PGI® Fortran Reference

The Portland Group®
STMicroelectronics
Two Centerpointe Drive
L ake Oswego, OR 97035

While every precaution has been taken in the preparation of this document, The Portland Group® (PGI®), a wholly-owned subsidiary of STMicroelectronics, makes no
warranty for the use of its products and assumes no responsibility for any errors that may appear, or for damages resulting from the use of the information contained herein.
The Portland Group retains the right to make changes to this information at any time, without notice. The software described in this document is distributed under license from
STMicroelectronics and/or The Portland Group and may be used or copied only in accordance with the terms of the license agreement ("EULA"). No part of this document may
be reproduced or transmitted in any form or by any means, for any purpose other than the purchaser's or the end user's personal use without the express written permission of
STMicroelectronics and/or The Portland Group.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this manual,
STMicroelectronics was aware of a trademark claim. The designations have been printed in caps or initial caps.

PGI Workstation, PGI Server, PGI Fortran Workstation, PGI Fortran Server, PGI C++ Workstation, PGI C++ Server, PGI Workstation Complete, PGI Server Complete, PGF95,
PGF90, and PGI Unified Binary are trademarks; and PGI, PGHPE, PGF77, PGCC, PGC++, PGI Visual Fortran, PVE, PGI CDK, Cluster Development Kit, PGPROF, PGDBG, and The
Portland Group are registered trademarks of The Portland Group Incorporated. Other brands and names are the property of their respective owners.

PGI® Fortran Reference
Copyright © 2005-2008, STMicroelectronics, Inc.
All rights reserved.

Printed in the United States of America

First Printing: Release 6.0 March, 2005
Second Printing: Release 6.1 December, 2005
Third Printing: Release 6.1-3 February, 2006
Fourth Printing: Release 7.0-1 December, 2006
Fifth Printing: Release 7.0-2 February, 2007
Sixth Printing: Release 7.2-1 May, 2008
Seventh Printing: Release 7.2-4 August, 2008
Eighth Printing: Release 8.0-1 November, 2008

WWW.pgroup.com

Technical support: trs@pgroup.com
Sales: sales@pgroup.com
Web: www.pgroup.com

ID: 083131014

Contents

PLEEACE ..o xxi
AUAIENCE DESCIIPLONvviiieiieiie ettt sttt ettt eneeenee e Xxi
Compatibility and Conformance to Standardscocvviiiiiiiiininiiiicc Xxi
OFZANIZALIONeveieiiiiii ettt e e e e e e e XXii
Hardware and Software CONSLLANEScoveiieriieieiieiiieie et Xxiii
COMVEILIONSveeiiiiiieeiitit ettt e ettt e e et et e e sttt et e s sabre e e e et XXiii
Related PUDLCALONSoovieiiiiiiiieic et Xxiii

1. Language OVEIVIEW ... 1
Elements of a Fortran Program Unitcooriiiiiiiiiiiiiiescsesc e 1

STALCIMEILSeveeeiiie ettt e e e s e s et 1
Free and FiXed SOUICEc.ooiiiiiiiiiiiiiiici e 1
Statement OTAETINGooveviiiiiieiie et 2
The Fortran CharaCter SEEocvoiiiiiiiiiiiiiiire e 2
Free FOrm FOTMAtNGcooviiiiiiiitiiiiiieit i 4
FiXed FOTMANGc..eovviiiiiiiitiit ettt 4
Column FOIMANGcoviriiiiiiiiiiiitirit et 4
Fixed Format Label Fieldccccooiiiiiiiiii e 5
Fixed Format Continuation Fieldccccoocoiviiiiiniiiniiiiii e 5
Fixed Format Statement Fieldccoocooiiiiiiiiiiiic e 5
Fixed Format Debug Statementscccoovieriiiiiniiiniiiiiiecee e 5
Tab FOrMALtNG ...cveiviiiiiiitiet e e 5
Fixed Input File Format SUMmMATYcccocoeviiiiiiniiiiiiiiic e 5
Include Fortran Source Flescocoiiiiiiiiiiiiiiiiiicc e 6
Components Of FOItran StAEIMENLSc.eeiiiiiiiiriitirieite sttt 7
SYMDOLC NAMESc.viiviiiiiiicict e 7
EXPIESSIONSovvviiiiiiiiiiiiiiii i 7
Expression Precedence RUIEScccoiviiiiiiiiiiiiiiiicicice e 8
ArIthMEtiC EXPIESSIONScvviiuiiiiiiiiiieiiit ettt ettt e)
Relational EXPIESSIONScoveriiiiiiiiiiiiiiieie st 10
LOGICAL EXPIESSIONSc..vevtiiiiieiiiiiteitt et 11
Character EXPIESSIONScoieiiiiiiiiiiiiteiit ettt 11
Character CONCAUCNALONcc.eeviiiiriiiiiii ettt 11

SYMDOLC NAME SCOPE ...ttt 12

ASSIgNMENt STACINEILSooivviiiiiiiiiiiiiiiiii e 12
Arithmetic ASSIZNMENLoeiviiiiiiiiiiic it 12
LOGICAL ASSIZNMENLc.viiiiiiiiiiiiete ettt 13
Character ASSIZNMENTeoviriiiiiiiiii ettt 13

LIStING COMLIOLS ...ttt 14

OPENMP DITECHVESevviieiiieieiit ettt 14

HPE DITECHVESvveviieeeeiiiiiii ettt e e sttt e s e sttt e e e e s s reeeeeees 15

2. Fortran Data TYPEScccooiiiiiiiiii e 17

INEEINSIC DALA TYPES ...vvveeeiniiiiee ettt e e et e e et e e st e e 17
Kind PATAMELEToovviiiiiiiiieiiie et 17
Number of Bytes SPecifiCationcooiiieriiiiiiiiiii e 18

COMSEANESeeuiiiiieeiitii ettt ettt e s ettt e e bbb e e e s bbbt e e s a e e e 20
INEEZET COMSLANLSeviiiieiiiiiiiiiiiet ettt e et e e ettt e e e e s sttt eeeeeeeanaes 20
Binary, Octal and Hexadecimal CONSLANLScoveruiiiieriieniiiieniieie et 20
REAL CONSLANLSe.veevieiieiiet ettt ettt ettt 21
Double Precision CONSLANLServieueriertieieiienieee st enie ettt siee e ses 21
COMPIEX CONSLANLSvevviervieeiiieieeeiie et ettt et ettt e bt et e e beeetbeebeesabeesbeeesbeesbeessbeesbeeanseas 22
Double COmPIEX CONSANLSevvveiiieriieiiieiieeieesiee ettt e ereesieesiee e e srbeebeesaeeesbeeeenes 22
LOZICAL CONSLANESeevvveiviieiieeiieeiie et ettt ettt ettt et e e stbe et e teeesbeestbeenbeeneaeenns 22
Character CONSLANLSccveruiiieriieteetieeie ettt ettt et e 22
PARAMETER CONSEANESveiiiiiiiiieiiiieiiit ettt 23

DELIVEA TYPES ...ttt ettt ettt 23

ATTAYS ..ottt e et e e e e ettt e e e e s ettt e e e e e et aeeeas 23
Array Declaration EIBMENEcocviiriiiiiiiiiiieiiieiecie et 24
Deferred SHAPE ALTAYSccveriiiiiiiieiiiie ettt 24
SUDSCIIPLS ettt ettt ettt ettt sttt enee 24
Character SUDSLIINGcc.eoviiiiiiiiieitet ettt 25

Fortran Pointers and TATZELSeoveeruiiieriiiiieieii ettt 25

Fortran Binary, Octal and Hexadecimal CONSEANLSccuevveriirieniiniiiieiieiesec e 25
Octal and Hexadecimal Constants - Alternate FOrmSccccovveriirenieninnenieneeiennee 26

Hollerith CONSLANLScc.eoiiiiiiiiii it 27

SETUCTUTESevviiiiiiiie et 28
RECOTAS ..ottt ettt 28
UNION and MAP DeClarationsc.eceerueiieniioiiiienieeiesieecee e 29
Datd INIHALZAONveiiiiiiiiiiccie ettt 31

POInter VALTADIEScoviiiiiiiiiiii s 31
RESIIICHOMNS ...ttt 32

3. Fortran StAtEMENTSccooiiiiiii e 33

Statement FOrmat OVEIVIEWooeiiiiiiiiiiiiiiiiiee e e e 33
Definition of Statement-related TEIMScccoovvivieriiiieiieit e 33
Origin Of STAEIMENLcoviiiiiiiiiiiieiet et 33
List-related NOTAtONc..oiiieiiiiiieiie et 34

Fortran Statement Summary Tablecccooiiiiiiiiiiii 34

PGI® Fortran Reference

ACCEPT ... ettt e et 39
ALLOCATABLEoooeniiii et e e e e et e ettt e e e et e e e eabaeaeees 40
ALLOCATE ...t e e e e e e e e et e et e e e e et e e e saaaaaas 40
ARRAY oo et aas 42
ASSIGN .o 43
BACKSPACE ... 43
L3 0100 G DY . PR 44
BYTE oo ettt e et aaa 45
(07, Y 1) 45
CASE oot 46
CHARACGTER ...ooeiiii e e e et e e e e s 47
L0 110N TR 48
(00017 1L (0 TR 49
(00017 134 1 30, R 51
CONTAINS oottt e e e e et e e et e e s et e e s et e e s et e e s saaaeereraes 52
CONTINUE ... ettt e e et e ettt e e s et e e e ettt e e e et e e eatbaeaeaes 53
(00 (01 1 54
DATA oo e 54
DEALLOCATEoovoniiiiii et e et e ettt e e et e e e et e e et bt e e s aataeaees 55
|0 300) S 56
L0 1Y 1\ (0 57
DO (IEEIALVE) ...vvvveeeieeiee ettt ettt ettt e e e ettt e e e ettt e e s e enaa e e e s eiaateeeseaaeeeas 58
DO WHILE ..ot e e e e et e e e et e e et eeanes 59
DOUBLE COMPLEXcooniiiiiiiiiii ettt et e e e e e e et e et e et e saanas 60
DOUBLE PRECISIONouiiiiniiiiiiiee ettt e e et e et e e et e e e e et eeees 61
31 TN 62
31 TN O | N 03
ELSE WHEREoooiiiiiiiii e e e e e eans 03
L0000 64
BN D oo e 65
END DO oot 65
END FILE oottt et e e e e e e e e e e et e e et e it 66
D0\ | N 66
L I 1 N T 67
END SELECTooniiiiiiiie ettt et e e e e e e e e et e e et et e e s raaaaas 67
END STRUCTUREcooiiiniiiii ettt e e et e e 68
END UNION oo ettt et e et e e e e e s e e et e e s e eeaaeees 68
END WHERE ...t e e eeaaes 68
ENTRY oo ettt 68
EQUIVALENCEeeiiiiiiititiittitttitiititte bbbt 70
004 1 PR 71
EXTERNAL ...ttt ettt e e e e ettt e e e et e e e et e e s et e e s aaba e e neaaans 72
EXTRINSIC ..oovvniiiii et e e et e e et e e et e e ettt eeeeaaaaas 72
L0 2. 1 73
0] L 1. TP 74
| U0 1 (0 TP 75

Vi

GOTO (ASSIZNEA) ...vieveeiieie ettt ettt est et et eeneesteenbeanaesneeneas 77

GOTO (COMPULEA)vevveeeeneieee ettt ettt ettt ettt ettt et e st ettt e bt e st e eneesteenbeeneebeaneenneenes 78
GOTO (UNCONAIIONAL)cvvvviieiiiiiie ettt 78
1N 1111005 (o) S PRPRRRPRPRRE 79
IF (BLOCK) ..ottt ettt et 79
IF (LOGICAL) ©..vvevvieiieieieet ettt ettt et ettt et ettt et e e st e te e st e e st e bt e neeeneenaeente e 80
IMPLICIT ..o et e e e e e e e et e e st e e et e e s eaaaaas 80
L 0[O 110 D) 81
INQUIRE ... e 82
INTEGER ...t e e e e e e e e et e e e e eeeaaaaes 84
L\ 2 TR 85
INTERFAGEooooiniiii ettt ettt e e s et e e s et e e s et e e s e bt e e s eaaes 86
INTRINSIC ..ot e e e e et e e e s et e e e e e e e et e e s srbaeeesaaaaes 87
1016 (07, Y P 88
L 1 P RTR 89
117 (0] 00 1 90
INAMELIST ..ot e e e et e e et e e st e e e e et e e s aaaaaas 91
L8] 1 1 2 TR 92
0] 4 1\ T 92
(0] N (00 TR 96
(0] S (0)\ ST 96
PARAMETERootiiiiii ettt e e e e e e e s e e e e et e e e eaaaaas 97
PAUSE ..o 98
POINTER ...oooniiii et e et e e e et e e et e e ettt e eeeaat e eeeens 98
POINTER (CIY) ..vevveiienee ettt ettt ettt ettt ettt ettt e sttt e st ene e bt enbeeneesaeenseenee e 98
PRINT oo et e et e et 100
PRIVATE ..ottt e e e e e e e e e et e e s st e e e et eeeees 101
o 0L 7 VL T 101
| 0] 33 0 (T 102
PURE ..o et 102
READ oot ettt e e e e e 103
REAL ..o ettt e 105
L 200 4 O 2T 106
RECURSIVE ...ttt ettt et e e e e e s e e eane e 107
REDIMENSIONooiiiiiiiii ettt e e e e e et e s e e aaneees 107
4 O L 0 TS 108
L AN 1\ TN 109
SAVE oo e 109
SELECT CASE ..ot e e e e e e e e st e e e et eeseaaaes 110
SEQUENCE ... ittt 111
STOP .ottt ettt r s 111
STRUCTUREoooviiiiie ettt e e e e e e e e e e e e et e e e eraaaaas 111
SUBROUTINEottt ettt e e e e et e e et e e s b 113
TARGET ...t et e e s e et e e 114
THEN et et ettt et e et e et aaas 114
TYPE oo et e et e e a e aaas 115

