% pgprof -exe <execname>

e Ifapgprof . out file exists in the current directory, PGPROF tries to open it and use <execname>.
Further, the GUI is populated according to profile data, if valid.

e Ifno pgpr of . out file exists in the current directory, the GUI is not populated and no dialog appears.
Further, when the user selects the menu Fi l e | New Profiling Session...,then the Text
Field for Execut abl e is set with <execname> in the dialog.

% pgprof -exe <execname> <profilename>
PGPROF tries to open the profile <profilename> using <execname> for the executable name. Further,
the GUI is populated according to profile data, if valid.

% pgprof -feedbackonly

e Ifaa. out file exists in the current directory, PGPROF tries to open it.Further, if a. out is an
executable with valid DWARF/ELF/CCFF info, then PGPROF populates the GUIL You are then in feedback-
only mode.

e Ifno a. out file exists in the current directory, the GUI is not populated and no dialog appears. Further,
when the user selects the menu Fi l e | New Profiling Session...,thenthe Feedback
onl y checkbox is selected in the dialog.

% pgprof -exe <execname> -feedbackonly
PGPROF tries to open the executable <execname>. Further, if the executable <execname> is valid with
DWAREF/ELF/CCFF info, then PGPROF populates the GUL You are then in feedback-only mode.

% pgprof -exe <execname> -feedbackonly <profilename>

Note

<profilename> is ignored without warning

PGPROF tries to open the executable <execname>. Further, if the executable is valid with DWARF/ELF/
CCFF info, then PGPROF populates the GUI. You are then in feedback-only mode.

146

Chapter 17. PGPROF Environment
Variables

This chapter describes the system environment variables that you can set to change the way profiling is
performed.

System Environment Variables

As you learned in “Methods of Profiling,” on page 123, a profiled program collects call counts and/or time
data. When the program terminates, a profile data file is generated. Depending on the profiling method used,
this data file is called pgprof.out or gmon.out.

You can set the following system environment variables to change the way profiling is performed:

GMON_ARCS — Use this environment variable to set the maximum number of arcs (caller/callee pairs). The
default is 4096. This option only applies to gprof style profiling, this is, programs compiled with the —pg
option.

PGPROF_DEPTH — Use this environment variable to change the maximum routine call depth for PGPROF
profiled programs. The default is 4096 and is applied to programs compiled with —Mpr of =f unc, —
Mpr of =l i nes, —Mpr of =hwct s, or —Mpr of =t i ne.

PGPROF_EVENTS — Use this environment variable to specify hardware (event) counters from which to
collect data. This variable is applied to programs compiled either with the —Mpr of =hwct s option or
executed with the pgcollect command. The use of hardware (event) counters is discussed in further detail
in “Profiling Resource Utilization with Hardware Event Counters,” on page 138.

PGPROF_NAME — Use this environment variable to change the name of the output file intended for
PGPROF. The default is pgpr of . out . This option is only applied to programs compiled with any of the —
Mprof=[func | hwcts | lines | MPl | time] options. If a program is compiled with the —pg
option, then the output file is always called gnon. out .

147

148

Chapter 18. PGPROF Data and
Precision

This chapter contains descriptions of the profiling mechanism that measures time, how statistics are collected,
and the precision of the profiling results.

Measuring Time

The sample-based profiling mechanism collects total CPU time for programs that are compiled with —

Mpr of =t i me and —pg, as described in “Sample-based Profiling,” on page 124. The profiling mechanism
collects cycle counts for programs compiled with —Mpr of =hwct s or run under the control of pgcollect.
PGPROF automatically converts CPU cycles into CPU time.

Programs compiled for instrumentation-based profiling with —Mpr of =I i nes or —Mpr of =f unc employ
avirtual timer for measuring the elapsed time of each running process/thread. This data collection method
employs a single timer that starts at zero (0) and is incremented at a fixed rate while the active program is
being profiled. For multiprocessor programs, there is a timer on each processor, and the profiler’s summary
data (minimum, maximum and per processor) is based on each processor’s time executing in a function.
How the timer is incremented and at what frequency depends on the target machine. The timer is read from
within the data collection functions and is used to accumulate COST and TIME values for each line, function,
and the total execution time. The line level data is based on source lines; however, in some cases, there may be
multiple statements on a line and the profiler shows data for each statement.

NOTE

For instrumentation-based profiling, information provided for longer running functions are more
accurate than for functions that only execute for a short time relative to the overhead of the individual
timer calls. Refer to “Caveats (Precision of Profiling Results),” on page 150 for more information
about profiler accuracy.

Profile Data

The following statistics are collected and may be displayed by the PGPROF profiler.

149

Caveats (Precision of Profiling Results)

BYTES
For MPI profiles only. This is the number of message bytes sent and received.

BYTES RECEIVED
For MPI profiles only. This is the number of bytes received in a data transfer.

BYTES SENT
For MPI profiles only. This is the number of bytes sent.

CALLS
The number of times a function is called.

COST
The sum of the differences between the timer value entering and exiting a function. This includes time
spent on behalf of the current function in all children whether profiled or not. PGPROF can provide cost
information when you compile your program with either the —Mpr of =cost or the —Mpr of =I i nes
option. For more information, refer to“Methods of Profiling,” on page 123.

COUNT
The number of times a line or function is executed.

LINE NUMBER
For line mode, this is the line number for that line. For function mode, this is the line number of the
first line of the function. PGPROF sometimes generates multiple statements for a single source line; thus
multiple profiling entries might appear for a single source line. To distinguish them, PGPROF uses the
notation: /ineNo.statementNo

MESSAGES
For MPI profiles only. This is the number of messages sent and received by the function or line.

RECEIVES
For MPI profiles only. This is the number of messages received by the function or line.

SENDS
For MPI profiles only. This is the number of messages sent by the function or line.

TIME
The time spent only within the function or executing the line. The TIME does not include time spent in
functions called from this function or line. TIME may be displayed in seconds or as a percent of the total
time.

Caveats (Precision of Profiling Results)

Accuracy of Performance Data

The collection of performance data always introduces some overhead, or intrusion, that can affect the
behavior of the application being monitored. How this overhead affects the accuracy of the performance data
depends on the performance monitoring method chosen, system software and hardware attributes, and the
idiosyncrasies of the profiled application. Although the PGPROF implementation attempts to minimize intrusion
and maximize accuracy, it would be unwise to assume the data is beyond question.

150

Chapter 18. PGPROF Data and Precision

Clock Granularity

Many target machines provide a clock resolution of only 20 to 100 ticks per second. Under these

circumstances, a routine must consume at least a few seconds of CPU time to generate meaningful line level
times.

Source Code Correlation

At higher optimization levels, and especially with highly vectorized code, significant code reorganization may
occur within functions. The PGPROF profiler allows line profiling at any optimization level. In some cases, the
correlation between source and data may at times appear inconsistent. Compiling at a lower optimization level
or examining the assembly language source may help you interpret the data in these cases.

151

152

Chapter 19. PGPROF Reference

This chapter provides a reference guide to the features of the PGPROF performance profiler.
For information about how to invoke PGPROE refer to “Profiler Invocation and Initialization,” on page 127.

For information about using the PGPROF text-based command-line interface, refer to Chapter 16, “Command
Line Options for Profiling”.

For information about how to choose a profiling method, build your program, and execute it to collect profile
data, refer to Chapter 14, “Getting Started with the PGPROF Profiler”.

Figure 19.1. PGPROF User Interface

Menu Bar — File Settings Processes Miew Sort Search Help
ToolBar— > & & ¢~ - [Find:] @ @ [Hotspot: CPU_CLK_UNHALTED =] & %¢ 97
Line Jsrofwmonbon. c@_nanhon CPU_CLE_UMHALTED DATA_CACHE_MISSES DAT A CACHE_REFILLS_F
412 {aaerror{"cannot allocate memor... 219,200 = 0% Z
413
414 ford i=0; i< imax; i+ 44,278,400 = 0% 43,840 = 0% 43,840 = O
415 £
416 (*atomall) [i] = a_next{i);
417 1
418 Wpragma omp parallel default{none) ... o=
419 21,920 = 0¥
420 imax = a_number;
i 421
Statistics 422 #pragna omp Tor schedulefouided)
Table — 423 ford i= 0; i< imax; i+ B 1,426,550,000 = 4% | 20,933,600 = 8% W 21,547,400 = 9%
424 &
425 Tuo=0.; Tw=20.; Tz =0,
426 al = (*atomalli[il;
427 @ifdetT _OPEMMP
428 onp_set_lock{&{al-=1ockld;
428 Wendif
430 alfx = al-»Tx;
431 alfy = al-»Ty;
432 alfz = al-=fz; =
433 al-=fx = 0; >
[« I [»]
Sort By Cost
Focus Display BEgaidi
Panel Process
Focus Panel || © (414} 2 -
Tabs ™~ Sort By Cost
[(/P;rallelism LHistugram L@ Compiler Feedback L System Information |)
Information = =
Bar | Profiled: . fammp on Mon Oct 06 15:39:11 PDT 2008 for 0 seconds | Profile: ./pgprof-1T.out

153

PGPROF User Interface Overview

PGPROF User Interface Overview

On startup, PGPROE, the profiler, attempts to load the profile datafile specified on the command line (or the
default pgprof.out). If no file is found, a file chooser dialog box is displayed. Choose a profile datafile from the
list or select Cancel.

When a profile datafile is opened, PGPROF populates the user interface, as illustrated and labeled in
Figure 19.1.

Menu Bar
Contains these menus: File, Settings, Processes, View, Sort, Search and Help.

Toolbar
Provides navigation shortcuts and controls for frequently performed operations.

Statistics Table
Displays profile summary information for each profile entry. Information can be displayed at up to three
levels - routine, line, or assembly - depending on the type of profile data collected, how the program
was built, and whether the PGPROF source file search path has been set to include the program source
directories.

Focus Panel
Consists of four tabbed panes labeled Parallelism, Histogram, Compiler Feedback, and System
Information.

Information Bar
Displays the profile summary information such as the name of the executable, the time and date of the
profile run, execution time, number of processes, if more than one, and the datafile name.

The following sections describe each of these components in more detail.

PGPROF Menus

There are six menus in the GUI: File, Settings, Processes, View, Sort, and Help. This section describes each
menu in detail. Keyboard shortcuts, when available, are listed next to menu items.

File Menu

154

The File menu contains the following items:

e New Window (control N) — Select this option to create a copy of the current profiler window on your
screen.

» New Profile Session... — Select this option to begin analyzing a different profile. A dialog box like the
one in Figure 19.2 appears, requesting information about the profile data file (default pgpr of . out), the
executable file, and the location of the source files. A new profile session is started using the information
specified in the dialog box.

If Source Path is the only parameter change from current session parameters, then current session uses
new Source Path to search for sources.

Chapter 19. PGPROF Reference

Figure 19.2. New Profile Session dialog box

Profiling session parameters

Profile = [.fpgprof—l'l'.oud] |ﬁﬁ':1wse]

Executable : [] [@_{nwse]
Source Path : [] uAdd]

Feedback Only Mode : [

|""DK][ﬁ‘aﬁcel]

e Scalability Comparison... — Select this option to open another profile for scalability comparison. Like
you did for the New Profile Session. .. option described above, provide information about the profile data
file, the executable file, and the location of the source files. Notice that the new profile contains a Scale
column in its Statistics table.

Note

Another method to open profiles for scalability comparison is by using the —scal e command-line
option explained in “Profiler Invocation and Initialization,” on page 127.

For more information on scalability, refer to “Scalability Comparison,” on page 136.

e Print... — Select this option to make a hard copy of the current profile data. The profiler processes data
from the Statistics table and sends the output to a printer. A printer dialog box appears.

You can select a printer from the Print Service Name combo box. Click the Print To File check box to send
the output to a file. Other print options may be available; however, they are dependent on the specific
printer and the Java Runtime Environment (JRE).

e Print to File... — Option, output is not sent to printer, but is formatted as an editable text file. After
selecting this menu item, a save file dialog box appears. Enter or choose an output file in the dialog box.
Click Cancel to abort the print operation.

e Close... — Select this option to close the current profiling session.

e Exit... — Select this option to end the profiling session and exit the profiler.

Settings Menu

Use the Settings menu to change the look and feel of the PGPROF user interface, such as fonts and chart
colors. This menu contains the following items:

¢ Bar Chart Colors... — This menu option opens a color chooser dialog box and a bar chart preview panel.