PGI® Fortran Reference

UNION e 115
USE e 117
VOLATILE ..ottt e e e e e sttt e e e e e s e e bbbt eeaaeeessnnnnenees 118
WHERE ... 118
WRITE ...ttt e e e e ettt e e e e e s e atb et e e e e e e e s sattbbbeeeeeeessennneeees 119
4. FOTLAN ALTAYScoooviiiiiii s 121
ATTAY TYPES .ottt 121
EXpLICit ShAPe ATTAYSoooviiiiiiiiiiic e 122
ASSUMEd ShAP@ ATTAYSoovvimiiiiiiiiiiiiee ettt 122
Deferred SHAPE AITAYScc.evveiiiiiiiiiiieie e 122
ASSUMEA SIZE ATTAYS ..ottt 122
ACTAY SPECHICAONc.ieitiiiii et 122
EXpLICit ShAPe ATTAYSoooviiiiiiiiiiii e 122
ASSUMEd ShAP@ ATTAYSoovvimiiiiiiiiiiiiei et 122
Deferred SHAPE ATTAYScc.evveiiiiiiiiiieee s 123
ASSUMEA SIZE ATTAYS ..ottt 123
Array SUDSCIIPLS ANA ACCESSeovieiiiiiiiiiitiit et 123
Array Sections and Subscript TEPIELSc.cocverieriiiiirieii e 123
Array Sections and Vector SUDSCIIPLSccvevieriiiiiniiiiiiiciieic e 124
ATTAY CONSIIUCLOTS ...ttt ettt ettt ettt ettt et e 124
CM FOrtran EXIENSIONScc.eooviiiiiiiiitiiiiiiitetc ettt 124
The ARRAY AMEIDULE §ooovvieiiiieeiie ettt 124
Array Constructors EXIENSIONS §ccccoviviiiiiiiiiiii 125

5. InPut and OUEPULE ..o e 127
File ACCESS MEROUSc..ooiiiiiiiiiiiiiicc e 127
Standard Preconnected UNiLScooevviniiiiiiieniiiinieccce e 128
Opening and CloSing FAlEScooviiiiiiiiiiii i 128
DIrect ACCESS FAleSc.eoviriiiiiiiiiiiicc e 128
CloSING @ FALE ...eovviiiiiieie e 129

Data Transfer SEAEMENLScc.eiiiiiiiiiieieite ettt 130
Unformatted Data TEANSIETcveiiiiriiitiiiiiieii e 130
Formatted Data Transfercccooviviiiiiiiiiiiicc e 131
Implied DO List Input OUtPUE LIStc..eovviriiiiiiiiiieiie e 131
Format SPeCIfiCatiONScoveriiriiiiiiiiiiiieieee e 132
Variable FOrmat EXPIeSSiOnsccooiiiriiiiiiiinieiiie et 140
Non-advancing Input and OULPULooceiriiiiiiiiiiiiiii e 140
List-directed formattingccoooiiiiiiiiriiiiiii i 140
LiSt-directed INPULcoooiiiiiiiiiii s 141
LiSt-irected OUIPULooviiiiiiiiiiiic e 142
Commas in External Feldcocooiiiiiiiiiiiic e 143
NAMELSE GIOUPS ..ottt ettt 143
NAMELSE INPUL ...ttt 143
NAMELSE OULPUL ...ttt 144

6. Fortran INEEinSiCsco.coocovviiiiiiiececee e 145

viii

FORTRAN 77 and Fortran 90/95 Intrinsics by Categorycoceevviviinieniniiinieniinienieie e 145

FORTRAN 77 and Fortran 90/95 Intrinsics DeSCIIPHONSccueeriveriiariieiiieniieiieeiie e 161

Intrinsic SUMMATY TADIEcccooiiiiiiiiiii e 161
N 3 TR 167
ACHAR ..o 167
00 TR 168
ACOSD .o 168
YD) | 1 OSSP PPPRPPUPPN 169
YD) | 1 1 2 PSPPSR PPPR PP 169
N 1L 7, RPN 169
.Y 10 170
ALL oot —————————— 170
ALLOCATED ...ooooiiiiiiiii 170
N O R PPPRRPRPPRRPRRPRN 171
F N 10 RN 171
AN Y o 172
ASIN 172
BN 101) TR 172
ASSOCIATEDuuiiiiiiieietttteeeeeie ettt a e et et aa et ateteaae s esaeeseseseseeesesesenenennes 173
.4 1 Y\ RPN 173
ATAN 174
. 1 VA2) PRRRRRPRPRRRPRR 174
ATAND oo 174
BIT SIZE ..ottt e e e e e e e e e e e e e ae e e 175
B ST e 175
CEILING ...oooviiiiiiii 175
(015 1,2 R TPPOPRRPRRRRRPRPIN 176
(010 1 I, 176
COMPL ... 177
L0100 [PPSO UPRTPRPPPPP 177
B0 177
(00 1)) T RPPOPPPRRRRRRPRPN 178
(0011 R PTROPPPRRRRRRPPRPN 178
(00010111 R OPORPPPRRRRRPRPN 178
(00 O 11 179
CSHIFT ..o 179
DATE_AND_TIME ..o 180
DBLE .o 180
|01 1. GRS PRPROPPRPPRRRPPRPIR 181
0] (0] 1 T TPPOPPRPRRRRPPRPN 181
DIM oo 181
DOT _PRODUCT ..o 182
0] (0) P RRPUTPPRRRPPPPRRPRN 182
BOSHIFT ..o 183
EPSILON .o 183
0 U UPPPROPPRR 184

PGI® Fortran Reference

EXP .ottt ettt 184
EXPONENT ... e s s et eees e eeseeneeas 184
FLOOR ..ottt e e s et 185
FRACTION ...t s et ee e 185
HUGE ...ttt 185
TACHAR ...t e e 186
TAND .ottt 186
IBCLR ..ot e ettt 187
IBITS ..ottt e et e et e et 187
IBSET ..ottt ettt 187
TCHAR ..ot 188
TEOR ..ottt 188
TINT oottt ettt 188
INDEX ..ottt e e 189
ININT .ottt 189
INT oottt 190
INTS oottt 190
TOR ettt 190
ISHET ..ot e et e e 191
ISHETC ..ottt e e s e e 191
TZEXT oottt ettt 192
TINT ettt ettt 192
ININT oot 193
KIND ..ot 193
KININT oottt e e et eereeneend 193
LBOUND ..ottt s e 194
LEN ettt 194
LEN_TRIM ..ot e e 194
LGE ettt 195
LGT oottt 195
LLE .ottt 196
LLT oottt 196
LOC oottt ettt 196
LOG ..ottt 197
LOGLO .ot e et 197
LOGICAL ...ttt 197
LSHIFT ...t e e s e et ee e e ee e 198
MATMUL ..ot e et ee e 198
MAX oottt 199
MAXEXPONENTovooveoeeeeeeeee oo eeees oo ee e eee s s ee e ee e s e s ee e ee e 199
MAXLOGC ..o e e e e e e st ee e 199
MAXVALveoeeee oo e s s s 200
MERGE ...ttt 201
MIN oottt 201
MINEXPONENT ..ot eees e eee e e es e s e see e e 201
MINLOC ..ottt 202

MOD .ottt 203
MODULO ...t e e ee e ee s 203
MVBITS ..ot ee s e e ee e eeesee e 204
NEAREST ...t e et s e 204
NEQV oot e ettt 204
NINT oottt e e 205
NOT oottt ettt 205
NULL .ottt 206
OR oottt 206
PACK ..ottt 206
PRECISION ...t ee e s e 207
PRESENT ...ttt 207
PRODUCT ...t e et e e 207
RADIX ...ttt 208
RANDOM_NUMBERoveoveoeeeeeeeeseee e eeeeeeeeesee e eeeee e ee e s eseees oo ee e 208
RANDOM_SEEDovveeveeteeeeeeeeeee e ee e e eeeeeeeeeeeeeeeee e e eeseeee e eseeeseead 209
RANGE ...ttt 209
REAL ...t e ettt 210
REPEATovooeeoeeeeeee oot e et e e e e s s e ee e ee e eneeesend 210
RESHAPEoooveoeeeeee oot e et ee e s e 210
RRSPACING ... s ee e 211
RSHIFT ..ot e et e e s et ee s 211
SCALE ...t e ettt 211
SCAN .ottt ettt ettt 212
SELECTED_INT_KINDoveeoeeeeeeeesee oo eseeee s seeeeseees e eee s s seeees e eees e 212
SELECTED_REAL KINDccovvooeeeeeeeeeee oo e eeeeee e e ee e seee s eeen e 213
SET_EXPONENTcoveoveeieeoeeeeeeeeeeeeeeseeeeeeees e eseeee e eeeese et seeee s s ee e s 213
SHAPE ... vt e ettt 213
SHIFT ...t e e ee et ee e 214
SIGN ..ottt 214
SIN oottt 215
SIND ..ottt ettt 215
SINH ...t e et 215
SIZE ..ottt ettt 216
SPACING ...ttt e et 216
SPREADveoeeeee oo e e e e ee e e e et 216
SQRT ..o e e et e e ettt 217
SUM .ottt ettt 217
SYSTEM_CLOCK ... eeeeee e eeee et eeee s se et s e s e es s e e ee e eseeeseead 218
TAN oottt ettt 218
TAND oottt 218
TANH. ..ottt 219
TINY oottt e ettt 219
TRANSEER ...t eee e ee e e e e e e 219

PGI® Fortran Reference

1 1 TR 220
{0150 010 0 2N 221
LA O (TR 221
B30 4 1 N 221
D (0) N 222
YA), TP 222
Supported HPF INEANSICSovevuviririiiiiiiiieiie e 223
CM FOrtran INEHNSICS ...oovvvvvvvrrieeeetiiiiiiiiie e e ettt e e e e ettt ettt e e e e s e st e e e e e e s e s s abraeeeeeeeas 224
(0N 5 11 PPN 225
EOSHIET ...t e e e et e e e e e s et e et et e e e eaaaeas 225
RESHAPE ... e et e e 226
7. 3F Functions and VAX Subroutinesc.cocooviviiiiiiciiceee e 227
BF ROULINES .ooooieiiiiiiiiie e 227
11110) « AP PPPPRPRRRRN 228
11110) « AP PPPPRPRRRRN 228
0o oL PN 228
AATIN oo, 229
BESSEL fUNCLIONS ..ottt e e et e e e e e e e eeeeeeeeeen 229
CRAIT e 230
CRIMOA oo e 230
Lol 1111 I PRSP P PP SUPPUIN 230
QALE oottt e e e s e a s 230
L w0 g 1111611 10) 1 PP PPROPRRRR 231
etME, QHIMEoooiiiiiiiiii e e 231
(O« L TP TPURPPRNY 231
FAAE oo 232
BB e 232
TSR oo e ——— 232
103§ . TR RORPRRROPRRRR 232
FDUC ovvoveeeee et 233
BT e 233
KL< : OO PRSPPI 233
1<) | R ORTPRRRRTPR 234
BOTITOT .teutte ettt ettt et ettt et b bttt e h bttt h e bt et e he ket b bttt h ekttt ettt 234
BUATE .eevvteute et ettt ettt ettt ettt bbb bbbttt 234
TATEC oot et 234
BOIC ittt e 235
BRICWA ..ottt et 235
BEUBIIV ..oeiiiiiiii it e s 235
BOEBIA e 235
BEHLOZ .ot b et b ettt ettt 236
1) (4 OSSOSO P SO PRT PP 236
11114 OSSO SO TOUSOP PSPPSR 236
1111111 LU TP ST ST P PSP P PP PPUPUPPPOPPOP 236
L1111 RS PPPPRPRRRRR 237

() 5 1 [TSSO 237
110} 111U 237
ISALLY oo 238
L1 11 SO 238
<1 | PRI 238
HK oot 238
INDINK oo 239
oY 239
THINE oo 239
MALOC oo 239
MCLOCK .o 240
MVDIES oot e et e e et a e e e et b e e e e etaaaeaaas 240
OUESEE oottt et oottt e e ettt e e e ettt e e e ettt e e e e ettt e e e e etb e e e e e eatbeeeeeetbbeeeeeaa e e e e e etbeeeeeeabbaeeeetraeeeeetraaeas 240
PEITOT .ieiit ettt ettt ettt b et bttt et b ettt etttk sttt 240
PUEC ettt ettt b e b bbbttt ettt 241
PUIBIIV .ttt ettt ettt et he ettt bbbtttk ettt 241
QSOTT ettt ettt ettt et h et bbbttt 241
rand, irand, STANAcoooiiiiiii e 242
random, irandm, drandm ... 242
TANZE oottt ettt ettt ettt ettt bbb bbb bbbttt ettt 242
FENAIMIE eeeiuvieeeeiiteeeeeette e e e e ettt eeeeeareeeeeeatseeeeeasseeeeesbteeeeetsbeeeeeaasseeeeetsbeeeeearaeeeeensreeeesnees 243
FINAEX it e e et e e e et a e e e earaaea e 243
SECNAS, ASECIASooivviiiiiiiie e e 244
SEIVDUL L.ttt et eaa e 244
SEVDULSE ..ot 245
SIGNAL ..ottt 246
SLBED ettt 246
Stat, ISEAt, £SEAL, FSEAIOAooveiieiiiei ettt 246
SEITIE ©.veeietieeeeeette e e e e ettt e e e ettt e e e ettt e e e e ettt e e e e e etbeeeeeeabee e e e eataeeeeeetaaeeeeeataeeeeetbaeeeeerbbaeeeaarraeas 247
SYIMINK ..o 247
SYSEBIIL ...t eat ettt ettt h e bbb ke h ettt 247
11111 LT T TS NS PSSP PP PSR UO PP PRSPPI 248
BINIES .vvvveeeeittte ettt e ettt e et e e e et — e e e et e e e e et b e e e e ettt e e e e atbb e e e e atbaeeeaaatbaeeeeares 248
BEVIAIL .ottt ettt 248
UNLNK Lo 248
A7 || TP PP 249
VAX SYStem SUDTOULNESccvviiiiiiiieiiie ettt ettt ettt 249
BUilt-In FUNCHONS «...coooeieeiiieieeeeeeeeeeee e, 249
VAX/VMS System SUDTOULNEScc.eeiuiiiiiiiiiiiiieiie ettt 249

8. OpenMP Directives for FOrtran ... 253
OPENMP OVEIVIEWcoiiiiiiiiiiiiiiiiiiiiiii s 253
OpenMP Shared-Memory Parallel Programming Modelc.cccooooviniiiniiiniiiin 253
TErmiNOLOZYc..eovviiiiiiiiici e 254
OpenMP EXAMPIEooooiiiiiiiiiiiiiiii e 255

Xii

PGI® Fortran Reference

TASK OVEIVIEWevieviietieeiiett ettt et ettt ettt ettt et e e st e be e st e ese e bt esteeneebeenbesneenseeneennes 256
TASKS ..ottt ettt ettt ettt b e n ettt e r b e re et e enteeneenneenee e 256
Task CharacterisStics and ACHVILESoocveruiiiiiiiriiiiieie e 257
Task Scheduling POIntsccoiviiiiiniiiiiiiic e 257
TASK COMSLITUCE ...ttt ettt ettt et e e e et 258
Parallelization DITECLIVESccoeeeeeeeee oo 259
Directive RECOZNIONeoviitiiiiiiieiiiieiete et 260
DITECHVE CLAUSESvevvieeeeieieie ettt ettt ettt et e et e ebeesbeeneeseeenee e 260
COLLAPSE (1)vviitiiitiieie ettt ettt ettt ettt et e s e et e enbaesasessbeesnbeensaea 262
COPYIN (LSE) +vvvevveeerieeite ettt ettt ettt ettt e e ebe e et e e aeeetbeebeeeabeeaee e 263
COPYPRIVATE(LISE)vvveevvievreeiie et ettt ettt ettt ettt aaeenbeesaae e 263
DEFAULTooiiiiiiiiieiii et e e ettt e e e e e ettt e e e e s s ettt e e e eeeeeenneneeees 263
FIRSTPRIVATE(LISE) ...eevvveivvieieeeiie ettt ettt ettt be et sbeeeaaeenveea 264
TE() oottt 264
LASTPRIVATE (LISt) +...vveovveevteeieecie ettt ettt ettt va e e eaeeeaveaaae s 264
NOWALIT ..ottt e ettt e e e e e ettt et e e e e e s snetbbeeeeeeeeesantsbneeeeeas 264
NUM_THREADSoiiiiiiiiiiiiiite ettt ettt e e e ettt e e e e s e ettt b eeeeeeessnnnenees 264
ORDEREDutttitititiiitiiitittttttttb bbbttt e 264
PRIVATE ..ottt bbbttt 265
REDUCGTIONcoiiiiiiiiiiiiiet ettt ettt e e e e ettt e e e e e e e ntbba e e e aeeesssnnnbbbaeeeeeens 265
SCHEDULE ..ottt 266
SHARED ...ttt 266
UNTIED ...ttt e e ettt e e e e s e ekttt et e e e e e s e e nntbaeeeeeeeeessnnnnenees 266
Directive SUMMATY TADIEcc.coviiiiiiiiiiiiiie e 266
ATOMIC ..ottt e e e e ettt e e e e e e st bt e eaeee s s s stbbb et eeeeesssannttbbeeeeaeeeennnes 268
BARRIER ... 268
CRITICAL ... END CRITICALcootiiiiiieiiiiiiiiiiee e ettt e e sttt e e e e e e s ae e e e e e e e enenanes 268
CEDOACROSS ..ottt ettt ettt ettt ettt ettt ettt ettt ettt 270
DO.LEND DO oo 270
LU H e 272
MASTER ... END MASTERoooiiiiiiiiiiiiiii ettt e et e e e e e e eeee s 272
ORDERED ...cooiiiiiiiiiiiiiiiiiiiiieieeeeee ettt 273
PARALLEL ... END PARALLEL ..o, 274
PARALLEL DO ..o 275
PARALLEL SECTIONSoiiieeeiiiiieeiet ettt e e e ettt e e e e e e ettt ee e e e e e s e nnenennes 276
PARALLEL WORKSHARE ..., 276
SECTIONS ... END SECTIONSeiiiiiiiieiiiiiiiiie et ettt e e e e ettt e e e e e e e sttt eeeaeeeeseneennes 277
SINGLE ... END SINGLEuiiiiiiiiiiiitiiiiiiitiiitiiiiitttibbbibbbtbeieetbebeb bbbttt ebenebeneee 278
TASK et 278
TASKWALT ...ttt e e e e ettt e e e e s e ettt et e aeeesssntttbbeeeaeeeseennnnsnnees 280
THREADPRIVATEooiiiiiiiiiiiiee ettt e ettt e e e e s s et e e e e e e e e e nnnnenees 280
WORKSHARE ... END WORKSHAREcuttitiiiiiiiiiiiiiiiiiiiiiiiiitiiiitiibiieieiibebibebebabebebebebebbbeeenenees 281
Run-time Library ROULNEScccooiiiiiriiiiiiiiiiiic e 281
OpenMP Environment Variablesccoovviriiiiiiiiniiiiicc e 285
OMP_DYNAMIC ... 286
OMP_NESTEDovviiiiiieeiiiieet ettt e e e ettt e e e e e s et eeeeeeseennennees 286

Xiv

OMP_MAX_ACTIVE_LEVELSoiiiiiiiiiiiiiiit e 286

OMP_NUM_THREADS ...ttt ettt e e ettt e e e e e st breeeaeeeeeenes 287
OMP_SCHEDULEoitiiiiiiiiiiiiititiiiit ettt e e e et e e eeeeeeeeeeeeeeeeees 287
OMP_STACKSIZEooiiiiiiiiitee ettt e ettt e e e e e s et eeaeeseenneenes 287
OMP_THREAD_LIMITooiiiiiiiiiiiiiiiiiieee e ettt e e ettt e e e e e et a e e e e e s s enneebeeeeas 288
OMP_WAIT _POLICYooiiiiiiiiiiiiiittee e e ettt e e ettt e e e e ettt e e e e s e snnntbaaeeeeeeeeennes 288

0. HPF DIFECHIVES ..ot 289
Adding HPF Directives t0 PrOZIAMScc.eoviierieiiieniieeiieniieeieesiee et esiee st e e e sieesne e 289
HPF Directive SUMMATYevvviiiiiiieeiiiiiiiiee ettt e e e e st e e e e e s e s 289
ALIGN = REALIGNoiiiiiiiiiiiittit sttt 290
DIMENSION ...ttt ettt ettt ettt e e 292
DYNAMIC ..ottt ettt bbbt ettt 292
DISTRIBUTE - REDISTRIBUTEcciiiiiiiiiiie ettt e e e e nnnnaee e 293
INDEPENDENT ...ttt et e e et e et e e st e e e 294
INHERIT ..ottt ettt e et e et e e st e e e s aaareees 294
PROCESSORS ...ttt ettt ettt 295
NO SEQUENCE ...ttt ettt 295
SEQUENGE ...ttt ettt ettt 296
TEMPLATE ..ot e sttt e st e et e st 296
Appendix A. HPF _LOCALoccooiiiiiiiii e 299
ABSTRACT_TO_PHYSICALeeuiiiiieiiieiteiie ettt ettt 300
GLOBAL_ALIGNMENT ooutiiiiiiieitiiteeit ettt ettt 300
GLOBAL_DISTRIBUTIONeouiiiiiiiieiititieitt ettt ettt st e e 301
GLOBAL_LBOUND eetieiieiieitiett ettt ettt ettt sttt ettt e ene e 301
GLOBAL_SHAPE oitiiiiiitieit ettt ettt 301
GLOBAL_SIZE ...ttt ettt bttt ettt et s 302
GLOBAL_TEMPLATEoitiiiiiiiiitiite ettt ettt 302
GLOBAL_TO_LOCAL ...ttt ettt 303
GLOBAL_UBOUND uiiuiiitiiiiete ettt ettt ettt ettt ettt 303
LOCAL_BLECNT ...ttt bt ettt ettt 304
LOCAL_LINDEX ...ttt ettt ettt e ettt e e e e sttt bttt e e e e e s aibbbbbeeeeeeesannaes 305
LOCAL_TO_GLOBALtiiiiiiiiiieitiete ettt et 305
LOCAL_UINDEX ...oeiiiiieiiiiiiiit ettt ettt e ettt e e e e e ettt e e e e e s s ettt eeeeeas 306
MY_PROCESSOR ...ttt ettt 306
PHYSICAL_TO_ABSTRACTeeuiiiiiiitieit ettt 307
IIA@X ..o 309

Figures

1.1. Order of Statements

XV

XVi

Tables

L1, FOTEran CRATACLELSevvetieiiiiiieiteiie sttt ettt ettt ettt ettt et ene e b e eeee 3
1.2. C Language Character ESCAPE SEQUENCEScc.eervrieiieriieeiieiiieeieenieeeieesieeereesieesnreesseesnreesee s 3
1.3. Fixed Format Record Positions and FIeldsc.cooiriiiiiiiiiiniiiciccceee e 4
1.4. Fortran OPerator PTECEARICEcveuirieiiiiiiieitieiieie ettt sttt ettt ne s 8
1.5, ACtRMEHC OPEIALOLSvvviivvieiieeiieeite ettt e eiee et ettt et et eeetbeesbeestteasbeestbeesbeesteeesbeeesbeesseesneeanns 9
1.6. Arithmetic OPerator PreCEdENCEccerverieriiriiiieriiteiere ettt ettt 10
1.7. ReltioNal OPETALOLSevveuiiiiiiiiiiie ittt ettt ettt sie e 10
1.8. Logical EXPression OPEIAOLSccrvrerreerureriieaiieireeitesieeasseessseeseessseasseessseeseesssessseesssessseens 11
2.1. Fortran INtrinsic DAta TYPESccovvvrieriiiiiiiiiiiiee ettt e s e s 17
2.2. Data Types Kind PATAMELETSccoviiiiriiiiiiiieitieie ettt 18
2.3. Data TYPE EXLEISIONSvvvieeiiiiiieeiiiiiee ettt ettt ettt e st e ettt e e st e e e s snbaeeeeaaes 18
2.4, Datad TYPE RANKSoovviiiiiiiiiiiie ettt ettt ettt et ete et eae s 19
2.5. Examples of ReAl CONSIANLScc.eeriieiiiiieiiiiiiiiieite ettt 21
2.6. Examples of Double Precision CONSLANLScoveirririeieririeieisereiesiereeteiere e sieseese e eene s s 21
3.1. Intrinsic SUMMALY TADIEccvoviiiiiiiiitieie ettt te e 34
3.2, OPTIONS SEALEMENLc.veviierierieteniesteteetesieseete et ete st esteteebe s ese et besseseebebeseesesbesseseesesbeseesesens 96
5.1, OPEN SPECIHIEISvvevvieiiieiieiiiie ettt ettt ettt ettt ettt e b et eebeeenbeebeeenbeenees 129
5.2. Format Character Controls for @ Printercccoviiiiiiiiiiiiiiiccceeee e 133
5.3. List Directed INPUt VAIUEScceiiiiiiiiiiiiiiie e 141
5.4. Default List Directed Output FOrMattingcoevveierierieieiieiiiieieieieiee e 142
0.1. NUMETIC FUNCHONS ...ttt ettt ettt ettt ettt se bt e st eteebebeneene e 145
0.2. MathematiCal FUNCHONScc.evevirierieriitiietiete ettt ettt sttt s bttt eb e ene s 149
6.3. Real Manipulation FUNCHONSc.ccvivviriiiriiriirieiiereete ettt et eve s 151
6.4. Bit Manipulation FUNCHONScc.cceiieiiiiiitiitiere ettt s bbb eae e ve s 151
6.5. Fortran 90/95 Bit Manipulation SUDIOULNEccovverieieiriiiiieieee e 154
6.6. Elemental Character and Logical FUNCHONSc.ccoovivviiviiriirieiiieieieeieie e, 154
6.7. Fortran 90/95 Vector/MatrixX FUNCHONSccvervevirrerierieriieiereeieiere et etesieseereere s s eeens 155
6.8. Fortran 90/95 Array Reduction FUNCHONScc.eivivirierieriniiieietiieieie et 155
6.9. Fortran 90/95 String Construction FUNCHONSc.coivviiiiioiiieieiieeee e 157
6.10. Fortran 90/95 Array Construction/Manipulation FUNCtionsc.ccvevvevveririinioeieeeeneennnn 157
6.11. Fortran 90/95 General INQUIiry FUNCHONSc.ccvevviviiriiriiitiitieti ettt eve e 158
6.12. Fortran 90/95 Numeric INQUiry FUNCHONSc.ccvevvirieriirriiriitieriere et 159
6.13. Fortran 90/95 Array Inquiry FUNCHONSoccoeiiiiiiiiieiieiicereete ettt 160