Figure 19.3 illustrates the bar chart bar colors, and the three bar chart attributes.

155

PGPROF Menus

Figure 19.3. Bar Chart Color Dialog Box

i paprof Bar chart colors = E

Bar Chart Styles

Swatches | HSB | RGR |

=

® Bar Start Color [l < Bar End Color
1 Filled Text Color [] O Unfilled Text Color
2 Background Color []

l! DK “EI{Eset]

e The bar chart bars are 'gradient filled', meaning that the color of the bar gradually transitions from the
Bar Start Color to the Bar End Color. To have solid colored bars without gradient fill, simply set both of
these colors to the same color.

e The Filled Text Color attribute represents the text color inside the filled portion of the bar chart.

* The Unfilled Text Color attribute represents the text color outside the filled portion of the bar chart.

* The Background Color attribute represents the color of the unfilled portion of the bar chart.

* The Reset button allows you to reset the selected bar chart or attribute to its previously selected color.

* The OK button accepts your changes and closes the dialog box.

Note

Closing the dialog box is the same as choosing OK.

To modify a bar chart or attribute color:
1. Click the radio button.
2. Choose a color from the Swatches, HSB, or RGB pane.

3. Click the OK button to accept the changes and close the dialog box.

156

Chapter 19. PGPROF Reference

PGPROF saves color selections for subsequent runs unless the Save Settings on Exit box is unchecked, as
described later in this section.

e Font... — This menu option opens the Font Chooser dialog box illustrated in Figure 19.4.

You may choose a new font from the list of fonts in this dialog’s top combo box. You may also choose a new
font size from the list of sizes in this dialog’s bottom combo box. As you change the font, you can preview
the changes in the Sample Text pane.

Figure 19.4. Font Chooser Dialog Box
ﬂ paprof Font Chooser = B[R

Statistics tahle font

Font name [Mnnuspaced

Font size {12 |Ilv]

Sample Text

I ok][ﬁ-’t'ancel]

To change the font you must click the OK button is selected.

Click Cancel or close the dialog box to abort any changes.

* Show Tool Tips - Select this check box to enable tool tips. Tool tips are small temporary messages that
pop-up when the mouse pointer is positioned over a component, such as a button, in the user interface.
Tool tips provide a summary or hint about what a particular component does. Deselect this check box to
turn tool tips off.

* Restore Factory Settings. .- Use this option to restore the default look and feel of the user interface to
the original settings.

* Restore Saved Settings. .. - Use this option to restore the look and feel of the GUI to the previously saved
settings. See the Save Settings on Exit option for more information.

e Save Settings on Exit - When this check box is selected, PGPROF saves the current look and feel settings
on exit. These settings include the size of the main window, position of the horizontal dividers, the bar chart
colors, the selected font, the tool tips preference, and the options selected in the View menu. When PGPROF
is started again on the same host machine, these saved settings are used. To prevent saving these settings on
exit, uncheck this check box.

Processes Menu

Use the Processes menu to report process values. This menu is enabled for multi-process programs only. This
menu contains three check boxes: Min, Max, and Avg. They represent the minimum process value, maximum
process value, and average process value respectively.

157

PGPROF Menus

By default, Max is selected. Selecting more than one check box is allowed. When only one check box is
selected, it can't be deselected, thus guaranteeing at least one criteria to be displayed.

e When Max is selected, the highest value for any profile data in the Statistics Table is reported. For example,
when reporting Time, the longest time for each profile entry gets reported when Max is selected.

e When Min is selected, the lowest value for any profile data is reported in the Right Table. AVG reports the
average value between all of the processes.

Note

If the Process check box under the View menu is selected, then each row of data in the Statistics Table
is labeled max, avg, and min respectively.

View Menu

Use the View menu to select which columns of data to view in the Statistics Table, and Focus Panel tables. This
selection also affects the way that tables are printed to a file and a printer, as described in the Print selection of
“File Menu,” on page 154.

The View menu contains the following items:
 Configure... - Invokes a dialog box that allows you to select the columns of the Statistics Table to be

displayed, and how the data in the columns should be displayed. As illustrated in Figure 19.5, an example of
this dialog box, your choices are: Value, Percent, Bar, or All.

158

Chapter 19. PGPROF Reference

Figure 19.5. View | Configure Dialog Box

Configure columns view

All W

U
L]
O
L]
|
L
0
L
0
L
L]
L
O
[

ue Percent

-

All

Count

Time

Cost
hMessages
Messages sent
Messages recvi
Bytes

Bytes sent
Bytes recvd
Event 1

Event 2

Event 3

Event 4

OO0000O0O0O00d0OE®E
OO0000O000000ERES

Filename
Function
Line
Source

Process

OOREOOOODOOOOOO0OOEEE

O

]@}?ﬁlv]@ncel]

Scale

B

¢ Processes... (control P) - Allows you to select individual processes for viewing in the Focus Panel table.
This menu item is enabled only when profiling an application with more than one process.

When this item is selected, a dialog box appears with a text field. In this text field, you can enter individual
processes or a range of processes for viewing. Individual processes must be separated with a comma. A
range of processes must be entered in the form: [start]-[end]; where start represents the first process of
the range and end represents the last process of the range.

For example, the following entry tells the profiler to display information for process 0, processes 2 through
16, and process 31. These changes remain active until they are changed again or until the profiler session is
terminated.

0,2-16,31

This entry tells the profiler to display information for process 0, processes 2 through 16, and process 31.
These changes remain active until they are changed again or until the profiler session is terminated.

To view all of the processes in the View tab, leave the text field blank.

159

PGPROF Menus

e Threads... (control T) - Allows you to select individual threads for viewing in the Focus Panel table. This
menu item is enabled only when profiling an application with more than one thread.

When this item is selected, a dialog box appears with a text field. In this text field you can enter individual
threads or a range of threads for viewing. Individual threads must be separated with a comma. A range of
threads must be entered in the form: [start]-[end]; where start represents the first thread of the range and
end represents the last thread of the range. For example:

0, 2-16, 31

This entry tells the profiler to display information for thread 0, threads 2 through 16, and thread 31. These
changes remain active until they are changed again or until the profiler session is terminated.

To view all of the threads in the View tab, leave the text field blank.

Sort Menu

Use the sort menu to alter the order in which profile entries appear in the Statistics Table, the Focus Panel |
Parallelism and in the Focus Panel | Histogram. The current sort order is displayed at the bottom of each table.

In Figure 19.1, “PGPROF User Interface”, the tables have a "Sort by" clause followed with "Line No" or
"Process". This indicates the sort order is by source line number or by process number respectively.

The default sort order is by Time for function-level profiling and by Line No (source line number) for line-
level profiling. The sort is performed in descending order, from highest to lowest value, except when sorting
by filename, function name, or line number. Filename, function name, and line number sorting is performed
in ascending order; lowest to highest value. Sorting is explained in greater detail in “Sorting Profile Data,” on
page 132.

Search Menu

Use the search menu to perform a text search within the Source table. The search menu contains the following
items:

e Forward Search. .. (control F)

e Backward Search... (control B)

e Search Again (control G)

e (Clear Search (control Q)

PGPROF displays a dialog box when you invoke the Forward Search. .. or Backward Search. .. menu items.

The dialog box prompts for the text to be located. Once the text is entered and the OK button selected, PGPROF
searches for the text in the function list, source code, or assembly code displayed in the Statistics Table.

e If Forward Search is selected, PGPROF scrolls forward to the next occurrence of the text entered in the
dialog box.

e If Backward Search is selected, PGPROF scrolls backwards to the first previous occurrence of the text in the
Source table. Matching text is displayed in red.

160

Chapter 19. PGPROF Reference

* To repeat a search, select the Search Again menu item.

e To clear the search and turn the color of all matching text back to black, select the Clear Search menu item.

o Select Cancel to abort the search.

Note

The Find: box in the toolbar may also be used to invoke the PGPROF search facility.

Help Menu

The Help menu contains the following items:

* PGPROF Help. .. — This option invokes PGPROF’s integrated help utility illustrated in Figure 19.6, “PGPROF

Help”. The help utility includes an abridged version of this manual. To find a help topic, use one of the

follow tabs in the left panel:

Figure 19.6. PGPROF Help

B 5

BIOra | v
= PGPR.OF Hel
o JIntroduction
¢ CIPGPROF GUI
[} Command Line Arg
D Profiler GUI Layout
D Profile Navigation
¢ 1 Menus
D File Menu
D Settings Menu
D Help Menu
[*) Processes Menu :
D View Menu
D Sort Menu
D Search Menu
D Selecting and Sorti

4« i [ID

|PGPROF Help

| PGPROF is a performance profiling tool that provides a way to

visualize and diagnose the performance of the components of

‘| vour program. Using tables and graphs, PGPROF associates
execution time and resource utilization data with the source
‘| code and instructions of your program, allowing you to see

“| where and how execution time is spent. Through resource
f|utilization data and compiler feedback information, PGPROF
“lalso provides features for helping you to understand why

‘| certain parts of your program have high execution times.

¢ ¥ou can also use the PGPROF profiler to profile parallel

‘| programs, including multiprocess MPI programs,

“l rmalti-threaded programs such as OpenP prograrms, or a

‘| cormbination of both. PGFROF provides views of the

s performance data for analysis of MPI comrmunication,
rmultiprocess and multithread load balancing, and scalability.

‘| Using the Common Compiler Feedback Format (CCFF), PGI

‘| cornpilers save information about how your program was
“|optimized, or why a particular optimization was not rmade, in
‘| the executable file. PGPROF can extract this information and
“lassociate it with source code and other performance data,
“llallowing you to view all of this information simultaneously in
-| the ‘Cornpiler Feedback' Fanel.

“|Each performance experiment depends on the resources of the
‘| systern where it is rur.. PGPROF provides a surrnrary of the

-| processor(s) and operating systerm(s) used by the application
“|during any given performance experiment.

Methods of Profiling

There are a variety of ways to use PGPROF to analyze the

[»

4]

* The book tab presents a table of contents.

e The index tab presents an index of commands.

e The magnifying glass tab presents a search engine.

161

PGPROF Toolbar

Each help page, displayed on the right, may contain hyperlinks, denoted in underlined blue, to terms
referenced elsewhere in the help engine.

Use the arrow buttons to navigate between visited pages.
Use the printer buttons to print the current help page.

e About PGPROF... — This option opens a dialog box with version and contact information for PGPROE

PGPROF Toolbar

162

As illustrated in Figure 19.7, the PGPROF toolbar provides navigation shortcuts and controls for frequently
performed operations.

Figure 19.7. PGPROF Toolbar

B Dropdown List HotSpot one higher
Scalab!hty of Performance than where you are
Analysis Forward Find Entry Measurements
i " Biow SLL SRR Hottest Mext Lower
Print Bac : HotSpot HotSpot
l l Ne>lt Firewuu5
&S dE -9 [Find: F'] b @ [Hﬂtspﬂt: Time 21.'..I LR
, i _ :
v '
ET=R
Profile Search Controls HotSpot controls
Seszion

The toolbar includes these buttons and controls:

New Profile Session button - clicking this button is the same as selecting File | New Profile Session. ..
from the menu bar.

Print button - clicking this button is the same as selecting File | Print. .. from the menu bar.

Scalability Analysis button - clicking this button is the same as selecting File | Scalability Comparison. ..
from the menu bar.

Forward and Back buttons - click these buttons to navigate forward and back to previous and subsequent
views, respectively.

Use the down-arrow to display the full list of views, and to select a view to jump to. These lists use a notation
to describe the profile views as follows:

profile_data file@ource file@outi ne@i ne@ddress

The address field is omitted for line-level views, and both the line and address fields are omitted for routine-
level views. For example, the following item in a list would describe a view that uses profile data from
pgpr of . out , and is displaying line 370 in the routine named sol ver in source file nai n. f .

pgpr of . out @rai n. f @ol ver @70

Chapter 19. PGPROF Reference

¢ Search controls - use these to locate information. The controls include:

* A text box labeled Find:. Entering a search string here and hitting Ent er is the same as using the dialog
box invoked from the Search | Forward Search. .. menu bar item.

e Two buttons labeled with down and up arrows, respectively. These buttons provide Search Next and
Search Previous operations, similar to Search | Search Again. Search Next searches for the next
occurrence of the last search string below the current location, and Search Previous searches for the
next occurrence above.

» HotSpot Navigation controls - use these to navigate to the most significant measurements taken in the
profiling run. The controls include:

e A drop-down menu labeled HotSpot:, which you use to select the specific performance measurement of
interest.

* Three navigation buttons, containing Forward and Back icons with associated plus (+) and minus (-)
signs, u.

When the profile is first displayed, the Statistics Table selects the row for the routine with the highest
measured Time as though you had clicked on that row. To navigate to the row with the next-highest Time,
you click on the button labeled with the Forward icon and the minus (-) sign, denoting the next Time
HotSpot lower than the current one. Once you have navigated to this second HotSpot, the Back HotSpot
buttons are activated, allowing you to navigate to the hottest HotSpot using the "<<" button, or to the
next higher Time, using the "<" button.

You can use the HotSpot drop-down menu to change the measurement used to identify the HotSpots. The
default selection in the HotSpot menu is 7ime, assuming that Time is one of the available measurements.
You can click on the down-arrow in the drop-down menu to select any other metric listed in the menu,
then click the "Hottest" button to navigate to the row showing the routine with the highest measured
value for that metric.

PGPROF Statistics Table

This section describes the PGPROF Statistics Table. The Statistics Table displays an overview of the
performance data, and correlates it with the associated source code or assembly instructions. This is where
you should start when analyzing performance data with PGPROF.

The Statistics Table displays information at up to three levels, depending on the type of profile data collected,
how the program was built, and whether the PGPROF source file search path has been set to include the
program source directories.

Performance Data Views

The Statistics Table allows you to zoom in and out on the components of your program by providing several
views: the routine-level view, the line-level view, and the assembly-level view.

To navigate to the line level from the function level, left double-click on the Statistics Table row corresponding
to the function of interest. Similarly, to navigate to the assembly code level from the line level, left double-click
on the Statistics Table row corresponding to the source line of interest.

163

PGPROF Statistics Table

164

e The routine-level view shows a list of the functions or subprograms in your application, with the
performance data for that routine in the same row of the table. In addition, if there is any compiler
feedback information for the routine, a round button containing the letter 'i' is at the far left of the row.
Clicking that button populates the Compiler Feedback tab with the compiler feedback relating to that
routine.

Figure 19.8. Routine-level View

poprof.
File Zettings Processes Niew Sort Search Help
BS @ 49~ [Fina e @
[HutSput: Time ’E] &g %
Function Tirme
@Fer1_pp_rand [] 0.128 = 18% B
EDPer_pp_modulo || 0.063 = o%
EDPer]_pp_const | 0.06 = B4
@Perl_pp_nextstate] 0.0A = 8%
EPer _pp_and |] 0.044 = A%
@Perl_runops_standard || 0,044 = ol
EBPerl _sv_setsy [0.04 = A%
@EPer]_pp_padsy] 0.04 = 8%
EPerl _sv_dec [] 0.028 = 4%
EDPer_pp_predec |] 0.028 = 4%
EDPer _pp_gvsy B 0.025 = 4% =l
EPerl _pp_ot [] 0.024 = %
@ Per]_pp_sassign] 0.016 = 2%
EDFPer1_pp_next] 0.018 = %
EBPer1_pp_last 1 0.016 = 2%
@ Per]_pp_concat [0.012 = 2% ||
EDPer]_sv_2ny] 0.012 = 2% |
Sart By Time
T e e e e e
Display gt
Frocess
0 (Perl_runops_standard)
Sor By Time
L Parallelism LHistugram L Compiler Feedback L System Information
Profiled: perlbmk on Thu Oct 02 15:17:59 PDT 2008 for 0.716 seconds
Profile: pgprof.out

* The line-level view of a routine is accessed by double-clicking on that routine's row in the routine-level
view. The Statistics Table changes to show the source code for the selected function, with performance data
and Compiler Feedback buttons as with the routine-level view.

Chapter 19. PGPROF Reference

Figure 19.9. Line-level View

poprof
File Settings Processes MWiew Sort Search Help
®5 @ <> - [fing F e @
[HutSput: Timea IE] 3 ¢ »
Line Jesrofpp . c@EPerl_pp_rand Time
1619 * |-
1020 if (walue » 1.0% {
1621 S owarnC"Making number O-¥uwnindex #...
1622 numidx, numnumsy; v
1AR23 walue = (doublel (randnums [numidx] % {u...
1624 ¥ else { / and this is a *real® hack */
1625 A% The range of the number is (for a...
1626 A% Since the numbers should have bee...
1627 (Towest common denominator, don'cC... ||
1628 by the maximum unsigned value to ...
1625 0-1. Because we know the maximnum. .. =
1630 modulus or something T1ike that.
1631 W -
1632 A% owalue = Cdoubled{randnums [numidx] #. ..
1633 A owmarnC"Making number O-1wnindex #...
1634 yalue = {{doublelrandnums [numidx] /4., . [HE.023 = 22% |
1635 * >
Sart By Line
e R R R R A R
Display |
Frocess ‘Time
0 C1623)

Sort By Time

L Parallelism LHistugram L Compiler Feedback L System Information
Profiled: perlbmk on Thu Oct 02 15:17:59 PDT 2008 for 0.716 seconds

Profile: pgprof.out

* The assembly-level view of a source line or routine is accessed by double-clicking on a row in the line-
level view. The table changes to show the assembly code, interspersed with the source lines that were
compiled to generate the code.

165

PGPROF Statistics Table

Figure 19.10. Assembly-level View

File Sattings Processes Wiew Sort Search Halp
FE = R fFind: |E] & P [HDtSput: Tirne |§J Ry
Line fsrofpp. c@Perl_pp_rand Time

1619 1 [a]
1620 it (value = 1.03 {
1621 A¥owarn"Making number O-Muhnindex #%u0 of ¥usn', funsigned)walue,
1622 numidx, numnumsd; ¥
1623 wvalue = (doublel (randnums [numids] % (unsigned intiwalued;
1623 Dxd2T3dh: 2 48 T 2c 0 cwttsd2si ¥ummd,%rsi
1623 Duxd2f5en: 48 63 5 19 56 17 0 mowsley Ox0x175619 (KD, Krax
1623 Dxd2Toe?: 48 8b d T2 535 17 O mowy QxOxITAST2(Mrip) . srox | |
1623 Dud2f5ee: 31 42 worl Hedw,¥edx =
1623 Dxd42T310; 8h 4 81 mowl CHrox, srax, 4y, keax =
1623 Dxd2f5f3: B9 6 mowl Hesi,¥esi
1623 Dxd42T313:; 7 B diwl #esi, Meax
1623 Dud2f5fF: 2 48 f 23 c2 cwtsiZsd Hrds, Bmmd
1623 Dxd42T3Tc: eb 1d jmp Oxld <Oxd2f8lbh>
1623 Dud2f5fe: 6E 90 nop
1624 ¥ else { /% and this is a *real® hack %/ ||
1625 A% The range of the number is (for a 32-hit machine) 2432-1 %/

e W

Display |ﬂ’

Process |Time

0 (4275ae) |

Sott By ProcessThread

”\ Parallelism LHistugram L Compiler Feedback L System Information |
Profiled: perlbmk on Thu Oct 02 15:17:59 PDT 2008 for 0.716 seconds | Profile: pgprof.out

The data shown in the Statistics Table can be configured using the View | Configure. .. menu option.

Source Code Line Numbering

166

In the optimization process, the compiler may reorder the assembly instructions such that they can no longer
be associated with a single line. Therefore, for optimized code, a source line may actually be a code block
consisting of multiple source lines. This occurrence is common, and expected, and should not interfere with
the tuning process when using PGPROE

PGPROF sometimes shows multiple rows in the Statistics Table for a single source line. The line numbers for
such lines are shown in the Statistics Table using the notation

| i ne. st atenment

There are several situations where this line numbering can occur:

* When there is more than one statement in a source line, as in a G/C++ program where one line contains
multiple statements, separated by semicolons (;).

* When the compiler generates multiple alternative implementations of a loop. The compiler may create
alternate versions to handle differences in the data and how it is stored in memory.

Chapter 19. PGPROF Reference

e When there is a complicated or conditional loop setup.

For these cases, it is generally safe to sum the times and counts of all the lines. However, take care, particularly
with call counts, not to double-count measurements.

PGPROF Focus Panel

The Focus Panel consists of a number of tabs that allow you to select the focus of your attention as you view the
profile data.

Figure 19.11. Focus Panel Tabs

||\ Parallelism I Histogram LCumpiIer Feedback _LSystem Information |

e Parallelism tab - Displays a table with detailed profile information for the current profile entry.

Figure 19.12. Parallelism Tab of Focus Panel

Display @FDLESS [Thl’led @tﬁssThreads]

Thread [CRL_CLE_UMHALTED DAT}BLCACHE MISSES |DATACACHE REFILLS_FR. .. |DATA_CACHE REFILLS_FF... |

23K
23K

0 (mn_fv_update_nonbon) |BEEEEEE,000,000 = 3% WM, 170,000 = 32% |EEWEEE, 190,000 = 32% |EEEERE 563,000 = 20%
Z (mm_fv_update_nonbon) 9,000,000 = 26% L600,000 = 26% |6 100,000 = 26% |NEEEEE,515,000 = 26%

-
-13 890,000 = 22% (EEWEES4, 780,000 = 22% (NEEESEL,57Z,000
0 = 21% |(EE®E17,020,000 = 21% |EEEERY, 188,000

e

1 (mm_fu_update:nnnbun) mm 500,000 = 22%
_hanban] |m696 200,000 = 205

3 fmm_ty_update

Sort By CPU_CLK_UNHALTED

IL_parallelism Histogram ! Compiler Feedback | System Information |

e For a multi-process application, this table contains a profile entry for each application process.

e For a multi-threaded or multi-process/multi-threaded application, the Parallelism table provides the
option to view process- and/or thread-level profile information. Three buttons labeled Process, Thread,
and Process.Threads are available for you to use to toggle between these views when such views are
available. We refer to these buttons as the Process/Thread Selector buttons.

The default heading for the leftmost column is Process(es). When profiling a multi-threaded application,
the heading in the leftmost column reflects whatever is selected by the Process/Thread Selector buttons.
When the leftmost column is displaying processes or threads, denoted Pr ocess(es) . Thr eads in

the column heading, each entry is displayed using the notation (Process_ID).(Thread_ID). Following

the process/thread ID, the filename, routine name, or line number display is displayed, enclosed in
parentheses. This display provides additional ownership information of the process/thread, as well as acting
as a secondary key for sorting. For more information on sorting, refer to “Sort Menu,” on page 160.

e Histogram tab — Displays a histogram of one or more profiled data items. The performance
measurements displayed are the same as those selected in the View menu, described in “View Menu,” on
page 158.

167

PGPROF Focus Panel

168

Figure 19.13. Histogram Tab of Focus Panel

Time

Cost

Count

Sort By Time

| _Parallelism | Histogram | Compiler Feedback | System Information |

e Each bar graph corresponds to one of the performance measurements.
e Each vertical bar corresponds to a profile entry.

e The bars are sorted in the order specified in the Sort menu, described in “Sort Menu,” on page 160.
Further, the sort order of the Statistics table is reflected in the sort order of the histogram.

e (licking on a bar displays information for the corresponding profile item in the Statistics Table.

 Double-clicking on a bar drills down into the profile for the portion of the program corresponding to the
bar.

e Selected bars are highlighted in blue.

Compiler Feedback tab - Displays information provided by the compiler regarding the characteristics

of a selected piece of the program, including optimization and parallelization information, obstacles to
optimization or parallelization, and hints about how to improve the performance of that portion of the code.
Such information is available at the line level and the function list level.

To access the information, click on an #nfo button displayed at the far left of the Statistics Table. If any
information is available, round, blue buttons, containing a lower-case 'i', are displayed.

Chapter 19. PGPROF Reference

Figure 19.14. Compiler Feedback Tab of Focus Panel

[»

for line 1621

1. Intensity = [symbolic], and net printable, try the -Mpfi -Mpfo options

2. Loop can be evaluated in parallel
3. Cenerated 3 alternate loops for the inner loop
4. Cenerated vector sse code forinner loop

3. Generated 3 prefetch instructions for this loop

[4]

4] Il | []
I

| Parallelism LHistugram LCumpiler Feedback | System Information |

The information is separated into these categories:

¢ Information about a source line

¢ Information about routines referenced inside another routine
¢ Information about variables referenced inside a routine

e Information about how a file was compiled

Each category is represented by a wide bar that functions like a button. Clicking the bar expands the display
to show the information in that category. If no information is available in a given category, that category is
not listed.