Xviii

0.14. Fortran 90/95 String INQUIiry FUNCHONc..ciiviiiiiiiiiieie s 160

0.15. FOrtran 90795 SUDTOULNESvveeeeeeee e et e e e e e e e ee e e 160
6.16. Fortran 90/95 Transfer FUNCHONvvveeeieeee et e e 161
0.17. MiSCEllANEOUS FUNCHONSccvvviieiiiieiee ettt ettt ettt aae e 161
0.18. Intrinsic SUMMALY TADIEciiiiiiiiiiiieiiiti e 162
6.19. HPF Intrinsics and LiDrary ProCEAUIEScccevvervirieeiiieieieieiesie e eie et ersesseiesie e ene s 223
8.1. Directive Clauses Summary Tableccccooiiiiiiiiiiiiiii e 261
8.2. Initialization of REDUCTION VAIIADIEScoovuviiiiiiiiiiiieiiiee et 265
8.3. Directive SUMMATY TADIEcooiiiiiiiiiiiiiitt e 267
8.4. Run-time Library ROUtines SUMMALYccveriiriiriiniiiiiiiiiieeiee e 282
8.5. OpenMP-related Environment Variable Summary Tablec.cccoovviiiiiiiiiiniiiiiicccs 286
0.1. HPF Directive SUMIMALYuvviiiiieriiiiiiiiiiiieeeeniiiiiree e e e st e e e s s st e et e e e s s nninrreeeeeees 289
A.1. HPF_LOCAL_LIBRARY PrOCEAULEScoovvviiiiiiiiiiiiiiiiiie 299

Examples

8.1. OpenMP LOOP EXAMPIEccuviiiiiiiiiiiiiiieiit ettt sbe e et ee e 255
8.2. 0penMP Task € EXAMPIEcovviiiiiiiiiiiiiiiiecie ettt et 258
258

8.3. OpenMP Task Fortran EXAMPIEcccoooviiiiiiiiiiiiioiieciteie et

XiX

XX

Preface

This manual describes The Portland Group's implementation of the FORTRAN 77 and Fortran 90/95 as well as
High Performance Fortran (HPF) languages. Collectively, The Portland Group compilers that implement these
languages are referred to as the PGI Fortran compilers. This manual is part of a set of documents describing
the Fortran language and the compilation tools available from The Portland Group. It presents the Fortran
language statements, intrinsics, and extension directives. The Portland Group’s Fortran compilation system
includes a compilation driver, multiple Fortran compilers, associated runtime support and mathematical
libraries, and associated software development tools for debugging and profiling the performance of Fortran
programs. Depending on the target system, The Portland Group’s Fortran software development tools may also
include an assembler or a linker. You can use these tools to create, debug, optimize and profile your Fortran
programs. “Related Publications,” on page xxiii lists other manuals in the PGI documentation set.

Audience Description

This manual is intended for people who are porting or writing Fortran programs using the PGI Fortran
compilers. To use Fortran you should be aware of the role of Fortran and of source-level programs in the
software development process and you should have some knowledge of a particular system or workstation
cluster. To use the PGI Fortran compilers, you need to be familiar with the Fortran language FORTRAN77,
Fortran 90/95 , or HPF, as well as the basic commands available on your host system.

Compatibility and Conformance to Standards

The PGI Fortran compilers, PGF77, PGF95 and PGHPE, run on a variety of 32-bit and 64-bit x86 processor-
based host systems. The PGF77 compiler accepts an enhanced version of FORTRAN 77 that conforms to the
ANSI standard for FORTRAN 77 and includes various extensions from VAX/VMS Fortran, IBM/VS Fortran, and
MIL-STD-1753. The PGF95 compiler accepts a similarly enhanced version of the ANSI standard for Fortran
90/95. The PGHPF compiler accepts the HPF language and is largely, though not strictly, a superset of Fortran
90/95. The PGHPF compiler conforms to the High Performance Fortran Language Specification Version 1.1,
published by the Center for Research on Parallel Computation, at Rice University (with a few limitations and
modifications, consult the PGHPF Release Notes for details).

For further information on the Fortran language, you can also refer to the following:

* American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).

XXi

Organization

e ISO/IEC 1539 : 1991, Information technology — Programming Languages — Fortran, Geneva, 1991 (Fortran
90).

e ISO/IEC 1539 : 1997, Information technology — Programming Languages — Fortran, Geneva, 1997 (Fortran
95).

e Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press, Cambridge, Mass, 1997.

* High Performance Fortran Language Specification, Revision 1.30 or 1.1, Rice University, Houston, Texas
(1993), http://www.crpc.rice.edu/HPFE

e High Performance Fortran Language Specification, Revision 2.0, Rice University, Houston, Texas (1997),
http://www.crpc.rice.edu/HPFF.

e OpenMP Fortran Application Program Interface, Version 2.0, November 1999, http://www.openmp.org.
* Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).
e IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

e Military Standard, Fortran, DOD Supplement to American National Standard Programming Language
Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

Organization

XXii

This manual is divided into the following chapters and appendices:
Chapter 1, “Language Overview”, provides an introduction to the Fortran language.

Chapter 2, “Fortran Data Types”, describes the data types supported by PGI Fortran compilers and provides
examples using various data types. It also contains information on memory allocation and alignment issue.

Chapter 3, “Fortran Statements”, describes each Fortran and HPF statement that the PGI Fortran compilers
accept. Many HPF statements are in the form of compiler directives which are ignored by non-HPF compilers.

Chapter 4, “Fortran Arrays”, describes special characteristics of arrays in Fortran 90/95.

Chapter 5, “Input and Output’, describes the input, output, and format statements that allow programs to
transfer data to or from files.

Chapter 6, “Fortran Intrinsics”, lists the Fortran intrinsics and subroutines supported by the PGI Fortran
compilers.

Chapter 7, “3F Functions and VAX Subroutines”, describes the functions and subroutines in the Fortran run-
time library and discusses the VAX/VMS system subroutines and the built-in functions supported by the PGI
Fortran compilers.

Chapter 8, “OpenMP Directives for Fortran”, lists the language extensions that the PGI Fortran compilers
support.

Chapter 9, “HPF Directives ', describes the HPF directives which support data distribution and alignment, and
influence data parallelism by providing additional information to the PGHPF compiler.

Appendix A, “ HPF_LOCAL”, lists the HPF_LOCAL_LIBRARY procedures supported by the PGHPF compiler.

Preface

Hardware and Software Constraints

The PGI compilers operate on a variety of host systems and produce object code for a variety of target systems.
Details concerning environment-specific values and defaults and host-specific features or limitations are
presented in the PGI User’s Guide, the man pages for each compiler in a given installation, and in the release
notes and installation instructions included with all PGI compilers and tools software products.

Conventions
This PGI Fortran Reference manual uses the following conventions:

italic
is used for commands, filenames, directories, arguments, options and for emphasis.

Constant Width
is used in examples and for language statements in the text.

[item]
square brackets indicate optional items. In this case item is optional.

{ item2 | item3}
braces indicate that a selection is required. In this case, you must select either item2 or item3.

filename ...
ellipsis indicate a repetition. Zero or more of the preceding item may occur. In this example, multiple
filenames are allowed.

FORTRAN
Fortran language statements are shown using upper-case characters and a reduced point size.

<TAB>
non-printing characters, such as TAB, are shown enclosed in greater than and less than characters and a
reduced point size.

this symbol indicates an area in the text that describes a Fortran 90/95 Language enhancement.
Enhancements are features that are not described in the ANSI Fortran 90/95 standards.

@
This symbol indicates an area in the text that describes a FORTRAN 77 enhancement. Enhancements may
be VAX/VMS, IBM/VM, or military standard MIL-STD-1753 enhancements.

Related Publications

The following documents contain additional information related to HPF and other compilers and tools
available from The Portland Group, Inc.

e The PGI User's Guide describes the general features and usage guidelines for all PGI compilers, and
describes in detail various available compiler options in a user's guide format.

e The PGHPF User's Guide describes the PGHPF compiler and describes some details concerning the PGI
implementation of HPF in a user's guide format.

XXiii

Related Publications

e Fortran 95 Handbook, from McGraw-Hill, describes the Fortran 95 language and the statements, data types,
input/output format specifiers, and additional reference material that defines ANSI/ISO Fortran 95.

e System V Application Binary Interface Processor Supplement by AT&T UNIX System Laboratories, Inc,
(available from Prentice Hall, Inc.)

e The High Performance Fortran Handbook, from MIT Press, describes the HPF language in detail.

e High Performance Fortran Language Specification, Rice University, Houston Texas (1993), is the
specification for the HPF language and is available online at http://www.crpc.rice.edu/HPFF.

e American National Standard Programming Language Fortran, ANSI x.3-1978 (1978).
* Programming in VAX FORTRAN, Version 4.0, Digital Equipment Corporation (September, 1984).
¢ IBM VS FORTRAN, IBM Corporation, Rev. GC26-4119.

e Military Standard, FORTRAN, DOD Supplement to American National Standard Programming Language
FORTRAN, ANSI X3.-1978, MIL-STD-1753 (November 9, 1978).

XXiv

Chapter 1. Language Overview

This chapter describes the basic elements of the Fortran language, the format of Fortran statements, and the
types of expressions and assignments accepted by the PGI Fortran compilers.

The PGF77 compiler accepts as input FORTRAN 77 and produces as output assembly language code, binary
object code or binary executables in conjunction with the assembler, linker and libraries on the target system.
The input language must be extended FORTRAN 77 as specified in this reference manual. The PGF95 and
PGHPF compilers function similarly for Fortran 90/95 and HPF respectively.

This chapter is not an introduction to the overall capabilities of Fortran. Rather, it is an overview of the syntax
requirements of programs used with the PGI Fortran compilers. The Fortran 95 Handbook and The High
Performance Fortran Handbook provide details on the capabilities of Fortran 90/95 and HPF languages.

Elements of a Fortran Program Unit

A Fortran program is composed of SUBROUTINE, FUNCTION, MODULE, BLOCK DATA, or PROGRAM program
units.

Fortran source code consists of a sequence of program units which are to be compiled. Every program
unit consists of statements and optionally comments beginning with a program unit statement, either a
SUBROUTINE, FUNCTION, or PROGRAM statement, and finishing with an END statement (BLOCK DATA and
MODULE program units are also allowed).

In the absence of one of these statements, the PGI Fortran compilers insert a PROGRAM statement.

Statements

Statements are either executable statements or nonexecutable specification statements. Each statement consists
of a single line or source record, possibly followed by one or more continuation lines. Multiple statements may
appear on a single line if they are separated by a semicolon (;). Comments may appear on any line following a

comment character (!).

Free and Fixed Source

Fortran permits two types of source formatting, fixed source form and free source form. Fixed source form
uses the traditional Fortran approach where specific column positions are reserved for labels, continuation
characters, and statements and blank characters are ignored. The PGF77 compiler supports only fixed source

The Fortran Character Set

form. The PGF77 compiler also supports a less restrictive variety of fixed source form called tab source form.
Free source form introduced with Fortran 90 places few restrictions on source formatting; the context of an
element, as well as the position of blanks, or tabs, separate logical tokens. You can select free source form as
an option to PGF95 or PGHPF in one of these ways:

e Use the compiler option —M r eef or m

o Use either the suffix .f90 or the suffix .f95.

Statement Ordering

Fortran statements and constructs must conform to ordering requirements imposed by the language definition.
Figure 1.1, “Order of Statements” illustrates these requirements. Vertical lines separate statements and
constructs that can be interspersed. Horizontal lines separate statements that must not be interspersed.

These rules are less strict than those in the ANSI standard. The differences are as follows:

 DATA statements can be freely interspersed with PARAMETER statements and other specification statements.

e NAMELIST statements are supported and have the same order requirements as FORMAT and ENTRY
statements.

¢ The IMPLICIT NONE statement can precede other IMPLICIT statements.

Figure 1.1. Order of Statements

OPTIONS Statement

PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA Statements
Comments

USE Statements
and IMPLICIT NONE Statements

NAMELIST,
INCLUDE IMPLICIT Statements > —
Statements FORMAT, Other Specifications

Data Statements

and ENTRY Statement Function Definition

Statements EXECUTABLE Statements
CONTAINS Statement
Internal Subprograms or Module
END Statement

The Fortran Character Set

Table 1.1, “Fortran Characters”, shows the set of Fortran characters. Character variables and constants can use
any ASCII character. The value of the command-line option —Mupcase determines if the compiler distinguishes
between case (upper and lower) in identifiers. By default, without the —-Mupcase option selected, the compiler
does not distinguish between upper and lower case characters in identifiers (upper and lower case are always
significant in character constants).

Chapter 1. Language Overview

Table 1.1. Fortran Characters

Character |Description Character Description

, Comma A-Z, a-z Alphabetic
Colon <space> Space character

; Semicolon = Equals

_ Underscore character + Plus

< Less than - Minus

> Greater than * Asterisk

? Question mark / Slash

% Percent (Left parenthesis

" Quotation mark) Right parenthesis

$ Currency symbol [Left bracket
Decimal point | Right bracket

! Exclamation mark <CR> Carriage return

0-9 Numeric <TAB> Tabulation character

Table 1.2, “C Language Character Escape Sequences”, shows C language character escape sequences that the
PGI Fortran compilers recognize in character string constants when - Moacks| ash is on the command line.
These values depend on the command-line option —Mbacks| ash.

Table 1.2. C Language Character Escape Sequences

Character Description

\v vertical tab

\a alert (bell)

\n newline

\t tab

\b backspace

\f formfeed

\r carriage return

\0 null

\' apostrophe (does not terminate a string)
\" double quotes (does not terminate a string)
\\ \

Free Form Formatting

Character Description

\x X, where x is any other character

\ddd character with the given octal representation.