This information is only available if the program was compiled and linked using either the —Mpr of or the —
M nf o=ccf f option. In some cases it is necessary to build programs using profile-guided optimization by
building with —Vpf i or—Npf o, as described in the section Profile-Feedback Optimization using -Mpfi/
Mpfo in the Optimizing and Parallelizing chapter of the PGI User’s Guide. Profile-guided optimization can
often determine loop counts and other information needed to calculate the Compute Intensity for a given
statement or loop.

System Information tab - Displays a panel containing information about the system on which the profile
run was executed. If the profile run was executed on multiple systems, there may be information for
multiple systems. The information can include:

169

PGPROF Focus Panel

Figure 19.15. System Information Tab of Focus Panel

System Info for Processies): O

-~ Manufacturer: AuthenticAMD
- Processor: k8-64e

- OS Target: linux86-64

- Cores per socket; 2

- Total Cores: 8

- Frequency: 2192 MHz

_Parallelism | Histogram Compiler Feedhg_qk_!. System Information I

* Process(es) - the process number(s), or MPI rank(s), of the processes that executed on the specified
system in the profiling run.

* Manufacturer - the processor manufacturer

e Processor - the cpu architecture on which the profiling run was executed, specified using the
architecture name used with the PGI compilers' '-tp' option. See the PGI User's Guide for more
information.

* OS Target - the operating system platform that the executable was built for. Note that although the
processor may be a 64-bit processor, the executable may target a 32-bit platform.

e Total cores - the total number of processor cores on the system

e Cores per socket - the number of processor cores per CPU. If the total cores value is 16, and the cores
per socket value is 4, then you know you are using a quad-core processor.

* Frequency - the processor frequency

170

Chapter 20. The PGPROF
Command Line Interface

The user interface for non-GUI (Win32) versions of the PGPROF profiler is a simple command language.
This command language is available in the profiler through the —t ext option. The language is composed
of commands and arguments separated by white space. A pgprof> prompt is issued unless input is being
redirected.

This chapter describes the PGPROF profiler command line interface, providing both a summary and then more
details about the commands.

Command Description Syntax
This chapter describes the profiler’s command set.

e Command names are printed in bold and may be abbreviated as indicated.

Arguments enclosed by brackets (‘[*’]") are optional.

Separating two or more arguments by ‘I” indicates that any one is acceptable.

Argument names in italics are chosen to indicate what kind of argument is expected.

Argument names that are not in italics are keywords and should be entered as they appear.

PGPROF Command Summary

Table 20.1. PGPROF Commands

Name Arguments Usage
d[isplay] [display options] | all | none Specify display information.
he[lp] [command] Provide brief command synopsis.

171

Command Reference

Name Arguments Usage
h[istory] [size] Display the history list, which stores
previous commands in 2 manner similar
to that available with csh or dbx.
1[ines] function [[>] filename] Print (display) the line level data together
with the source for the specified function.
a[sm] routine [[>] filename] Print (display) the instruction and line
level data together with the source and
assembly for the specified routine.
lo[ad] [datafile] Load a new dataset. With no arguments
reloads the current dataset.
m|[erge] datafile Merge the profile data from the named
datafile into the current loaded dataset.
pro[cess] processor_num For multi-process profiles, specify the
processor number of the data to display.
plrint] [[>] filename] Print (display) the currently selected
function data.
q[uit] Exit the profiler.
sel[ect] calls | timecall | time | cost | cover | | Display data for a selected subset of the
all [[>] cutoff] functions.
so[rt] [by] [max | avg | min | proc | thread] |Function level data is displayed as a sorted
calls | cover | timecall | time | cost | |list.
name | msgs | msgs_sent | msgs_recv
| bytes | bytes_sent | bytes_recv | visits
| file]
src[dir] directory Set the source file search path.
s[tat] [no]minl [no]avgl[no]maxI[no]procl |Set which process fields to display (or
[no]threadl|[no]all] not to display when using the arguments
beginning with “no”
th[read] thread_num Specify a thread for a multi-threaded
process profile.
t[imes] raw | pct Specify whether time-related values
should be displayed as raw numbers or as
percentages. The default is pct.
! (history) !''num | -num | string Repeat recent commands

Command Reference

172

This section provides more details about the commands in the previous Command Summary Table.

asm

ccff

Chapter 20. The PGPROF Command Line Interface

a[sn] routine [[>] filenane]

Print (display) the instruction and line level data together with the source and assembly for the specified
routine. If the filename argument is present, the output is placed in the named file. The '>' means redirect
output, and is optional. This command is only available on platforms that support assembly-level profiling.

c[cff] file[@unction] [|ine_nunber]

Print compiler feedback for the specified file, function, or source line. PGI compilers can produce information
in the Common Compiler Feedback Format (CCFF) that provides details about the compiler's analysis and
optimization of your program. Often this information can illuminate ways in which to further optimize a
program.

The CCFF information is produced by default when using the —Mpr of ' compiler option, but if you are profiling
with the pgcollect command, you must build you program with the '=M nf o=ccf f ' compiler option to
produce this information.

display

help

d[isplay] [display options] | all | none

Specify display information. This includes information on minimum values, maximum values, average values,
or per processor/thread data. Below is a list of possible display options:

[no]calls [no]cover [no]time [no]timecall [no]cost [no]proc [no]thread [no]msgs [no]msgs_sent
[no]msgs_recv [no]bytes [no]bytes_sent [no]name [no]file [no]line [no]lineno [no]visits [no]scale
[no]stmtno

he[| p] [conmand]

Provide brief command synopsis. If the command argument is present, only information for that command is
displayed. The character "?" may be used as an alias for help.

history

lines

load

h[istory] [size]

Display the history list, which stores previous commands in a2 manner similar to that available with csh or dbx.
The optional size argument specifies the number of lines to store in the history list.

I[ines] function [[>] filenane]

Print (display) the line level data together with the source for the specified function. If the filename argument
is present, the output is placed in the named file. The '>" means redirect output, and is optional.

| o[ad] [datafil e]

173

Command Reference

Load a new dataset. With no arguments reloads the current dataset. A single argument is interpreted as a new
data file. With two arguments, the first is interpreted as the program and the second as the data file.

merge
nf erge] datafile

Merge the profile data from the named datafile into the current loaded dataset. The datafile must be in
standard pgprof.out format, and must have been generated by the same executable file as the original dataset
(no datafiles are modified.)

process

pro[cess] processor_num

For multi-process profiles, specify the processor number of the data to display.
print

p[rint] [[>] filenane]

Print (display) the currently selected function data. If the filename argument is present, the output is placed in
the named file. The '>' means redirect output, and is optional.

quit
gl uit]
Exit the profiler.
select
sel[ect] calls | tinecall | time | cost | cover | all [[>] cutoff]
Display data for a selected subset of the functions. This command is used to set the selection key and
establish a cutoff percentage or value. The cutoff value must be a positive integer, and for time related fields is
interpreted as a percentage. The '>' means greater than, and is optional. The default is all.
sort
so[rt] [by] [max | avg | min | proc | thread] calls | cover | tinmecall | tinme |
cost | nane | negs | mBgs_sent | nsgs_recv | bytes | bytes_sent |
bytes recv | visits | file]
Function level data is displayed as a sorted list. This command establishes the basis for sorting. The default is
max time.
srcdir
src[dir] directory
Set the source file search path.
stat

s[tat] [no] m n|[no]avg| [no] max| [no] proc| [no]t hread|[no] all]

174

Chapter 20. The PGPROF Command Line Interface

Set which process fields to display (or not to display when using the arguments beginning with “no”).

thread

th{read] thread_num

Specify a thread for a multi-threaded process profile.

times

t[imes] raw | pct

Specify whether time-related values should be displayed as raw numbers or as percentages. The default is pct.
I'(history)

'

Repeat previous command.

I num

Repeat previous command numbered num in the history list.

I -num

Repeat the num-th previous command numbered num in the history list.

I string

Repeat most recent command starting with string from the history list.

175

176

Chapter 21. pgcollect Reference

You use the PGCOLLECT tool to control collection of performance data using OProfile on linux86_064 systems.
This chapter describes the pgcollect command line options and how to use them to configure and control
collection of application performance data.

Invoking pgcollect
The following command invokes PGCOLLECT:
pgcol | ect [options] programor_script_fil ename [program args]

This syntax indicates that the only required argument is the pr ogr am or _scri pt _f i | enane, which is
either the filename of the program to be profiled, or the name of a script that invokes the program. When
applicable, you can provide arguments for the specified program or script.

Using a script can be useful if you want to produce an aggregated profile of several invocations of the program
using different data sets. In this situation, use the - exe option, which allows the data collection phase to
determine which program is being profiled.

You can optionally provide a number of command-line options, described in “Command-line Options,” on
page 178. If no event specification option is provided, pgcollect performs time-based profiling at a 1
millisecond sampling rate.

Since OProfile provides only system wide profiling, when you invoke pgcollect it provides a locking
mechanism that allows only one invocation to be active at a time.

Note

The pgcollect locking mechanism is external to OProfile and does not prevent other profile runs
from invoking the OProfile command opcontrol through other mechanisms.

System Access Requirements

When using pgcollect, you control the OProfile kernel driver and the sample collection daemon via the
OProfile command opcontrol. This control requires root privileges for management operations. Thus,
invocations to opcontrol, which are performed when pgcollect is used, are executed via the sudo command.

177

Command-line Options

One technique that requires minimal updates to the / et ¢/ sudoer s files is to assume that all users in a
group are allowed to execute opcontrol with group privileges. For example, you could make the following
changes to / et ¢/ sudoer s: to permit all members of the group 'sw' to run opcontrol with root privileges.

User alias specification
User Alias SW= %w

SW ALL=NOPASSWD: / usr/ bi n/ opcont r ol

Consult with your network administrator regarding your local sudo security policies.

Note

pgcollect shuts down the OProfile daemon when interrupted. However, if the script is terminated with
SIGKILL, you must execute the following:

pgcol | ect -shut down
Executing this command is important because if the OProfile daemon is left running, disk space on

the root file system is eventually exhausted.

Command-line Options

This section contains a list of valid PGCOLLECT options, grouped by categories.
Overall Options
-V
Display the version of pgcollect being run.

-check-events
Do not execute a profiling run, just check the event settings specified on the command line.

-exe <exename>
Specify the program to be profiled. You only need to use - exe when the file argument is a script that
invokes the program.

-help
Show profiler usage and switches.

-list-events
List profiling events supported by the system.

-shutdown
Shut down the profiling interface. You only need to use this option in rare cases when a profiling run was
interrupted and OProfile was not shut down properly.

Predefined Performance Data Collection Options

-allcache
Profile instruction, data, and branch cache misses

-dcache
Profile various sources of data cache misses

178

Chapter 21. pgcollect Reference

-imisses
Profile instruction cache-related misses.

-time <millisecs>
Provide time-based sampling only. Specify the sampling interval in milliseconds. This option is the default.

User-Defined Performance Data Collection Options

-es-function <name>
Set profile events via a shell function.

-event <spec>
Manually add an event profile specification. An event profile specification is an opcontrol '--event'
argument; that is, the event profile specification provided on the command line is appended to '--event="
and passed as an argument to opcontrol.

-post-function <name>
Execute a shell function after profiling is complete.

Defining Custom Event Specifications

The pgcol | ect ' - event =EVENTSPEC options are accumulated and used to specify events to be
measured. For more information about these events, refer to the opcontrol man page.

Users can also provide event specifications by supplying shell functions in a file named . pgopr un. The
associated directory search list is the current directory followed by the user's home directory.

There are numerous processor counters provided by x64 processors that can be used to measure a variety of
processor resources. Here are two examples.

Example 21.1. Custom Event Example 1

Here is an example of a shell function that would be implemented in a . pgopr un file:

amd_al ternati ve_dcache () {

event [${#event[@}] =- - event =CPU_CLK_UNHALTED: 40000: 0x00: 0: 1

event [${#event[@}] =- - event =DATA CACHE M SSES: 4000: 0x00: 0: 1
event [${#event[@}] =- - event =DATA _CACHE_REFI LLS FROM L2: 4000: Ox1f: 0: 1
event [${#event[@}] =- - event =DATA_CACHE _REFI LLS FROM SYSTEM 4000: 0x1 f:0: 1

}

To invoke this setting, specify the pgcollect arguments:

-es-function amd_al ternative_dcache

Example 21.2. Custom Event Example 2

To produce a source code listing from a profile run that is annotated with profile data, implement the following
function in a . pgopr un file:

annot () {
opannot ate --source $exe > opannot at e. out
}

179

Defining Custom Event Specifications

Invoke pgcollect using the arguments:

-es-functi on annot

180

Index

Symbols
.pdb file, 47
.pgdbgrc file

initialization, 3
$EDITOR, 104
32-bit Windows, 48
-allcache

pgcollect, 178
-check-events

pgcollect, 178
-dcache

pgcollect, 178
-es-function

pgcollect, 179
-event

pgcollect, 179
-exe

pgcollect, 178
-g option, -gopt option, 47
-help

pgcollect, 178
-imisses

pgcollect, 179
-list-events

pgcollect, 178
-Minfo

ccff, 143
-Mprof

dwarf, 143

func, 126, 143

hpmpi, 143

hwets, 125, 126, 143

lines, 126, 144

mpichl, 144

mpich2, 144

msmpi, 144

mvapich, 144

time, 125, 126, 144
-pg, 144
-post-function

pgcollect, 179
-shutdown

pgcollect, 178
-time

pgcollect, 179
-V

pgcollect, 178

, 108, 108

A
add
directory pathname, 116
addr
command, 115
address
32-bit float, 114
64-bit double, 113
conversion, 115
current, 113
current program, 113
disassemble locations, 22
fetch, 115
print, 13, 115
print integer, 114
print short integer, 115
read double, 113
read integer, 113
return, 110
set breakpoint, 102
short signed integer, 115
signed integer, 113, 114
alias
command, 116
create, 116
print, 116
remove, 121
AMDG4 Register Symbols, 51
Analyze

performance data, MPI programs,
135
performance data, multi-threaded
programs, 134
Application
terminate target, 11
tuning, 127
arguments
intepretation, 29
print name and value, 106
print names, 105
print values, 105, 106
target program, 2
arrays
Fortran, 53
large, 53
ranges, 53
subscripts, 53
arrive
command, 104
menu item, 14
ascii
command, 108
print, 13, 108
asm
PGPROF command, 173
assembly-level
debug with C++, 48
debug with Fortran, 47
debug with PGDBG GUI, 48
assign
command, 109
async command, 72
Attach
command, 94
running process, 11
Attribute
modify color, 156
Audience Description, xix

B
Background
color, 156
bin
command, 108
Binary

181

print, 13, 108
blocks
common, 54
Fortran, 54
lexical, 29
statements, 30
break
command, 31, 97, 98
conditional, 102
on variable change, 101, 102
breaki
command, 49, 98, 98
breakpoints
at address, 49
clear, 99
clear all, 99
display active, 14
display all, 99
display existing, 99
print, 98, 98
print current, 97, 98
remove, 102, 103
remove all, 102, 103
remove from address, 103
set, 15, 98, 98, 101, 102
set at address, 98
variable, 101, 102
breaks
command, 99
breaks command, 99
buttons
PGDBG, 16
Source panel, 16
Bytes
profile data, 150
received, 150
sent, 150

C
C++, 48
Instance Methods, 56
symbol names, 48
call
command, 56, 109
popup menu, 19
routine, 15

182

routine or function, 150
stack, 14
calling conventions, 48
Fortran, 47
cancel
call command, 109
Cascade Windows, 16
catch
command, 99
catch command, 99
Caveats, 150
CCFF, 123, 133
-Minfo, 143
PGPROF command, 173
CCP_SDK, 144
cd
command, 104
change
directories, 104
clear
breakpoints, 99
command, 99, 99
data, 20
search, 160
subwindow, 20
Clock
granularity, 151
resolution, 151
Close
File menu item, 20
PGPROF, 155
subwindow, 20
code
source locations, 28
Collect
performance data, MPI, 135

performance data, multi-threaded

programs, 134
Colors

background, 156

filled text, 156

modify attribute, 156

set in PGPROE, 155

unfilled text, 156
combo box

ALL selection, 16

Current Process.Thread selection,
16
Current Process selection, 16
Current Thread selection, 16
Foxus selection, 17
Source Panel, 16
command
argument interpretation, 29
blocks, 30
categories, 93
conditional execution, 104
constants, 28
control, 71
events, 31
Invoke PGDBG, 2
lists, 23
log, 117
menus, 14
modes, 27
notation, 35
pgcollect, 124
PGDBG, 27
PGDBG set, 93
print use, 116
prompt, 75
prompts, PGDBG panel, 8
recently executed, 117
set, 69
Summary Table, 35
symbols, 28
syntax, 27
command line
PGDBG options, 25, 25
PGPROF options, 144
common blocks, 54
Compare
scalability, 136, 155
Compiler
feedback, 132
Feedback Format, 123
Configure
-es-function pgcollect option, 179
-event pgcollect option, 179
PGPROE, 158
-post-function pgcollect option,
179

stop mode, 72
wait mode, 73
Conformance to Standards, xix
constants, 28
cont command, 49, 94
Continue
cont command, 94
execution, 15, 15, 15, 15, 15
Control
menus, 14
control-B, 15
control-C, 20, 34
MPI use, 34
thread initialization issues, 34
control-D, 14
control-E, 15
control-E 15
control-G, 15
control-H, 14
control-I, 15
control-L, 16
Control menu, 15, 15, 15, 15
Arrive, 14
Call, 15
Cont, 15
Down, 14
Halt, 14
Run, 14
Run arguments, 14
Step, 15
Up, 14
control-N, 15
control-0, 15
control-P, 13
Control Panels
PGDBG GUI, 7
control-R, 14
control-S, 15
control-T, 15
control-U, 14
control-W, 16
conventions
calling, 47
calling conventions, 48
in text, xxii
conversions, 115

convert

address, 115

address to line, 29

line to address, 29
Copyright

display, 12
core files

generation, 57

location, 58

name, 58

set size limit, 58
Cost

information in profile, 150
Count

line or function execution, 150
Counters

CPU_CLK_UNHALTED, 130
CPU

cycle count, 140
CPU_CLK_UNHALTED, 130
cread

command, 113
create

aliases, 116
Custom

subwindow, 23

D

Data
analysis, MPI programs, 135
analysis, multi-threaded
programs, 134
clear, 20
collection, 126
collection, MPI, 135
collection, multi-threaded
programs, 134
disassemble, 15
menus, 13
pop-up menu, 19
precsion, 149
print type, 13
profile, 149
regenerate, 20
sort profile, 132
update, 20

Index

view performance, 163

datafile

PGPROF command line option,
144

Data menu

addr, 13
ascii, 13
bin, 13
decimal, 13
hex, 13
oct, 13
print, 13
print *, 13
string, 13
Type of, 13

dbx

command mode, 27

debug

assemble-level with C++, 48
assemble-level with Fortran, 47
assemble-level with PGDBG GUI,
48

assembly-level, 47
assembly-level commands, 49
assembly-level menu options, 48
C++, 56

command, 94

command-line interface, 49
Fortran source, 53

-g option, 47

modes, 62

MPI, 83

multilevel, 91

name translation, 48

on Microsoft Windows systems,
47

on windows, 2

parallel, 61, 69

PGDBG features, 1, 2

using memory addresses, 47
using registers, 47

with core files, 57

with -Munix, 48

debug mode

multilevel, 91
process-only, 63

183

serial, 62
threads-only, 63
dec
command, 108
decimal
print, 13, 108
declaration command, 109
declarations
print, 111
symbol, 109
decls
command, 111
default
settings, 157
define
command list to execute, 100,
100
debugger environment, 118
do event, 100
doi event, 100
event, 101
instruction-level track event, 102
instruction-level watch event, 103
read/write watchpoint, 101
read watchpoint, 101
track event, 102
watchpoint, 100
defset
command, 66, 97
delete
command, 99
event number, 99
Detach
command, 94
end debug session, 11
directory
add pathname, 116
add to search list, 121
change, 104
command, 116
working, 105
disable
command, 100
event number, 100
tool tips, 11
disasm command, 104

184

disassemble
data, 15
Memory, 104
popup menu, 19
disassembler subwindow, 14, 21
disassembly
display, 48
display
active breakpoints, 14
breakpoints, 99, 99
command, 108
curent program counter scope,
17
current program counter scope,
17
debugger settings, 118
disassembly, 48
event definition, 101
event definitions, 101
expressions, 108
local variables, 14
memory locations, 48
MPI message queues, 14
OpenMP private data, 81
PGPROF command, 173
program location, 14
registers, 13, 48, 49
routine scope, 14, 14
source file name, 17
stack traceback, 48
stack window, 13
unique thread ID, 79
do
command, 31, 100
Documentation
accessing, Xix
location, xix
doi
command, 100
Down
command, 111
menu item, 14
dread
command, 113
dump
command, 49, 113

list, 20
memory contents, 113
MPI message queue, 115
dwarf
-Mprof, 143
Dynamic p/t-set, 65

E
edit
command, 104
file, 104
enable
command, 100
tool tips, 11
enter
command, 111
entry
command, 110
Environment
debugger, 118
define, 118
variables, PGPROEF, 147
Environment variables
$EDITOR, 104
CCP_SDK, 144
GMON_ARDCS, 147
HOME, 3
name, 120
PATH, 3
PGL_JAVA, 4, 128
PGPROF, 147
PGPROF_DEPTH, 147
PGPROF_EVENTS, 139, 139, 147
PGPROF_NAME, 147
set, 120
system, 147
using, 127
evaluate
without printing, 117
Event counters
hardware, 140
using PAPI, 139
using PGPROF -pgcollect, 138
Events, 17, 30, 97
at address, 31
at line, 31

breakpoints, 17
commands, 31
conditional, 31
counters, 127, 138
counters, Linux, 138
custom specification, pgcollect,
179
definitions, 101
delete, 99
disable, 100, 100
enable, 100
hardware triggered, 100, 101,
101
in routine, 31
-Mprof=hwcts, 143
multiple at same location, 32
PAPI_TOT_CYC, 140
parallel, 76
print, 100, 100
profile, 179
profile specification, 179
program speed, 32
settings check, 178
status, 101
track, 102
tracki, 102
watch, 103
watchi, 103
exe
PGPROF command line option,
144
Execute
command, 104, 104
conditional, 104, 104
continue, 15
rerun command, 95
run command, 95
shell function after profile, 179
single line, 15, 15

print, 106

print formatted, 107
print with pgienv, 107
rvalue, 110

type, 111

F
Feedback
CCFE, 123
compiler, 133
messages, 133
tab, Focus Panel, 168
feedbackonly
PGPROF command line option,
144
file command, 105
File menu, 20
Files
.exe, 47
.pdb, 47
.pgdbgre, 3
Attach to Target menu, 11
available, 17
change, 105
change source file, 105
command, 112
DetachTarget menu, 11
edit, 104
execute contents, 120, 121
Exit menu item, 11
initialization hierarchy, 3
menu, 11
open for debug, 11
Open Target menu, 11
print profile data, 155
profile output, 126
source file list, 112
Source File selector, 17
source list, 17, 112

single machine instruction, 15, 15 floating point

Exit
PGPROF, 155
save settings, 157
Expressions, 33
evaluate, 117
Ivalue, 110

stack register symbols, 50
Focus
Compiler Feedback tab
Compiler, 168
histogram tab
Historgram, 167

Index

panel in PGPROF, 154, 167
parallelism tab
Parallelism, 167
PGDBG panel, 8
System Information tab
System, 169
focus command, 66
Fonts
change, 11
default in debugger, 11
select, 11
set, 157
fork
shell, 120
Fortran
debugging, 53
symbol names, 47
Fortran 90 modules, 55
fp
command, 112
frame pointer, 112
value, 112
fread
command, 114
function
command, 115

G

General Registers, 51
symbols, 50
Global
commands, PGDBG, 112
Global commands, 71
GMON_ARCS, 147
gmon.out, 144, 144
grid, 8
color meaning, 8
refresh, 16
group
selection, 17
GUI
control panels, 7
PGDBG, 5