Free Form Formatting

Using free form formatting, columns are not significant for the elements of a Fortran line, and a blank or series
of blanks or tabs and the context of a token specify the token type. Up to 132 characters are valid per line,

and the compiler option —Mextend does not apply. Comments are indicated by a blank line, or by following a
Fortran line with the ! character. All characters after the ! are stripped out of the Fortran text.

Using free form formatting, the & character at the end of a line means the following line represents a
continuation line. If a continuation line starts with the & character, then the characters following the & are the
start of the continuation line. Without a leading & at the start of the continuation line, all characters on the line
are part of the continuation line, including any initial blanks or tabs.

A single Fortran line may contain multiple statements. The ; (semicolon) separates multiple statements

on a single line. Free format labels are valid at the start of a line, as long as the label is separated from the
remaining statements on the line by at least one blank or a <TAB>. Labels consist of a numeric field drawn
from digits 0 to 9. The label cannot be more than 5 characters.

Fixed Formatting

This section describes the two types of fixed formatting that PGI Fortran compilers support, column formatting
and tab formatting.

Column Formatting

Using column formatting a Fortran record consists of a sequence of up to 72 or 132 ASCII characters, the last
being <CR>. Table 1.3 shows the fixed layout.

Note

For column formatting of 132 characters, you must specify —Mext end.

Table 1.3. Fixed Format Record Positions and Fields

Position Field

1-5 Label field

6 Continuation field
7-72 or 7-132 Statement field

Characters on a line beyond position 72, or position 132 if -Mext end is specified, are ignored. In addition,
any characters following an exclamation (!) character are considered comments and are thus disregarded
during compilation.

Chapter 1. Language Overview

Fixed Format Label Field

The label field holds up to five characters. Further, each label must be unique in its program unit.

e The characters C, D, *, or ! in the first character position of a label field indicate a comment line.

e When a numeric field drawn from digits 0 to 9 is placed in the label field, the field is a label.

A line with no label, and with five space characters or a <TAB> in the label field, is an unlabeled statement.

Continuation lines must not be labeled.

e A program to only jump to labels that are on executable statements.

Fixed Format Continuation Field

The sixth character position, or the position after the tab, is the continuation field. This field is ignored in
comment lines. It is invalid if the label field is not five spaces. A value of 0, <space> or <TAB> indicates the
first line of a statement. Any other value indicates a subsequent, continuation line to the preceding statement.

Fixed Format Statement Field

The statement field consists of valid identifiers and symbols, possibly separated by <space> or <TAB> and
terminated by <CR>.

Within the statement field, tabs, spaces, comments and any characters found beyond the 72nd character, or
position 132 if —~Mext end is specified, are ignored. As stated earlier, any characters following an exclamation
(1) character are considered comments.

Fixed Format Debug Statements

The letter D in column 1 using fixed formatting designates the statement on the specified line is a debugging
statement. The compiler treats the debugging statement as a comment, ignoring it, unless the command line
option —Mil i nes is set during compilation. If —~Mdl i nes is set, the compiler acts as if the line starting with
D were a Fortran statement and compiles the line according to the standard rules.

Tab Formatting

The PGI Fortran compilers support an alternate form of fixed source from called tab source form. A tab
formatted source file is made up of a label field, an optional continuation indicator and a statement field. The
label field is terminated by a tab character. The label cannot be more than 5 characters.

A continuation line is indicated by a tab character followed immediately by a non-zero digit. The statement
field starts after a continuation indicator, when one is present. Again, any characters found beyond the 72nd
character, or position 132 if -Mext end is specified, are ignored.

Fixed Input File Format Summary
For fixed input file format, the following is true:

e Tab-Format lines are supported.

Include Fortran Source Files

e Atab in columns 1-6 ends the statement label field and begins an optional continuation indicator field.

e If a non-zero digit follows the tab character, the continuation field exists and indicates a continuation
field.

e If anything other than a non-zero digit follows the tab character, the statement body begins with that
character and extends to the end of the source statement.

Note

Note that this does not override Fortran's free source form handling since no valid Fortran
statement can begin with a non-zero digit.

e The tab character is ignored if it occurs in a line except in Hollerith or character constants.
e Input lines may be of varying lengths.
o If there are fewer than 72 characters, the line is padded with blanks.

e Characters after the 72nd are ignored unless the —~Mext end option is used on the command line.

Note

The —Mext end option extends the statement field to position 132.

When the —Mextend option is used, the input line is padded with blanks if it is fewer than 132 characters;
characters after the 132nd are ignored.

e Blank lines are allowed at the end of a program unit.

¢ The number of continuation lines allowed is extended to 1000 lines.

Include Fortran Source Files

The sequence of consecutive compilation of source statements may be interrupted so that an extra source file
can be included. To do this, use the INCLUDE statement which takes the form:

| NCLUDE
"fil enane"

where filename is the name of the file to be included. Pairs of either single or double quotes are acceptable
enclosing filename.

The INCLUDE file is compiled to replace the INCLUDE statement, and on completion of that source the file is
closed and compilation continues with the statement following the INCLUDE.

INCLUDE files are especially recommended when the same COMMON blocks and the same COMMON block
data mappings are used in several program units. For example the following statement includes the file
MYFILE.DEE

| NCLUDE " MYFI LE. DEF"
Nested includes are allowed, up to a PGI Fortran defined limit of 20.

Recursive includes are not allowed. That is, if a file includes a file, that file may not also include the same file.

Chapter 1. Language Overview

Components of Fortran Statements

Fortran program units are made up of statements which consist of expressions and elements. An expression
can be broken down to simpler expressions and eventually to its elements combined with operators. Hence the
basic building block of a statement is an element.

An element takes one of the following forms:

e A constant represents a fixed value.
e Avariable represents a value which may change during program execution.

e An array is a group of values that can be referred to as a whole, as a section, or separately. The separate
values are known as the elements of the array. The array has a symbolic name.

e A function reference or subroutine reference is the name of a function or subroutine followed by an
argument list. The reference causes the code specified at function/subroutine definition to be executed and
if a function, the result is substituted for the function reference.

Symbolic Names

Symbolic names identify different entities in Fortran source code. A symbolic name is a string of letters and
digits, which must start with a letter and be terminated by a character not in the symbolic names set (for
example a <space> or a <TAB> character). Underscore (_) characters may appear within symbolic names.
Only the first thirty-one characters identify the symbolic name.

Here several examples of symbolic names:

NUM
CRA9
nuner i cabcdef ghi j kl mopqr st uvwxyz

The last example is identified by its first 31 characters and is equivalent to:

nuner i cabcdef ghi j kl mopqr st uvwx

Some examples of invalid symbolic name include:

8Q Invalid because it begins with a nunmber

FI VE. 4 Invalid because it contains a period, an invalid
character for a synbolic nane.

Expressions

Each data item, such as a variable or a constant, represents a particular value at any point during program
execution. These elements may be combined together to form expressions, using binary or unary operators, so
that the expression itself yields a value. A Fortran expression may be any of the following:

e A scalar expression
* An array expression
® A constant expression

* A specification expression

Expressions

* An initialization expression

* Mixed array and scalar expressions

Expression Precedence Rules

Arithmetic, relational and logical expressions may be identified to the compiler by the use of parentheses, as
described in “Arithmetic Expressions,” on page 9. When no guidance is given to the compiler it imposes

a set of precedence rules to identify each expression uniquely. Table 1.1, “Fortran Characters”, shows the
operator precedence rules for expressions.

Table 1.4. Fortran Operator Precedence

Operator Evaluated
Unary defined Highest

o N/A

*or/ N/A

Unary + or - N/A

Binary + or — N/A

Relational operators: GT., .GE., .LE. N/A

Relational operators ==, /= Same precedence
Relational operators <, <=, >, >= Same precedence
Relational operators .EQ., .NE., .IT. Same precedence
NOT. N/A

AND. N/A

.OR. N/A

NEQV. and EQV. N/A

Binary defined Lowest

An expression is formed like this:

expr bi nary-operator expr

or

unary- oper at or expr
where expr is formed as an expression or as an element.

For example, these are simple expressions whose components are elements.

A+B
-C
+D

Expressions fall into one of four classes: arithmetic, relational, logical or character.

Operators of equal rank are evaluated left to right. For example, the following two expressions are equivalent
and would both equal 8 if A is 16, B is 4, and C is 2.

Chapter 1. Language Overview

A B*C such as 16 / 4 * 2

(A/B)*C such as (16 /4) * 2

Another example of equivalent expressions are these:

A*B+B**C .EQ X+Y/Z .AND. .NOT. K-3.0 .GI. T

((((A*B)+(B**C)) .EQ (X+(Y/2))) .AND. (.NOT. ((K-3.0) .Gl. T)))
Arithmetic Expressions

Arithmetic expressions are formed from arithmetic elements and arithmetic operators.

Arithmetic Elements

An arithmetic element may be:

e an arithmetic expression
e avariable

e a constant

e an array element

e afunction reference

¢ afield of a structure

Arithmetic Operators

The arithmetic operators specify a computation to be performed on the elements. The result is a numeric
result. Table 1.5 shows the arithmetic operators.

Table 1.5. Arithmetic Operators

Operator |Function

ok Exponentiation

* Multiplication

/ Division

+ Addition or unary plus

- Subtraction or unary minus

Note

A value should be associated with a variable or array element before it is used in an expression.

Operator Precedence

Arithmetic expressions are evaluated in an order determined by a precedence associated with each operator.
Table 1.6 shows the precedence of each arithmetic operator.

Expressions

Table 1.6. Arithmetic Operator Precedence

Operator Precedence
ok First

*and / Second
+and - Third

This following example is resolved into the arithmetic expressions (4) + (B * G) rather than (4 + B) * (C).
A+B* C

Normal ranked precedence may be overcome using parentheses which force the item(s) enclosed to be
evaluated first. For example, with following expression the computer firsts adds A and B and then multiplies by
C.

(A+B) *C
Arithmetic Expression Types

The type of an arithmetic expression depends on the type of elements in the expression:
INTEGER
if it contains only integer elements.

REAL
if it contains only real and integer elements.

DOUBLE PRECISION
if it contains only double precision, real and integer elements.

COMPLEX
if any element is complex. Any element which needs conversion to complex will be converted by taking the
real part from the original value and setting the imaginary part to zero.

DOUBLE COMPLEX
if any element is double complex.

Table 2.4, “Data Type Ranks” provides more information about these expressions.

Relational Expressions

A relational expression is composed of two arithmetic expressions separated by a relational operator. The
value of the expression is true or false (.7TRUE. or .FALSE.) depending on the value of the expressions and the
nature of the operator. Table 1.7 shows the relational operators.

Table 1.7. Relational Operators

Operator Relationship
IT. Less than
IE. Less than or equal to

10

Chapter 1. Language Overview

Operator Relationship

EQ. Equal to

NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

In relational expressions the arithmetic elements are evaluated to obtain their values. The relationship is then
evaluated to obtain the true or false result. Thus the relational expression:

TI ME + MEAN . LT. LAST

means if the sum of TIME and MEAN is less than the value of ZAST, then the result is true, otherwise it is false.

Logical Expressions

A logical expression is composed of two relational or logical expressions separated by a logical operator. Each
logical expression yields the value true or false (. TRUE. or .FALSE.). Table 1.8 shows the logical operators.

Table 1.8. Logical Expression Operators

Operator Relationship

AND. True if both expressions are true.

.OR. True if either expression or both is true.

NOT. This is a unary operator; it is true if the expression is false, otherwise
it is false.

NEQV. False if both expressions have the same logical value

XOR. Same as .NEQV.

EQV. True if both expressions have the same logical value

In the following example, TEST will be .TRUE. if A is greater than B or / is not equal to J+17.

TEST = A .GI. B.OR | .NE J+17

Character Expressions

An expression of type CHARACTER can consist of one or more printable characters. Its length is the number
of characters in the string. Each character is numbered consecutively from left to right beginning with 1. For
example:

"ab_&
" AGHII 2
‘var[1,12]"

Character Concatenation

A character expression can be formed by concatenating two (or more) valid character expressions using the
concatenation operator //. The following table shows several examples of concatenation.

11

Symbolic Name Scope

Expression Value
ABC'//'YZ' "ABCYZ"
JOHN '/ SMITH' "JOHN SMITH"
J //JAMES '/ JOY' "I AMES JOY"

Symbolic Name Scope

Fortran 90/95 and HPF scoping is expanded from the traditional FORTRAN 77 capabilities which provide

a scoping mechanism using subroutines, main programs, and COMMONSs. Fortran 90/95 and HPF add the
MODULE statement. Modules provide an expanded alternative to the use of both COMMONSs and INCLUDE
statements. Modules allow data and functions to be packaged and defined as a unit, incorporating data hiding
and using a scope that is determined with the USE statement.

Names of COMMON blocks, SUBROUTINEs and FUNCTIONS are global to those modules that reference them.
They must refer to unique objects, not only during compilation, but also in the link stage.

The scope of names other than these is local to the module in which they occur, and any reference to the name
in a different module will imply a new local declaration. This includes the arithmetic function statement.

Assignment Statements

A Fortran assignment statement can be any of the following:

¢ An intrinsic assignment statement

A statement label assignment

An array assignment

A masked array assignment

A pointer assignment

A defined assignment

Arithmetic Assignment

12

The arithmetic assignment statement has the following form:
obj ect = arithnetic-expression

where obj ect is one of the following:

e Variable

Function name (within a function body)

Subroutine argument

Array element

Field of a structure

Chapter 1. Language Overview

The type of obj ect determines the type of the assignment (INTEGER, REAL, DOUBLE PRECISION or
COMPLEX) and the arithmetic-expression is coerced into the correct type if necessary.