H
halt

185

command, 85, 95
control-C, 34
running processes, 14
running threads, 14
Hardware
counters, profile with, 138
event counters, 127, 140
read/write watchpoint, 101
read watchpoint, 101, 101
watchpoint, 100
Help
About PGDBG menu item, 12
menu, 12, 161
on PGDBG commands, 12
pgcollect, 178
PGDBG menu item, 12
PGPROF command, 173
PGPROF command line option,
145, 146
profiler usage, 178
utility, 12
window, 12
help
command, 116
Hex
print, 13
hex
command, 108
hexadecimal
print, 108
Histogram tab
PGPROF, 167
history
command, 117
modifiers, 117
PGPROF command, 173, 175
repeat command, 120
resize list, 117
HOME
environment variable, 3
Host
defined, 1
HotSpot
controls, 131
navigation, 163
HPF, xix

186

HPMPI

debug, 87

-Mprof, 143
hwatchboth command, 101
hwatch command, 31, 100
hwatchread command, 101, 101
hwcts

-Mprof, 143
hybrid applications

parallel debugging, 91

PGPROF command line option,

145
icons

stop sign, 17
ID

process, 95
Identifiers

numeric process, 9

numeric thread, 9, 9
identifiers

declarations, 111
if else

parallel statements, 77
if statement, 30
ignore

command, 101

signals, 101
ignore command, 101
Information

profile summary, 154
Initialization

PGDBG, 2
Initialize

PGDBG, 3

PGDBG file, 3
Inlining

routines, 133
instance

methods, 56
instruction

tracing, 102
integer

print as binary, 108

print as decimal , 108
print as hexadecimal , 108
print as octal , 108
Intensity
computational, 133
messages, 133
internal
procedures, 54, 54
interrupt
control-C, 34
Invocation
PGDBG, 2
Invoke
custom subwindow, 14
memory dumper subwindow, 14
pgcollect, 177
PGDBG, 2
PGDBG Disassembler subwindow,
14
PGDBG for MPI debug, 87
profiler, 127
subwindows, 17
iread
command, 114

J
jarg
PGPROF command line option,
145
Java
-jarg, 145
PGPROE, 128
specify location, 4, 128
version selection, 4, 128
JWM
Java, 128
Java and PGDBG, 4, 4

L
language
command, 117
Launch
profiler, 127
Lexical blocks, 29
Libraries
HPMPIL, 143

MPI routines, 135
line command, 115
lines
command, 105
PGPROF command, 173
Lines
-Mprof option, 144
numbering, 150, 166

profiling and optimization, 151

table, print, 105
Linux

profiles, 126
list

command, 105

source lines, 105
load

PGPROF command, 173
Locate

routine, 15

string, 106, 106
Locate Routine, 15

popup menu, 19
Location

change, 104

current, 104

program, 14
log

all commands, 117

command, 117, 117
Iread

command, 115
Ival

command, 110
Ivalue

defined, 110

M

machine language
listings, 22
Main routine
name, 54
Manual organization, Xx
Measure
time, 149
Memory
access commands, 113

disassemble, 104
display locations, 48
dump, 14, 113
subwindow, 20, 21

Menu items

About PGDBG, 12
Addr, 13

Arrive, 14

ASCII, 13

Attach to Target, 11
Backward search, 160
Bar Chart Colors, 155
bin, 13

binary, 13

Call, 15

Cascade Windows, 16
Clear Search, 160
Close, 155
Configure..., 158
Cont, 15

Custom, 14

Dec, 13

decimal, 13

Detach Target, 11
Disassembler, 14, 15
Down, 14

Events, 14

Exit, 11, 155

Font, 11, 157
Forward search, 160
Halt, 14

Help, PGPROF, 161
Hex, 13
hexadecimal, 13
Locals, 14

Locate Routine, 15
Memory, 14
Messages, 14

new Window, 154
Next, 15

Nexti, 15

Oct, 13

octal, 13

Open Profile, 154
Open Target, 11
PGDBG Help, 12

PGPROF Help, 161

print, 13

Print, 155

print *, 13

Print to File, 155
Processes, 159

Refresh, 16

Registers, 13

Restore Factory Setting, 11

Index

Restore Factory Settings, 157, 157

Restore Saved Setting, 11

Restore Saved Settings, 157

Run, 14
Run arguments, 14

Save Settings on Exit, 11, 157

Scalability comparison, 155

Search Again, 15, 160
Serach Backward, 15
Serach Forward, 15
Set Breakpoint, 15
Show Tool Tips, 11, 157
Stack, 13

Step, 15

Stepi, 15

Step Out, 15

string, 13

Threads..., 160

type, 13

Up, 14

Menus

assembly-level options, 48
Command, 14

Control, 14

Data, 13

Data pop-up, 19

file, 11

File, 20

File, PGPROF, 154
Help, 12

Options, 15

PGPROE 154, 154
pop-up, 17

Processes, PGPROF, 157
Settings, 155

Source panel, 13
Source Panel, 17

187

Window, 13
merge
PGPROF command, 174
Messages
areas, 17
debug
MPI application, 24
feedback, 133
inlined, 133
intensity, 133
MPI, 14, 84
MPI queue, 115
number received, 150
number sent, 150
queues, 84
received, 150, 150
sent, 150, 150
Source panel, 17
status, 75
status in PGDBG, 17
subwindow, 24
Methods
profiling, 126
Microsoft Windows
debug, 47
Miscellaneous commands, 116
Modes
stop, 72
wait, 72
modules
debug access, 55
Fortran 90, 55
procedures, 55
MPI
data analysis, 135
data collection, 135
debug considerations, 83
Debugging, 84
debug multi-process, 83
global rank, 88
groups, 85
library routines, 135
Listener process, 85
listener processes, 85
local process, 88
message queue dump, 115

188

message queues, 14, 84, 84

MPICH-1, 89

MPICH-2, 89

multi-process debug, 86

MVAPICH, 89

parallel debug, 83

process, local, 88

profiling, 135

sample profile, 136
MPI_COMM_WORLD, 85
MPICH

support, 89
MPICH-1

-Mprof option, 144
MPICH-2

debug, 87

-Mprof option, 144

support, 89
mqdump

command, 115
MSMPI

debug, 87

-Mprof option, 144
multilevel

debugging, 91

error messages, 92

mode status, 92
multilevel debugging, 63
Multi-threaded

data analysis, 134

data collection, 134

profiling, 134
MVAPICH

debug, 87

-Mprof option, 144

support, 89

N

Names
command, 112
declarations, 112
identifiers, 112
print declarations, 112
registers, 113
remove alias, 121
translation, 48

Navigation

HotSpot, 131, 163
jump to profile, 131
previous PGPROF view, 131
Profile, 130
select profile, 131

Network

slow connections, 128

Next

PGDBG command, 15

next

command, 95

Nexti

PGDBG command, 15

nexti

command, 49, 95

noprint

O

command, 117

oct

command, 108

Octal

print, 13, 108

OpenMP, xix

parallel debug, 79
private data debug, 80

Operators

@, 33, 54, 112

in expressions, 53
range, 33

scope, 54

scope qualifier @, 28

OProfile

overview, 125
pgcollect, 177

Optimize

code, 2
-g use, 2

Options

command line, 25, 25, 25
'ga 27 47
-gopt, 47

menu, 15, 15, 15, 15, 15, 16

Disassembler, 15
menus, 15

-Minfo=ccff, 143

-Mprof, 135

-Mprof=dwarf, 143

-Mprof=func, 143, 143

-Mprof=hwcts, 143

-Mprof=lines, 144

-Mprof=mpichl1, 144

-Mprof=mpich2, 144

-Mprof=msmpi, 144

-Mprof=mvapich, 144

-Mprof=time, 144

Munix, 48

-00, 2

-pg, 144

pgcollect, 178
options

MPI profile, 135
Options menu

Refresh, 16

P
p/t-sets, 64
commands, 66
create, 67, 68
current, 64, 66
define dynamic, 65
define static, 65
dynamic vs static, 65
Editor, 68
ignore, 70
modify, 68
multilevel debug mode, 65
multiple threads and processes,
76
notation, 64
override current, 70
prefix, 64, 66
process-only debug mode, 65
remove, 68
select, 68
target, 64
thread-only debug mode, 65
undefine, 67
Panels
PGDBG Command Prompt, 8
PGDBG Focus, 8

PGDBG GUI, 7
PGDBG Source, 11
source, 17
Source menus, 13
PAPI
event counters, 139
overview, 125
PAPL_TOT_CYC, 139
event, 140
Parallel
debug commands, 69
debugging, 61
debugging, overview, 61
debug hybrid apps, 91
debug with MPI, 83
events, 76
program profiles, 133
regions, stepi command, 96
statements, 77
statements, return, 78
PATH
environment variable, 3
pathname
add to search path, 116
pause, 121
pc
command, 113
Performance
-allcache pgcollect option, 178
APL 125
assembly-level view, 165
collect data, 126
data views, 163
-dcache pgcollect option, 178
displyed, 163
-dmisses pgcollect option, 179
line-level view, 164
MPI, 135
multi-threaded programs, 134
routine-level view, 164
-time pgcollect option, 179
pgcollect, 124, 138, 177
-allcache option, 178
-check-events option, 178
custom event specification, 179
-dcache option, 178

Index

-es-function option, 179
-event option, 179

-exe option, 178

help, 178

-imisses option, 179
invoking, 177
-list-events option, 178
OProfile, 177

options, 178
-post-function option, 179
-shutdown option, 178
syntax, 177

-time option, 179
version, 178

-V option, 178

PGDBG

Assembly-level debugging, 47
Buttons, 16

C++ debugging, 56

Combo boxes, 16
Command-Line Arguments, 25,
25,25

Command menu, 14
Command prompt, 75
Command Prompt panel, 8
Commands, 27, 93
Commands Summary, 35
Control menu, 14
Conversions, 115

Custom Subwindow, 24

Data menu, 13

Debugger, 1, 2

Debug modes, 62, 91

Default GUI appearance, 6
Disassembler Subwindow, 22
Events, 30, 97

Expressions, 33

File Menu, 11

Focus panel, 8

Fortran arrays, 53

Fortran Common Blocks, 54
Fortran debugging, 53
Graphical user interface, 3, 5
GUI with All Control Panels, 7
Help Menu, 12

Initialization, 2

189

initialize, 3

Internal Procedures, 54
Invocation, 2

Main Window, 5, 19

Memory access, 113

Memory Subwindow, 21
Messages Subwindow, 18
Miscellaneous commands, 116
Name of main routine, 54
Operators, 33, 53

Options menu, 15

Printing and setting variables, 106
Process commands, 70
Process control commands, 94
Program I/0 Window, 6
Program locations, 104
Register access, 112