In the case of:

conmpl ex = real expression

the implication is that the real part of the complex number becomes the result of the expression and the
imaginary part becomes zero. The same applies if the expression is double precision, except that the
expression will be coerced to real.

The following are examples of arithmetic assignment statements.

A=(P+Q *(T/ V)
B=R**T**2

Logical Assignment

The logical assignment statement has the following form:

obj ect = | ogi cal - expression

where obj ect is one of the following:

Variable

Function name (only within the body of the function)

Subroutine argument

Array element

A field of a structure

The type of obj ect must be logical.

In the following example, FLAG takes the logical value .7RUE. if P+Q is greater than R; otherwise FIAG has the
logical value . FALSE.

FLAG=(P+Q .GT. R

Character Assignment

The form of a character assignment is:

obj ect = character expression

where obj ect must be of type character, and is one of the following:

Variable

Function name (only within the body of the function)

Subroutine argument

Array element

Character substring

13

Listing Controls

e Afield of a structure
In addition, these rules apply:

* None of the character positions being defined in object can be referenced in the character expression.

e Only such characters as are necessary for the assignment to object need to be defined in the character
expression.

e The character expression and object can have different lengths.
e When object is longer than the character expression, trailing blanks are added to the object.

e If object is shorter than the character expression the right-hand characters of the character expression
are truncated as necessary.

In the following example, all the variables and arrays are assumed to be of type character.

FILE = ' BOOKS'
PLOT(3:8) = ' PLANTS
TEXT(1, K+1) (2: B-1) = TITLE/ /X

Listing Controls

The PGI Fortran compilers recognize three compiler directives that affect the program listing process:

%LIST
Turns on the listing process beginning at the following source code line.

%NOLIST
Turns off the listing process (including the %NOLIST line itself).

%EJECT
Causes a new listing page to be started.

Note

These directives have an effect only when the —M i st option is used. All of the directives must begin
in column one.

OpenMP Directives

14

OpenMP directives in a Fortran program provide information that allows the PGF77 and PGF95 compilers to
generate executable programs that use multiple threads and processors on a shared-memory parallel (SMP)
computer system. An OpenMP directive may have any of the following forms:

1 $OWP directive
C$OWP directive
*$OWP directive

For a complete list and specifications of OpenMP directives supported by the PGF77 and PGF95 compilers,
along with descriptions of the related OpenMP runtime library routines, refer to Chapter 8, “OpenMP
Directives for Fortran,” on page 253.

Chapter 1. Language Overview

HPF Directives

HPF directives in a Fortran program provide information that allows the PGHPF compiler to explicitly create
data distributions from which parallelism can be derived. An HPF directive may have any of the following
forms:

CHPF$ directive
I HPF$ directive
*HPF$ directive

Since HPF supports two source forms, fixed source form and free source form, there are a variety of methods
to enter a directive.

e For fixed source form directive, the C, !, or * must be in column 1.

e In free source form, Fortran limits the comment character to !.

If you use the 'HPF$ form for the directive origin, your code will be universally valid.

The body of the directive may immediately follow the directive prefix or may follow any number of blanks.

e Any names in the body of the directive, including the directive name, may not contain embedded blanks.

Blanks may surround any special characters, such as a comma or an equals sign.

The directive name, including the directive origin, may contain upper or lower case letters (case is not
significant).

For more information on a complete list and specifications of HPF directives supported by the PGHPF compiler,
refer to Chapter 9, “HPF Directives ,” on page 289.

15

16

Chapter 2. Fortran Data Types

Every Fortran element and expression has a data type. The data type of an element may be implicit in its
definition or explicitly attached to the element in a declaration statement. This chapter describes the Fortran
data types and constants that are supported by the PGI Fortran compilers.

Fortran provides two kinds of data types, intrinsic data types and derived data types. Types provided by the
language are intrinsic types. Types specified by the programmer and built from the intrinsic data types are
called derived types.

Intrinsic Data Types

Fortran provides six different intrinsic data types, listed in Table 2.1, “Fortran Intrinsic Data Types” and
Table 2.3, “Data Type Extensions” show variations and different KIND of intrinsic data types supported by the
PGI Fortran compilers.

Table 2.1. Fortran Intrinsic Data Types

Data Type Value
INTEGER An integer number.
REAL A real number.

DOUBLE PRECISION |A double precision floating point number, real number,
taking up two numeric storage units and whose
precision is greater than REAL.

LOGICAL A value which can be either TRUE or FALSE.

COMPLEX A pair of real numbers used in complex arithmetic.
Fortran provides two precisions for COMPLEX numbers.

CHARACTER A string consisting of one or more printable characters.

Kind Parameter

The Fortran 95 KIND parameter specifies a precision for intrinsic data types. The KIND parameter follows a
data type specifier and specifies size or type of the supported data type. A KIND specification overrides the
length attribute that the statement implies and assigns a specific length to the item, regardless of the compiler's

17

Intrinsic Data Types

command-line options. A KIND is defined for a data type by a PARAMETER statement, using sizes supported on
the particular system.

The following are some examples using a KIND specification:

I NTEGER (SHORT) :: L

REAL (HIGH) B
REAL (KIND=HI GH) XVAR YVAR

These examples require that the programmer use a PARAMETER statement to define kinds:

| NTEGER, PARAMETER :: SHORT=1
I NTEGER HI CGH
PARAMETER (HI GH=8)

The following table shows several examples of KINDs that a system could support.

Table 2.2. Data Types Kind Parameters

Type Kind Size

INTEGER SHORT 1 byte
INTEGER LONG 4 bytes
REAL HIGH 8 bytes

Number of Bytes Specification

18

The PGI Fortran compilers support a length specifier for some data types. The data type can be followed by

a data type length specifier of the form *s, where s is one of the supported lengths for the data type. Such

a specification overrides the length attribute that the statement implies and assigns a specific length to the
specified item, regardless of the compiler options. For example, REAL*8 is equivalent to DOUBLE PRECISION.
Table 2.3 shows the lengths of data types, their meanings, and their sizes.

Table 2.3. Data Type Extensions

Type Meaning Size
LOGICAL*1 Small LOGICAL 1 byte
LOGICAL*2 Short LOGICAL 2 bytes
LOGICAL*4 LOGICAL 4 bytes
LOGICAL*8 LOGICAL 8 bytes
BYTE Small INTEGER 1 byte
INTEGER*1 Same as BYTE 1 byte
INTEGER*2 Short INTEGER 2 bytes
INTEGER*4 INTEGER 4 bytes
INTEGER*8 INTEGER 8 bytes
REAL*4 REAL 4 bytes
REAL*8 DOUBLE PRECISION 8 bytes

Chapter 2. Fortran Data Types

Type Meaning Size
COMPLEX*8 COMPLEX 8 bytes

COMPLEX (Kind=4)
COMPLEX*16 DOUBLE COMPLEX 16 bytes

COMPLEX (Kind=8)

The BYTE type is treated as a signed one-byte integer and is equivalent to LOGICAL*1.

Note

Assigning a value too big for the data type to which it is assigned is an undefined operation.

A specifier is allowed after a CHARACTER function name even if the CHARACTER type word has a specifier. In
the following example, the function size specification C*8 overrides the CHARACTER*4 specification.

CHARACTER*4 FUNCTI ON C*8 (VAR1)

Logical data items can be used with any operation where a similar sized integer data item is permissible and
vice versa. The logical data item is treated as an integer or the integer data item is treated as a logical of the
same size and no type conversion is performed.

Floating point data items of type REAL or DOUBLE PRECISION may be used as array subscripts, in computed
GOTOs, in array bounds and in alternate returns. The floating point data item is converted to an integer.

The data type of the result of an arithmetic expression corresponds to the type of its data. The type of an
expression is determined by the rank of its elements. Table 2.4 shows the ranks of the various data types, from
lowest to highest.

Table 2.4. Data Type Ranks

Data Type Rank
LOGICAL 1 (lowest)
LOGICAL*8

INTEGER*2

INTEGER*4

INTEGER*8

REAL*4

REAL*8 (Double precision)
COMPLEX*8 (Complex)
COMPLEX*16 (Double complex)

O | 0| ~d| SN | N | W= W Do

(highest)

The data type of a value produced by an operation on two arithmetic elements of different data types is the
data type of the highest-ranked element in the operation. The exception to this rule is that an operation

19

Constants

involving a COMPLEX*8 element and a REAL*8 element produces a COMPLEX*16 result. In this operation, the
COMPLEX*8 element is converted to a COMPLEX*16 element, which consists of two REAL*8 elements, before
the operation is performed.

In most cases, a logical expression will have a LOGICAL*4 result. In cases where the hardware supports
LOGICAL*8 and if the expression is LOGICAL*S, the result may be LOGICAL*8.

Constants

A constant is an unchanging value that can be determined at compile time. It takes a form corresponding to
one of the data types. The PGI Fortran compilers support decimal (INTEGER and REAL), unsigned binary,
octal, hexadecimal, character and Hollerith constants.

The use of character constants in a numeric context, for example, in the right-hand side of an arithmetic
assignment statement, is supported. These constants assume a data type that conforms to the context in which
they appear.

Integer Constants

The form of a decimal integer constant is:

[s]d1ld2...dn [_ kind-paraneter]

where s is an optional sign and di is a digit in the range 0 to 9. The optional _kind#parameter is a Fortran
90/95 feature supported only by PGF95 and PGHPE, and specifies a supported kind. The value of an integer
constant must be within the range for the specified kind.

The value of an integer constant must be within the range -2147483648 (-2°1) 10 2147483647 (2°' - 1)
inclusive. Integer constants assume a data type of INTEGER*4 and have a 32-bit storage requirement.

The —i 8 compilation option causes all data of type INTEGER to be promoted to an 8 byte INTEGER. The —i8
option does not override an explicit data type extension size specifier, such as INTEGER*4. The range, data
type and storage requirement change if the —i8 flag is specified, although this flag is not supported on all x86
targets. With the —i8 flag, the range for integer constants is 2510 (29 1)), and in this case the value of an
integer constant must be within the range -9223372036854775808 to 9223372036854775807. If the constant
does not fit in an INTEGER*4 range, the data type is INTEGER*8 and the storage requirement is 64 bits.

Here are several examples of integer constants:

+2
-36

437

- 36_SHORT
369 |2

Binary, Octal and Hexadecimal Constants

20

The PGI compilers and Fortran 90/95 support various types of constants in addition to decimal constants.
Fortran allows unsigned binary, octal, or hexadecimal constants in DATA statements. PGI compilers support
these constants in DATA statements, and additionally, support some of these constants outside of DATA
statements. For more information on support of these constants, refer to “Fortran Binary, Octal and
Hexadecimal Constants,” on page 25.

Chapter 2. Fortran Data Types

Real Constants

Real constants have two forms, scaled and unscaled. An unscaled real constant consists of a signed or
unsigned decimal number (a number with a decimal point). A scaled real constant takes the same form as an
unscaled constant, but is followed by an exponent scaling factor of the form:

E+digits [_ kind-paraneter]
Edigit [_ kind-paraneter]
E-digits [_ kind-paraneter]

where digits is the scaling factor, the power of ten, to be applied to the unscaled constant. The first two forms
above are equivalent, that is, a scaling factor without a sign is assumed to be positive. Table 2.5 shows several
real constants.

Table 2.5. Examples of Real Constants

Constant Value

1.0 unscaled single precision constant

1. unscaled single precision constant

-.003 signed unscaled single precision constant
-.003_LOW signed unscaled constant with kind LOW
-1.0 signed unscaled single precision constant
6.1E2_LOW is equivalent to 610.0 with kind LOW
+2.3E3 HIGH is equivalent to 2300.0 with kind HIGH
6.1E2 is equivalent to 610.0

+2.3E3 is equivalent to 2300.0

-3.5E-1 is equivalent to -0.35

Double Precision Constants

A double precision constant has the same form as a scaled REAL constant except that the E is replaced by D
and the kind parameter is not permitted. For example:

D+digits

Ddi gi t

D-digits

Table 2.6 shows several double precision constants.

Table 2.6. Examples of Double Precision Constants

Constant Value
6.1D2 is equivalent to 610.0
+2.3D3 is equivalent to 2300.0

21

Constants

Constant Value

-3.5D-1 is equivalent to -0.35

+4D4 is equivalent to 40000
Complex Constants

A complex constant is held as two real or integer constants separated by a comma and surrounded by
parentheses. The first real number is the real part and the second real number is the imaginary part. Together
these values represent a complex number. Integer values supplied as parameters for a COMPLEX constant are
converted to REAL numbers. Here are several examples:

(18, - 4)
(3.5, -3.5)
(6. 1E2, +2. 3E3)

Double Complex Constants

A complex constant is held as two double constants separated by a comma and surrounded by parentheses.
The first double is the real part and the second double is the imaginary part. Together these values represent a
complex number. Here is an example:

(6.1D2, +2. 303)

Logical Constants

A logical constant is one of:

.TRUE. [_ kind-paraneter]
.FALSE. [_ ki nd-paraneter]

The logical constants .TRUE. and .FALSE. are by default defined to be the four-byte values -1 and 0 respectively.
Alogical expression is defined to be .TRUE. if its least significant bit is 1 and .FALSE. otherwise'

Here are several examples:

. TRUE.
. FALSE.
.TRUE. _BIT

The abbreviations .T. and .E can be used in place of .TRUE. and .FALSE. in data initialization statements and in
NAMELIST input.

Character Constants

Character string constants may be delimited using either an apostrophe (') or a double quote ("). The
apostrophe or double quote acts as a delimiter and is not part of the character constant. Use double quotes
or two apostrophes together to include an apostrophe as part of an expression. If a string begins with one
variety of quote mark, the other may be embedded within it without using the repeated quote or backslash
escape. Within character constants, blanks are significant. For further information on the use of the backslash
character, refer to —Mbacks| ash in the PGI User’s Guide.