Registers Subwindow, 22
Register symbols, 28

Scope, 111

Scope rules, 28

Settings Menu, 11

Source code locations, 28
Source panel, 11

Source panel buttons, 16
Source Panel menus, 13

start session, 3

Statements, 30

Status messages, 75
Subwindows, 19

Symbols and expressions, 109
Thread commands, 70

Wait modes, 73

window components, 7
Window menu, 13

PGDBG Commands

addr, 115

alias, 116

arrive, 104

ascii, 108

assign, 109

attach, 36, 94

bin, 108

break, 98

break command, 97
breaki, 49, 98

190

breaki command, 98
breaks, 99

breaks command, 99
call, 109

catch, 99

catch command, 99
cd, 104

clear, 99

clear command, 99
cont, 49, 94

cread, 113

debug, 94

dec, 108
declaration, 109
decls, 111

defset, 66

defset command, 97
delete, 99

detach, 94
directory, 116
disable, 100
disasm, 104
display, 108

do, 100

doi, 100

down, 111

dread, 113

dump, 49, 113

edit, 104

enable, 100

enter, 111

entry, 110

file, 105

files, 112

focus, 66

focus command, 97
fp, 112

fread, 114

function, 115
global, 112

halt, 95

help, 116

hex, 108

history, 117

hwatch, 100
hwatchboth, 101

hwatchread, 101, 101
ignore, 101

iread, 114
language, 117

line, 115

lines, 105

list, 105

log, 117, 117
Iread, 115

Ival, 110

mqdump, 115
names, 112

next, 95

nexti, 49, 95
noprint, 117

oct, 108

pc, 113

pgienv, 118

print, 49, 106
printf, 107

proc, 95

procs, 95

pwd, 105

quit, 95

regs, 49, 113
repeat, 120, 120
rerun, 95

retaddr, 113

run, 49, 95

rval, 110

scope, 112

script, 120, 120
search backward, 106
search forward, 106
set, 110

setenv, 120, 120
shell, 120, 120
sizeof, 110

sleep, 120, 121
source, 121, 121
sp, 113

sread, 115
stackdump, 49, 105
stacktrace, 49, 105
status, 101

step, 96

stepi, 49, 96

stepout, 96

stop, 101

stopi, 102

string, 108

sync command, 96, 96

synci command, 96, 96

thread command, 96

threads command, 96

trace, 102

tracei, 102

track, 102

tracki, 102

type, 111

unalias, 121, 121

unbreak, 102

unbreaki, 103

undefset, 67

undefset command, 97

undisplay, 108

up, 112

use, 121, 121

viewset

viewset command, 66

viewset command, 97

wait command, 97

watch, 103

watchi, 103

when, 104

wheni, 104

where, 106

whereis, 112

which, 112

whichsets, 66

whichsets command, 97
PGDBG control commands, 71
PGDBG GUI

assembly-level debugging, 48

Command Prompt panel, 8

Focus panel, 8

Process/Thread Grid, 8

Source panel, 11
PGDBG Signals, 59
pgevents utility, 139
pgi

command mode, 27

PGI_JAVA

environment variable, 4, 128
pgienv, 102, 102, 118

command, 118
pgienv command arguments, 118
PGPROF

Command-line options, 144

commands, 171

command summary, 171

command syntax, 171

Compilation, 143

environment variables, 147

features reference, 153, 154

File menu, 154

focus panel, 154

Help, 161

information bar, 154

menu bar, 154

menus, 154

optimization, 151

overview, 123, 154

Overview, 123

Processes menu, 157

scalability comparison, 136

Search menu, 160

Settings Menu, 155

Sorting Profile Data, 132

Sort menu, 160

statistics table, 154

toobar, 154

toolbar, 162

Using, 129

View menu, 158
PGPROF_DEPTH, 147
PGPROF_EVENTS, 139, 139, 147
PGPROF_NAME, 147
pgprof.out, 126
PGPROF command line option, 144,
145, 145

-datafile, 144

-feedbackonly, 144

help, 146

-help, 145

-jarg, 145

-text, 145

-V, 145

Index

PGPROF Commands

! (history), 175
asm, 173
ccff, 173
display, 173
help, 173
history, 173
lines, 173
load, 173
merge, 174
print, 174
process, 174
quit, 174
select, 174
sort, 174
srcdir, 174
stat, 174
thread, 175
times, 175

Platforms

profiles, 126

Print

active threads, 96

address, 13, 115

aliases, 116

all registers, 113

arg values and names, 105
ascii, 13, 108

binary, 13, 108
breakpoints, 97, 98, 98, 98
command, 49, 106
command info, 116
command summary, 116
current, 105

current file, 105

current location, 104
current working directory, 105
data type, 13

data value, 13, 13

dec, 13

decimal, 108

defined aliases, 116
defined directories, 116
directory list, 121
envirnment variable name, 120
events, 100, 100

191

expressions, 106, 108, 108
formated stack dump, 105
formatted expressions, 107
formatted register names, 113
hex, 13
hexadecimal, 108
identifier declarations, 111
identifier names, 112
ignored signals, 101, 101
integer address, 114
language name, 117
lines table, 105
list of signals ignored, 101
location, 104
name declarations, 112
noprint, 117
octal, 13, 108
PGPROF, 155
PGPROF command, 174
procs command, 95
register info, 113
register value, 49
scope qualification, 112
scope qualified symbol name, 112
short integer address, 115
signals, 99, 99
stack dump, 105
stacktrace, 105, 105, 106
string, 13
strings, 108
symbol declaration, 109
values , 106
values as change, 103
watched event values, 103
printf command, 107
proc
command, 95
procedures
Fortran 90 modules, 55
internal, 54, 54
process
assign name, 97
IDs, 63
PGPROF command, 174
proc command, 95
process/thread set, 64

192

process and thread control, 71
process level commands, 70
process-only debugging, 63
stop mode, 72
wait mode, 73
Process/Thread
element color, 8
inner thread, 10
multi-process/multi-threaded, 9
numeric process identifier, 9
PGDBG
Process/Thread grid, 8
PGDBG grid, 8
selection areas, 8
single process, 9
text representation, 10
Processes
apply commands, 16, 16
current selection, 9
focus
commands, 17
MPI rank, 62
numeric identifier, 9
parallel debugging, 61
PGPROF, 159
print, 95
Process control, 83
Process-parallel debugging, 88
Process-thread sets, 97
Processes/Threads
receive commands, 16
process set
list members, 97
membership, 97
remove, 97
set target, 97
procs command, 85
procwait, 73
Profile
calls, 150
cost information, 150
count executions, 150
data statistics, 149
hardware counters, 138
line information, 150

MPI, 150, 150, 150, 150, 150,
150

pgcollect, 177

time, 150

Profiler

invoke, 127
sample launch, 127

Profiles

collect data, 126
Event-based, 125
Instrumentation-based, 124
Methods, 123

MPI, 127

MPI programs, 135
-Mprof, 125, 125
multi-threaded programs, 127,
134

navigation, 130

open, 154

OProfile, 125

output file, 126

PAPL, 125

parallel programs, 133
pgcollect, 124

platforms, 126, 126
Sample-based, 124

sample MPI, 136

search, 160

select method, 126

sort, 132, 160

Time-based, 125

use hardware event counters, 127

ProfilesL data, print, 155
Profiling

clock resolution, 151
Command-level interface, 171
compilation, 143
event-based, 143

HPMPI communication library,
143

line-level, 144
measurements, 163

MPICH, 144

MPICH-1, 144

MPICH-2, 144

MVAPICH-1, 144

optimization, 151
overhead, 150
PGPROF, 123, 147
routine-level, 143
sample-based, 144
time-based, 144
Virtual Timer, 149
Program execution
Using Hardware Event Counters,
127
program location
arrive, 14
sync command, 96, 96
synci command, 96, 96
thread command, 96
prologue code, 110
prompt
return, 97
pwd
command, 105

Q

Queues
message, 14
quit
command, 95
PGPROF command, 174

R
read
watchpoint, 101, 101
record session, 117, 117
Refresh
windows, 16
Registers
access, 112
display in window, 13
floating-point stack, 50
formatted names, 113
General, 50, 51
print info, 113
segment, 50
Segment, 50
special purpose, 50
Special Purpose, 50
subwindow, 22

symbols, 49, 52

view, 22
register symbols, 28

AMDG64/EM6A4T, 51

floating point stack, 50
regs

command, 49, 113
Related Publications, xxii
remove

alias definition, 121

all expressions , 108

breakpoint, 102, 103

expression from display list, 108
Repeat

command, 120

search, 15

sequence of commands, 23
replay debug session, 117, 117
Rerun

target application, 14
rerun command, 95
Reset

Bar Chart colors, 156

button, 20

Options menu item, 20
Resource

utilization, profiling, 138
Restore

factory settings, 11

factory settings for PGPROE 157

saved settings, 11

saved settings, PGPROE, 157

settings, PGPROF, 157
retaddr

command, 113
return

address, 110

Ivalue, 110

routine, 115

rvalue, 110

size of var type name, 110

statement, 78

type of expression, 111
Routines

breakpoint, 15

call, 109

clear breakpoints, 99
disassemble, 104
display in source panel, 15
edit, 104
enter scope, 112
execuation time, 150
first line, 115
inlined messages, 133
instruction tracing, 102
list source code, 105
locate, 15
main name, 54
-Mprof, 143
next, 15
print lines table, 105
print name, 105, 106, 106
request, 15
return, 115
scope, 14, 14, 111
set breakpoint, 102
setp into, 15
size of, 110
source line tracing, 102
step, 96
stepi, 96
step into, 15
stepout command, 96
step out of, 15
step over, 15
symbol, 115
rsh communication, 86
Run
arguments, 14
target application, 14
run command, 49, 95
Runtime
arguments, 14
rval
command, 110
rvalue
defined, 110

S
Sales

contact information, 12
Save

Index

193

File menu item, 20
GUI settings, 11
settings, 157
settings on exit, PGPROE, 157
text to file, 20
Scalability
comparison, 136, 155
Scale
PGPROF command line option,
145
scope, 111
change, 17, 105
command, 112
current, 28
enter, 112
global, 112, 112
identifiers defined, 111
operator, 54
print identifier names, 112

print symbol name qualification,

112

qualifier operator, 28

routine, 14, 14, 111

rules, 28

Scope selector, 17

search, 28, 112

select, 17, 17

selector, 17

selector, purpose, 17, 17

set, 111

start, 29

up one level, 112
scrdir

PGPROF command, 174
script command, 120
Search

again, 160

backward, 106, 160

clear, 160

command, 106

for strings, 106, 106

forward, 106, 160

keyword, 15, 15

last keyword, 15

menu, PGPROF, 160

path, 116

194

scope, 28, 111
Search Again, 15
Search Backward, 15
command, 106
Search Forward, 15
Search Forward command, 106
Segment Registers, 50
Select
current thread, 9
PGPROF command, 174
text, 18
Selectors
Process/Thread grid, 8
Scope, 17, 17
Source File, 17
View, 17
Sessions
end debug, 11, 11
PGDBG, 3
terminate, 95
Set
breakpoints, 15, 15
colors in PGPROE, 155
command, 110
font, PGPROE, 157
search scope, 111
variable value, 109, 110
setenv command, 120
Settings
default, 157
display for debugger, 118
Font menu item, 11
PGPROF, 155
restore, 11, 11
Restore Factory Settings menu
item, 11
restore saved, PGPROE, 157

Restore Saved Settings menu item,

11
saved, 11
save GUI state, 11

Save Settings on Exit menu item,

11

Show Tool Tips menu item, 11
shell

command, 120

invoke, 120
Show
tool tips, 11
signals, 58, 59
ignore, 101
ignored, 101, 101
interrupt, 99
Linux Libraries, 59
list, 99
PGDBG, 59
print, 99
Print, 101
SIGPROE 59
size
variable, 110
sizeof
command, 110
sleep command, 121
Sort
menu, PGPROF, 160
PGPROF command, 174
profile data, 132, 132
Source
buttons, 16
Command menu, 14
Control menu, 14
current, 115
Data menu, 13
line conversion, 115
line numbering, 166
list lines, 105
Options menu, 15
PGDBG panel, 11
Window menu, 13
source code
locations, 28
source command, 121
source file
change, 105
search path, 145
source file selector
purpose, 17
source line
conversion, 115
source line tracing, 102
Source Panel

events, 17

menus, 13

messages, 17
Sp

command, 113
Specify

custom events pgcollect, 179
sread

command, 115
SSE Register Symbols, 52
ssh communication, 86
stack

display frames, 105

display in window, 13

frame, 105

frames, display, 105

frames, display hex dump, 105

pointer, 113

pointer value, 113

print dump, 105

print stacktrace, 106

print trace, 105, 106

subwindows, 16

traceback, 48
stackdump

command, 49, 105
stack frames

display, 106
stacktrace

command, 49, 105
Start

debug session, 11

PGDBG debugger, 1, 2

PGDBG troubleshooting, 4
stat

PGPROF command, 174
statements

block, 30

compound, 77

constructs, 30

execution order, 77

if, 30

parallel, 77

parallel if else, 77

parallel while, 78

PGDBG, 30

return, 78
simple, 30
while, 30
static p/t-set, 65
Statistics
configure data, 166
data profile, 149
table, PGPROF, 154
table in PGPROF, 163
status
command, 101
events, 101
messages, 17, 75
Step
into routines, 15, 15
out of routine, 15
over routines, 15, 15
step command, 96
Stepi, 15
stepi
command, 49, 96
Step into
called routines, 15, 15
stepout
command, 96
Step Out, 15
Step over
called routines, 15
step over
called routines, 15
Stop
after return to caller, 96
at value change, 103, 103
configure mode, 72
control-C, 20
execution, 96
modes, 72
Options menu item, 20
processing, 20
stop
command, 101
stopi
command, 102
string
command, 108
Strings

Index

locate, 106, 106
print, 13, 108
subroutines
nested, 54
subwindows
pop-up menu, 17
Subwindows
controls, 20
Custom, 23
Disassembler, 21
features, 19
Memory, 20, 21
messages, 24
Registers, 22
standard, 20
Support
information, 12
symbol
declarations, 109
name qualification, 112
symbol names
C++, 48
Fortran, 47
Symbols, 28
global scope, 112
MAIN_, 48
print declaration, 109
register, 28, 49
routine, 115
scope-qualified name, 112
search scope, 112
SSE register, 52
x80 register, 50
Symbols and Expressions, 109
sync
command, 96
sync command, 72, 84
synci command, 96, 96
System
environment, 127
variables, 127
System Requirements, xxiii

T
Tables
Focus Panel, PGPROF, 167

195

routine lines, 105
statistics in PGPROF, 154
tabs
Histogram, PGPROF, 167
Target
Application
run or rerun, 14
arguments to, 2
runtime arguments, 14
usage, 2
Terminology
PGDBG, 1
Terms, 1
text
address, 22
PGPROF command line option,
145
selection, 18
text mode debug, 87
Thread level commands, 70
Threads, 10
apply commands, 16
assign name, 97
command, 96
commands, 70
current, 9
current only, 16
current selection, 9
grouping, 62
IDs in multilevel debug mode, 91
inner, 10
location, 96
logical id, 96
multi, 9
naming, 62
naming convention, 61
naming scheme, 91
numeric identifier, 9
OpenMP, 61
parallel debugging, 61
PGPROF, 160
PGPROF command, 175
process/thread set, 64
stop mode, 72
threads-only debugging, 63
wait mode, 73

196

threads
command, 96
threads command, 79
thread set
list members, 97
membership, 97
remove, 97
set target, 97
threadstoconfig, 73
threadwait, 73
Time
execution, 150
measure, 149
-Mprof option, 144
-time pgcollect option, 179
times
PGPROF command, 175
Toolbar
PGPROF, 154, 162
Tool tips
show, 157
trace
command, 31, 102
conditional, 102
source, 102
subprogram routines, 102
tracei
command, 102
conditional, 102
source, 102
subprogram routines, 102
track
command, 31, 102
event, 102
tracki
command, 102
event, 102
Troubleshoot
PGPROE 128
Tune
application, 127
type

command, 111

U

unalias command, 121

unbreak command, 102
unbreaki

command, 103
undefset command, 67, 97
undisplay

command, 108
up

command, 112

menu item, 14
Update

data, 20

Options menu item, 20
use command, 121
Utilities

help, 12

\

\
PGPROF command line option,
145

Variables
breakpoint, 101, 102
instruction tracing, 102
local, 14
set value, 109, 110
system environment, 127
trace changes, 102, 102

Versions
display, 12
-V option, 145

View
data in tables, 158
menu in PGPROE 158
performance data, 163
previous profile, 131
profiles with hardware event
counters, 140
selector, 17
select profile, 131

view selector
purpose, 17

viewset command, 97

w

wait command, 74, 97
wait mode, 72, 73

process, 73
thread, 73

watch

command, 103
event, 103

watch command, 31
watchi

command, 103
event, 103

Watchpoints

define, 101, 101

display active, 14
hardware, 100
hardware read, 101, 101

when command, 104
wheni command, 104
where

command, 106

whereis

command, 112

which command, 112
whichsets command, 66, 97
while

parallel statements, 78

while statement, 30
Window

new, PGPROF, 154

Windowa menu

Stack, 13

Window menu

Custom, 14
Disassembler, 14
Events, 14
Locals, 14
Memory, 14
Messages, 14

Windows

build for debug, 2

cascade, 16

help, 12

invoke custom subwindow, 14
invoke memory dumper
subwindow, 14

invoke PGDBG Disassembler
subwindow, 14

menus, 13

MPI message queues, 14
PGDBG GUI components, 7
PGDBG main, 5
PGDBG Program 1/0, 6
refresh, 16

Windows menu
Registers, 13

working directory
print, 105

write
watchpoiont, 101

X
X806 Register Symbols, 50

Index

197

198

	PGI® Tools Guide
	Contents
	Preface
	Intended Audience
	Supplementary Documentation
	Compatibility and Conformance to Standards
	Organization
	Conventions
	Terminology
	Related Publications
	System Requirements

	Chapter 1. Getting Started with the PGDBG Debugger
	Definition of Terms
	Building Applications for Debug
	Debugging Optimized Code
	Building for Debug on Windows

	PGDBG Invocation and Initialization
	Invoking PGDBG
	Initializing PGDBG
	Starting a Session

	Using Command Line Options
	PGDBG Graphical User Interface
	PGDBG Command Language
	Troubleshooting
	Selecting a Version of Java

	Chapter 2. The PGDBG Graphical User Interface
	Main Window
	PGDBG Main Window Components
	Command Prompt Panel
	Focus Panel
	Process/Thread Grid
	Source Panel
	Main Window Menus

	Source Panel
	Source Panel Menus
	Source Panel Buttons
	Source Panel Combo Boxes
	Source Panel Messages
	Source Panel Events

	Source Panel Pop-Up Menus
	Subwindows
	Standard Subwindow Controls
	Memory Subwindow
	Disassembler Subwindow
	Registers Subwindow
	Custom Subwindow
	Messages Subwindow

	Chapter 3. PGDBG Command Line Options
	Command-Line Options Syntax
	Command-Line Options

	Chapter 4. PGDBG Command Language
	Command Overview
	Command Syntax
	Command Modes

	Constants
	Symbols
	Scope Rules
	Register Symbols
	Source Code Locations
	Lexical Blocks
	Statements
	Events
	Expressions
	Control-C

	Chapter 5. PGDBG Command Summary
	Notation Used in Command Sections
	Command Summary

	Chapter 6. PGDBG Assembly-Level Debugging
	Assembly-Level Debugging Overview
	Assembly-Level Debugging on Microsoft Windows Systems
	Assembly-Level Debugging with Fortran
	Assembly-Level Debugging with C++
	Assembly-Level Debugging Using the PGDBG GUI
	Assembly-Level PGDBG Menu Options
	Assembly-Level Debugging Using the PGDBG Command-line Interface

	Register Symbols
	X86 Register Symbols
	AMD64/EM64T Register Symbols
	SSE Register Symbols

	Chapter 7. PGDBG Source-Level Debugging
	Debugging Fortran
	Fortran Types
	Arrays
	Operators
	Name of the Main Routine
	Common Blocks
	Internal Procedures
	Modules
	Module Procedures

	Debugging C++
	Calling C++ Instance Methods

	Chapter 8. PGDBG Platform-Specific Features
	Pathname Conventions
	Debugging with Core Files
	Signals
	Signals Used Internally by PGDBG
	Signals Used by Linux Libraries

	Chapter 9. PGDBG Parallel Debugging Overview
	Overview of Parallel Debugging Capability
	Graphical Presentation of Threads and Processes

	Basic Process and Thread Naming
	Thread and Process Grouping and Naming
	PGDBG Debug Modes
	Threads-only Debugging
	Process-only Debugging
	Multilevel Debugging

	Process/Thread Sets
	Named p/t-sets
	p/t-set Notation
	Dynamic vs. Static p/t-sets
	Current vs. Prefix p/t-set
	p/t-set Commands

	Command Set
	Process Level Commands
	Thread Level Commands
	Global Commands

	Process and Thread Control
	Configurable Stop Mode
	Configurable Wait Mode
	Status Messages
	The PGDBG Command Prompt
	Parallel Events
	Parallel Statements
	Parallel Compound/Block Statements
	Parallel If, Else Statements
	Parallel While Statements
	Return Statements

	Chapter 10. PGDBG - Parallel Debugging with OpenMP
	OpenMP and Multi-thread Support
	Multi-Thread and OpenMP Debugging
	Debugging OpenMP Private Data

	Chapter 11. PGDBG Parallel Debugging with MPI
	MPI and Multi-Process Support
	Process Control
	Process Synchronization
	MPI Message Queues
	MPI Groups
	MPI Listener Processes
	SSH and RSH
	Multi-Process MPI Debugging
	Invoking PGDBG for MPI Debugging
	Using PGDBG for MPI Debugging

	Debugging Support for MPICH-1
	Debugging Support for MPICH-2, MVAPICH, HPMPI, and MSMPI

	Chapter 12. PGDBG Parallel Debugging of Hybrid Applications
	PGDBG Multilevel Debug Mode
	Multilevel Debugging

	Chapter 13. PGDBG Command Reference
	Notation Used in Command Sections
	Process Control
	attach
	cont
	debug
	detach
	halt
	next
	nexti
	proc
	procs
	quit
	rerun
	run
	step
	stepi
	stepout
	sync
	synci
	thread
	threads
	wait

	Process-Thread Sets
	defset
	focus
	undefset
	viewset
	whichsets

	Events
	break
	breaki
	breaks
	catch
	clear
	delete
	disable
	do
	doi
	enable
	hwatch
	hwatchread
	hwatchboth
	ignore
	status
	stop
	stopi
	trace
	tracei
	track
	tracki
	unbreak
	unbreaki
	watch
	watchi
	when
	wheni

	Program Locations
	arrive
	cd
	disasm
	edit
	file
	lines
	list
	pwd
	stacktrace
	stackdump
	where
	/ (search forward)
	? (search backward)

	Printing Variables and Expressions
	print
	printf
	ascii
	bin
	dec
	display
	hex
	oct
	string
	undisplay

	Symbols and Expressions
	assign
	call
	declaration
	entry
	lval
	rval
	set
	sizeof
	type

	Scope
	decls
	down
	enter
	files
	global
	names
	scope
	up
	whereis
	which

	Register Access
	fp
	pc
	regs
	retaddr
	sp

	Memory Access
	cread
	dread
	dump
	fread
	iread
	lread
	mqdump
	sread

	Conversions
	addr
	function
	line

	Miscellaneous
	alias
	directory
	help
	history
	language
	log
	noprint
	pgienv
	repeat
	script
	setenv
	shell
	sleep
	source
	unalias
	use

	Chapter 14. Getting Started with the PGPROF Profiler
	Methods of Profiling
	Instrumentation-based Profiling
	Sample-based Profiling
	Time-based Sampling
	Event-based Sampling

	Select a Profile Method
	Profiling on Non-Linux Platforms
	Profiling on Linux Platforms

	Collect Performance Data
	Profiling Output File
	Using System Environment Variables
	Profiling MPI and Multi-threaded Programs
	Profiling with Hardware Event Counters

	Profiler Invocation and Initialization
	Application Tuning
	Troubleshooting
	Selecting a Version of Java
	Slow Network

	Chapter 15. Using PGPROF
	Profile Navigation
	HotSpot Navigation
	Sorting Profile Data
	Compiler Feedback
	Special Feedback Messages
	Intensity Messages
	Messages for Inlined Routines

	Profiling Parallel Programs
	Profiling Multi-threaded Programs
	Collecting Data from Multi-Threaded Programs
	Analyzing the Performance of Multi-Threaded Programs

	Profiling MPI Programs
	Collecting Data from MPI Programs
	Analyzing the Performance of MPI Programs

	Scalability Comparison
	Profiling Resource Utilization with Hardware Event Counters
	Profiling with Hardware Event Counters (Linux Only)
	Profiling with Hardware Event Counters using pgcollect
	Profiling with Hardware Event Counters using PAPI
	Analyzing Event Counter Profiles

	Chapter 16. Command Line Options for Profiling
	Profiling Compilation Options
	PGPROF Command Line Options
	Profiler Invocation and Startup

	Chapter 17. PGPROF Environment Variables
	System Environment Variables

	Chapter 18. PGPROF Data and Precision
	Measuring Time
	Profile Data
	Caveats (Precision of Profiling Results)
	Accuracy of Performance Data
	Clock Granularity
	Source Code Correlation

	Chapter 19. PGPROF Reference
	PGPROF User Interface Overview
	PGPROF Menus
	File Menu
	Settings Menu
	Processes Menu
	View Menu
	Sort Menu
	Search Menu
	Help Menu

	PGPROF Toolbar
	PGPROF Statistics Table
	Performance Data Views
	Source Code Line Numbering

	PGPROF Focus Panel

	Chapter 20. The PGPROF Command Line Interface
	Command Description Syntax
	PGPROF Command Summary
	Command Reference

	Chapter 21. pgcollect Reference
	Invoking pgcollect
	System Access Requirements
	Command-line Options
	Overall Options
	Predefined Performance Data Collection Options
	User-Defined Performance Data Collection Options

	Defining Custom Event Specifications

	Index