"The option —~Munixlogical defines a logical expression to be TRUE if its value is non-zero, and FALSE otherwise; also, the internal value of .TRUE.
is set to one. This option is not available on all target systems.

22

Chapter 2. Fortran Data Types

A character constant is one of:

[kind-parameter_] "[characters]"
[kind-parameter_] '[characters]’

Here are several examples of character constants.

"abc'

"abc '
"ab''c'
"Test Word"
CREEK_" "

A zero length character constant is written as " or "".

If a character constant is used in a numeric context, for example as the expression on the right side of an
arithmetic assignment statement, it is treated as a Hollerith constant. The rules for typing and sizing character
constants used in a numeric context are described in “Hollerith Constants,” on page 27.

PARAMETER Constants

The PARAMETER statement permits named constants to be defined. For more details on defining constants,
refer to the description of the PARAMETER statement in Chapter 3, “Fortran Statements”.

Derived Types

A derived type is a type made up of components whose type is either intrinsic or another derived type. The
TYPE and END TYPE keywords define a derived type. For example, the following derived type declaration
defines the type PERSON and the array CUSTOMER of type PERSON:

| Declare a structure to define a person derived type
TYPE PERSON
| NTEGER | D
LOG CAL LI VI NG
CHARACTER(LEN=20) FI RST, LAST, M DDLE
| NTEGER ACE
END TYPE PERSON
TYPE (PERSON) CUSTOVER(10)

A derived type statement definition is called a derived-type statement (the statements between TYPE PERSON
and END TYPE PERSON in the previous example. The definition of a variable of the new type is called a TYPE
statement (CUSTOMER in the previous example); note the use of parentheses in the TYPE statement.

The % character accesses the components of a derived type. For example:
CUSTOMER(1) % D = 11308

Arrays

Arrays in Fortran are not data types, but are data objects of intrinsic or derived type with special
characteristics. A dimension statement provides a data type with one or more dimensions. There are several
differences between Fortran 90/95 and traditional FORTRAN 77 arrays.

Note

Fortran 90/95 supports all FORTRAN 77 array semantics.

23

Arrays

An array is a group of consecutive, contiguous storage locations associated with a symbolic name which is
the array name. Each individual element of storage, called the array element, is referenced by the array name
modified by a list of subscripts. Arrays are declared with type declaration statements, DIMENSION statements
and COMMON statements; they are not defined by implicit reference. These declarations will introduce an
array name and establish the number of dimensions and the bounds and size of each dimension. If a symbol,
modified by a list of subscripts is not defined as an array, then it will be assumed to be a FUNCTION reference
with an argument list.

Fortran 90/95 arrays are “objects” and operations and expressions involving arrays may apply to every element
of the array in an unspecified order. For example, in the following code, where A and B are arrays of the same
shape (conformable arrays), the following expression adds six to every element of B and assigns the results to
the corresponding elements of A:

A=B+6
Fortran arrays may be passed with unspecified shapes to subroutines and functions, and sections of arrays may
be used and passed as well. Arrays of derived type are also valid. In addition, allocatable arrays may be created

with deferred shapes (number of dimensions is specified at declaration, but the actual bounds and size of each
dimension are determined when the array is allocated while the program is running).

Array Declaration Element

An array declaration has the following form:

name([l b:Jub[,[Ib:]Jub]...)

where name is the symbolic name of the array, | b is the specification of the lower bound of the dimension
and ub is the specification of the upper bound. The upper bound, ub must be greater than or equal to the
lower bound Ib. The values | b and ub may be negative. The bound | b is taken to be 1 if it is not specified.
The difference (ub- | b+1) specifies the number of elements in that dimension. The number of I b, ub pairs

specifies the rank of the array. Assuming the array is of a data type that requires N bytes per element, the total
amount of storage of the array is:

N (ub- 1 b+1) * (ub-1 b+1)*. ..

The dimension specifiers of an array subroutine argument may themselves be subroutine arguments or
members of COMMON.

Deferred Shape Arrays

Deferred-shape arrays are those arrays whose shape can be changed by an executable statement. Deferred-
shape arrays are declared with a rank, but with no bounds information. They assume their shape when either
an ALLOCATE statement or a REDIMENSION statement is encountered.

For example, the following statement declares a deferred shape REAL array A of rank two:
REAL A(:, :)
Subscripts

A subscript is used to specify an array element for access. An array name qualified by a subscript list has the
following form:

24

Chapter 2. Fortran Data Types

nanme(sub[, sub]...)
where there must be one sub entry for each dimension in array name.

Each sub must be an integer expression yielding a value which is within the range of the lower and upper
bounds. Arrays are stored as a linear sequence of values in memory and are held such that the first element

is in the first store location and the last element is in the last store location. In a multi-dimensional array the
first subscript varies more rapidly than the second, the second more rapidly than the third, and so on (column
major order).

Character Substring

A character substring is a contiguous portion of a character variable and is of type character. A character
substring can be referenced, assigned values and named. It can take either of the following forms:

character_vari abl e_name(x1: x2)
character _array_nane(subscripts) (x1: x2)

where x1 and x2 are integers and x1 denotes the left-hand character position and x2 the right-hand one. These
are known as substring expressions. In substring expressions x1 must be both greater than or equal to 1 and
less than x2 and x2 must be less than or equal to the length of the character variable or array element.

For example, the following expression indicates the characters in positions 2 to 4 of character variable /.
J(2: 4)

This next expression indicates characters in positions 1 to 4 of array element K(3,5).
K(3,5) (1: 4)

A substring expression can be any valid integer expression and may contain array elements or function
references.

Fortran Pointers and Targets

Fortran pointers are similar to allocatable arrays. Pointers are declared with a type and a rank; they do not
actually represent a value, however, but represent a value's address. Fortran 90/95 has a specific assignment
operator, =>, for use in pointer assignments.

Fortran Binary, Octal and Hexadecimal Constants

The PGI Fortran compilers support two representations for binary, octal, and hexadecimal numbers: the
standard Fortran 90/95 representation and the PGI extension representation. In addition, PGI supports an
alternate representation, described in the next section.

Fortran supports binary, octal and hexadecimal constants in DATA statements.

Binary Constants

The form of a binary constant is:

B' blb2. .. bn
B"blb2. .. bn"

where bi is either 0 or 1., such as B’01001001’

25

Fortran Binary, Octal and Hexadecimal Constants

Octal Constants

The form of an octal constant is:

O clc2...cn
O'clc2...cn"

where ci is in the range 0 through 7. such as 0’043672’

Hexidecimal Constants

The form of a hexadecimal constant is:

Z'ala2...an'
Z"ala2...an"

or
‘ala2...an' X
"ala2...an"X

where ai is in the range 0 through 9 or a letter in the range A through F or a through f (case mixing is
allowed), such as Z’8473Abc58’ or "BF40289cd"X .

Octal and Hexadecimal Constants - Alternate Forms

26

The PGF95 and PGHPF compilers support additional extensions. This is an alternate form for octal constants,
outside of DATA statements. The form for an octal constant is:

‘clc2...¢cn' O

The form of a hexadecimal constant is:
‘ala2...an' X

where ci is a digit in the range 0 to 7 and ai is a digit in the range 0 to 9 or a letter in the range A to For a to
f (case mixing is allowed). Up to 64 bits (22 octal digits or 16 hexadecimal digits) can be specified.

Octal and hexadecimal constants are stored as either 32-bit or 64-bit quantities. They are padded on the left
with zeroes if needed and assume data types based on how they are used.

The following are the rules for converting these data types:

e A constant is always either 32 or 64 bits in size and is typeless. Sign-extension and type-conversion are
never performed. All binary operations are performed on 32-bit or 64-bit quantities. This implies that the
rules to follow are only concerned with mixing 32-bit and 64-bit data.

e When a constant is used with an arithmetic binary operator (including the assignment operator) and the
other operand is typed, the constant assumes the type and size of the other operand.

» When a constant is used in a relational expression such as .EQ., its size is chosen from the operand having
the largest size. This implies that 64-bit comparisons are possible.

e When a constant is used as an argument to the generic AND, OR, EQV, NEQV, SHIFT, or COMPL function, a
32-bit operation is performed if no argument is more than 32 bits in size; otherwise, a 64-bit operation is
performed. The size of the result corresponds to the chosen operation.

Chapter 2. Fortran Data Types

e When a constant is used as an actual argument in any other context, no data type is assumed; however, a
length of four bytes is always used. If necessary, truncation on the left occurs.

» When a specific 32-bit or 64-bit data type is required, that type is assumed for the constant. Array
subscripting is an example.

e When a constant is used in a context other than those mentioned above, an INTEGER*4 data type is
assumed. Logical expressions and binary arithmetic operations with other untyped constants are examples.

e When the required data type for a constant implies that the length needed is more than the number of digits
specified, the leftmost digits have a value of zero. When the required data type for a constant implies that the
length needed is less than the number of digits specified, the constant is truncated on the left. Truncation of
nonzero digits is allowed.

In the example below, the constant I (of type INTEGER*4) and the constant J (of type INTEGER*2) will
have hex values 1234 and 4567, respectively. The variable D (of type REAL*8) will have the hex value
x4000012345678954 after its second assignment:

'1234' X ! Leftnost Pad with zero

'1234567' X ! Truncate Leftnost 3 hex digits
' 40000123456789ab' X

NEQV(D, ' ff'X) ! 64-bit Exclusive O

OO0« —

Hollerith Constants

The form of a Hollerith constant is:

nHclc2...cn
where n specifies the positive number of characters in the constant and cannot exceed 2000 characters.

A Hollerith constant is stored as a byte string with four characters per 32-bit word. Hollerith constants are
untyped arrays of INTEGER*4. The last word of the array is padded on the right with blanks if necessary.
Hollerith constants cannot assume a character data type and cannot be used where a character value is
expected.

The data type of a Hollerith constant used in a numeric expression is determined by the following rules:

» Sign-extension is never performed.

e The byte size of the Hollerith constant is determined by its context and is not strictly limited to 32 or 64 bits
like hexadecimal and octal constants.

e When the constant is used with a binary operator (including the assignment operator), the data type of the
constant assumes the data type of the other operand.

e When a specific data type is required, that type is assumed for the constant. When an integer or logical is
required, INTEGER*4 and LOGICAL*4 are assumed. When a float is required, REAL*4 is assumed (array
subscripting is an example of the use of a required data type).

e When a constant is used as an argument to certain generic functions (AND, OR, EQV, NEQV, SHIFT,
and COMPL), a 32-bit operation is performed if no argument is larger than 32 bits; otherwise, a 64-bit
operation is performed. The size of the result corresponds to the chosen operation.

27

Structures

e When a constant is used as an actual argument, no data type is assumed and the argument is passed as an
INTEGER*4 array. Character constants are passed by descriptor only.

e When a constant is used in any other context, a 32-bit INTEGER*4 array type is assumed.

When the length of the Hollerith constant is less than the length implied by the data type, spaces are appended
to the constant on the right. When the length of the constant is greater than the length implied by the data type,
the constant is truncated on the right.

Structures

A structure, a DEC extension to FORTRAN 77, is a user-defined aggregate data type having the following form:

STRUCTURE [/structure_name/][field_namelist]
field_declaration
[field_declaration]

[field_declaration]
END STRUCTURE

Where:

structure_nane
is unique and is used both to identify the structure and to allow its use in subsequent RECORD statements.

field naneli st
is a list of fields having the structure of the associated structure declaration. A field_namelist is allowed
only in nested structure declarations.

field_declaration
can consist of any combination of substructure declarations, typed data declarations, union declarations
or unnamed field declarations.

Fields within structures conform to machine-dependent alignment requirements. Alignment of fields also
provides a C-like "struct" building capability and allows convenient inter-language communications.

Field names within the same declaration nesting level must be unique, but an inner structure declaration can
include field names used in an outer structure declaration without conflict. Also, because records use periods
to separate fields, it is not legal to use relational operators (for example, .EQ., XOR.), logical constants
(.TRUE. or .FALSE.), or logical expressions (.AAND., .NOT., .OR.) as field names in structure declarations.

Fields in a structure are aligned as required by hardware; therefore a structure's storage requirements are
machine-dependent. Because explicit padding of records is not necessary, the compiler recognizes the %FILL
intrinsic, but performs no action in response to it.

Data initialization can occur for the individual fields.

Records

A record, a DEC extension to FORTRAN 77, is a user-defined aggregate data item having the following form:

RECORD / structure_nane/record_nanel i st
[,/structure_name/record_nanelist]

28

Chapter 2. Fortran Data Types

[,/structure_name/record_nanelist]

where:

structure_name
is the name of a previously declared structure.

record_namelist
is a list of one or more variable or array names separated by commas.

You create memory storage for a record by specifying a structure name in the RECORD statement. You define
the field values in a record either by defining them in the structure declaration or by assigning them with
executable code.

You can access individual fields in a record by combining the parent record name, a period (.), and the field
name (for example, recordname.fieldname). For records, a scalar reference means a reference to a name that
resolves to a single typed data item (for example, INTEGER), while an aggregate reference means a reference
that resolves to a structured data item.

Scalar field references may appear wherever normal variable or array elements may appear with the exception
of COMMON, SAVE, NAMELIST, DATA and EQUIVALENCE statements. Aggregate references may only appear in
aggregate assignment statements, unformatted 1/0 statements, and as parameters to subprograms.

The following example shows RECORD and STRUCTURE usage.

STRUCTURE / person/ ! Declare a structure
defining a person
I NTEGER i d
LOG CAL |iving
CHARACTER*5 first, last, middle
| NTEGER age
END STRUCTURE
I Define population to be an array where each elenment is
I of type person. Also define a variable, nme, of type
I person.
RECORD / person/ popul ation(2), ne

ne.age = 34 | Assign values for the variable nme

to
me.living = . TRUE. ! some of the fields.
me.first = 'Steve

ne.id = 542124822

popul ation(1l).last = 'Jones' ! Assign the "last" field
of

I element 1 of array popul ation.
popul ation(2) = me ! Assign all values of record

I "ne" to the record

I popul ati on(2)

UNION and MAP Declarations

A UNION declaration, a DEC extension to FORTRAN 77, is a multi-statement declaration defining a data area
that can be shared intermittently during program execution by one or more fields or groups of fields. It
declares groups of fields that share a common location within a structure. Each group of fields within a union
declaration is declared by a MAP declaration, with one or more fields per MAP declaration.

29

Structures

30

Union declarations are used when one wants to use the same area of memory to alternately contain two or
more groups of fields. Whenever one of the fields declared by a union declaration is referenced in a program,
that field and any other fields in its map declaration become defined. Then, when a field in one of the other
map declarations in the union declaration is referenced, the fields in that map declaration become defined,
superseding the fields that were previously defined.

A union declaration is initiated by a UNION statement and terminated by an END UNION statement. Enclosed
within these statements are one or more map declarations, initiated and terminated by MAP and END MAP
statements, respectively. Each unique field or group of fields is defined by a separate map declaration.

The format of a UNION statement is illustrated in the following example:

UNI ON
map_decl arati on
[map_decl arati on]

[map_decl arati on]
END UNI ON

The format of the map_declaration is as follows:

MAP
field declaration
[field_declaration]

[field_declaration]
END MAP

where field_declaration is a structure declaration or RECORD statement contained within a union declaration,
a union declaration contained within a union declaration, or the declaration of a typed data field within a
union.

Data can be initialized in field declaration statements in union declarations. Note, however, it is illegal to
initialize multiple map declarations in a single union.

Field alignment within multiple map declarations is performed as previously defined in structure declarations.

The size of the shared area for a union declaration is the size of the largest map defined for that union. The
size of a map is the sum of the sizes of the field(s) declared within it plus the space reserved for alignment
purposes.

Manipulating data using union declarations is similar to what happens using EQUIVALENCE statements.
However, union declarations are probably more similar to union declarations for the language C. The main
difference is that the C language requires one to associate a name with each "map" (union). Fortran field
names must be unique within the same declaration nesting level of maps.

The following example shows RECORD, STRUCTURE, MAP and UNION usage. The size of each element of the
recarr array would be the size of typetag (4 bytes) plus the size of the largest MAP, the employee map (24
bytes).

STRUCTURE [/ account /

I NTEGER typetag ! Tag to determ ne defined map.
UNI ON

MAP | Structure for an enpl oyee

CHARACTER*12 ssn ! Social Security Nunber

Chapter 2. Fortran Data Types

REAL*4 sal ary
CHARACTER*8 enpdate ! Enpl oynent date
END VAP
MAP ! Structure for a customner
| NTEGER*4 acct _cust
REAL*4 credit_ amt
CHARACTER*8 due_dat e
END VAP
MAP ! Structure for a supplier
| NTEGER*4 acct _supp
REAL*4 debit ant
BYTE num it ens
BYTE items(12) ! Itens supplied
END VAP
END UNI ON
END STRUCTURE
RECORD / account/ recarr (1000)

Data Initialization

Data initialization is allowed within data type declaration statements. This is an extension to the Fortran
language. Data is initialized by placing values bounded by slashes immediately following the symbolic name
(variable or array) to be initialized. Initialization of fields within structure declarations is allowed, but
initialization of unnamed fields and records is not.

Hollerith, octal and hexadecimal constants can be used to initialize data in both data type declarations and in
DATA statements. Truncation and padding occur for constants that differ in size from the declared data item (as
specified in the discussion of constants).

Pointer Variables

The POINTER statement, a CRAY extension to FORTRAN 77 which is distinct from the Fortran 90/95 POINTER
specification statement or attribute, declares a scalar variable to be a pointer variable (of data type INTEGER),
and another variable to be its pointer-based variable.

The syntax of the POINTER statement is:

PO NTER (p1, v1) [, (p2, v2) ...]

vl and v2
are pointer-based variables. A pointer-based variable can be of any type, including STRUCTURE. A pointer-
based variable can be dimensioned in a separate type, in 2 DIMENSION statement, or in the POINTER
statement. The dimension expression may be adjustable, where the rules for adjustable dummy arrays
regarding any variables which appear in the dimension declarators apply.

pl and p2
are the pointer variables corresponding to v1 and v2. A pointer variable may not be an array. The pointer
is an integer variable containing the address of a pointer-based variable. The storage located by the pointer
variable is defined by the pointer-based variable (for example, array, data type, etc.). A reference to a
pointer-based variable appears in Fortran statements like 2 normal variable reference (for example, a
local variable, a COMMON block variable, or a dummy variable). When the based variable is referenced,
the address to which it refers is always taken from its associated pointer (that is, its pointer variable is
dereferenced).

31

Pointer Variables

The pointer-based variable does not have an address until its corresponding pointer is defined.

The pointer is defined in one of the following ways:

e By assigning the value of the LOC function.
* By assigning a value defined in terms of another pointer variable.

e By dynamically allocating a memory area for the based variable. If a pointer-based variable is dynamically
allocated, it may also be freed.

The following code illustrates the use of pointers:

REAL XC(10)
COWON | C, XC
PO NTER (P, I)
PO NTER (Q X(5))

P = LOC(1 C

I =0! ICgets O

P = LOC(XC)

Q=P+ 20 ! sanme as LOC(XC(6))

X(1) = 0! XC(6) gets O
ALLOCATE (X) ! Qlocates an allocated nenory area

Restrictions

32

The following restrictions apply to the POINTER statement:

e No storage is allocated when a pointer-based variable is declared.
» If a pointer-based variable is referenced, its pointer variable is assumed to be defined.

* A pointer-based variable may not appear in the argument list of a SUBROUTINE or FUNCTION and may not
appear in COMMON, EQUIVALENCE, DATA, NAMELIST, or SAVE statements.

* A pointer-based variable can be adjusted only in a SUBROUTINE or FUNCTION subprogram. If a pointer-
based variable is an adjustable array, it is assumed that the variables in the dimension declarators are
defined with an integer value at the time the SUBROUTINE or FUNCTION is called. For a variable which
appears in a pointer-based variable's adjustable declarator, modifying its value during the execution of the
SUBROUTINE or FUNCTION does not modify the bounds of the dimensions of the pointer-based array.

e A pointer-based variable is assumed not to overlap with another pointer-based variable.

Chapter 3. Fortran Statements

This chapter describes each of the Fortran statements supported by the PGI Fortran compilers. Each
description includes a brief summary of the statement, a syntax description, a complete description and an
example. The statements are listed in alphabetical order. The first section lists terms that are used throughout
the chapter.

Statement Format Overview

The following sections contain detailed descriptions of each of the statements. This section lists terms that are
used throughout the chapter and provides information on how to interpret the information in these statement
descriptions.

Definition of Statement-related Terms

character scalar memory reference
is a character variable, a character array element, or a character member of a structure or derived type.

integer scalar memory reference
is an integer variable, an integer array element, or an integer member of a structure or derived type.

logical scalar memory reference
is a logical variable, a logical array element, or a logical member of a structure or derived type.

obsolescent

The statement is unchanged from the FORTRAN 77 definition but has a better replacement in Fortran 95.

Origin of Statement

At the top of each reference page is a brief description of the statement followed by a header that indicates the
origin of the statement. The following list describes the meaning of the origin header.

F77
FORTRAN 77 statements that are essentially unchanged from the original FORTRAN 77 standard and are
supported by the PGF77 compiler.

F77 extension
The statement is an extension to the Fortran language.

33

Fortran Statement Summary Table

F90/F95
This statement is either new for Fortran 90/95 or significantly changed in Fortran 95 from its original
FORTRAN 77 definition and is supported by the PGF95 and PGHPF compilers.

HPF (High Perfromance Fortran)
The statement has its origin in the HPF standard.

CMF
Indicates a CM Fortran feature (CM Fortran is a version of Fortran that was produced by Thinking
Machines Corporation for parallel computers).

List-related Notation

Several statements allow lists of a specific type of data. For example, the ALLOCATABLE statement allows a list in
which each element of a deferred-array-spec. The notation used in statements is this:

¢ Within the statement, the notation is f oo- | i st , such as def er r ed- arr ay- spec- i st.

e When the list elements have a specific format that is defined, the reference is just to that element, such as
def erred-array-spec.

As in Fortran, the list is a set of comma-separated values.

Fortran Statement Summary Table

This section contains an alphabetical listing with a brief one-line description of the Fortran statements included
in this chapter.

Table 3.1. Intrinsic Summary Table

Intrinsic Description
ACCEPT F77 |Causes formatted input to be read on standard input.
ALLOCATABLE FO0 |Specifies that an array with fixed rank but deferred shape is available

for a future ALLOCATE statement.

ALLOCATE F90 |Allocates storage for each allocatable array, pointer object, or pointer-
based variable that appears in the statements; declares storage for
deferred-shape arrays.

ARRAY CMF |Defines the number of dimensions in an array that may be defined, and
the number of elements and bounds in each dimension.

ASSIGN F77 [Obsolescent]. Assigns a statement label to a variable.

BACKSPACE F77 |Positions the file connected to the specified unit to before the preceding
record.

BLOCK DATA F77 Introduces a number of non-executable statements that initialize data
values in COMMON tables

BYTE F77 ext |Establishes the data type of a variable by explicitely attaching the name

of a variable to a 1-byte integer, overriding implied data typing.

CALL F77 Transfers control to a subroutine.

34

Chapter 3. Fortran Statements

Intrinsic Description

CASE F90 |Begins a case-statement-block portion of a SELECT CASE statement.

CHARACTER FO0 |Establishes the data type of a variable by explicitly attaching the name of
a variable to a character data type, overriding the implied data typing.

CLOSE F77 |Terminates the connection of the specified file to a unit.

COMMON F77 |Defines global blocks of storage that are either sequential or non-
sequential; can be either a static or dynamic form.

COMPLEX F90 |Establishes the data type of a variable by explicitly attaching the name of
a variable to a complex data type, overriding implied data typing.

CONTAINS F90 |Precedes a subprogram, a function or subroutine and indicates
the presence of the subroutine or function definition inside a main
program, external subprogram, or module subprogram.

CONTINUE F77 |Passes control to the next statement.

CYCLE FO0 |Interrupts a DO construct execution and continues with the next
iteration of the loop.

DATA F77 |Assigns initial values to variables before execution.

DEALLOCATE F77 |Causes the memory allocated for each pointer-based variable or
allocatable array that appears in the statement to be deallocated
(freed); also deallocates storage for deferred-shape arrays.

DECODE F77 ext | Transfers data between variables or arrays in internal storage and
translates that data from character form to internal form, according to
format specifiers.

DIMENSION F90 |Defines the number of dimensions in an array and the number of
elements in each dimension.

DO (Iterative) F90 |Introduces an iterative loop and specifies the loop control index and
parameters.

DO WHILE F77 |Introduces a logical do loop and specifies the loop control expression.

DOUBLE COMPLEX |F77 |Establishes the data type of a variable by explicitly attaching the name
of a variable to a double complex data type, overriding implied data
typing.

DOUBLE PRECISION [F90 |Establishes the data type of a variable by explicitly attaching the name
of a variable to a double precision data type, overriding implied data
typing.

ELSE F77 |Begins an ELSE block of an IF block and encloses a series of statements
that are conditionally executed.

ELSE IF F77 |Begins an ELSE IF block of an IF block series and encloses statements

that are conditionally executed.

35

Fortran Statement Summary Table

36

Intrinsic Description

ELSE WHERE F77 |The portion of the WHERE ELSE WHERE construct that permits
conditional masked assignments to the elements of an array or to a
scalar, zero-dimensional array.

ENCODE F77 ext | Transfers data between variables or arrays in internal storage and
translates that data from internal to character form, according to format
specifiers.

END F77 |Terminates a segment of a Fortran program.

END DO F77 |Terminates 2 DO or DO WHILE loop.

END FILE F77 |Writes an endfile record to the files.

END IF F77 Terminates an IF ELSE or ELSE IF block.

END MAP F77 ext | Terminates 2 MAP declaration.

END SELECT F77 |Terminates a SELECT declaration.

END STRUCTURE ~ |F77 ext |Terminates a STRUCTURE declaration.

END UNION F77 ext | Terminates a UNION declaration.

END WHERE F77 ext | Terminates a WHERE ELSE WHERE construct.

ENTRY F77 |Allows a subroutine or function to have more than one entry point.

EQUIVALENCE F77 |Allows two or more named regions of data memory to share the same
start address.

EXIT F90 Interrupts a DO construct execution and continues with the next
statement after the loop.

EXTERNAL F77 |Identifies a symbolic name as an external or dummy procedure which
can then be used as an actual argument.

EXTRINSIC HPF |Identifies a symbolic name as an external or dummy procedure that is
written in some language other than HPF.

FORALL F95 Provides, as a statement or construct, a parallel mechanism to assign
values to the elements of an array.

FORMAT F77 |Specifies format requirements for input or output.

FUNCTION F77 |Introduces a program unit; all the statements that follow apply to the
function itself.

GOTO (Assigned) |F77 [Obsolescent]. Transfers control so that the statement identified by the
statement label is executed next.

GOTO (Computed) |F77 |Transfers control to one of a list of labels according to the value of an
expression.

GOTO F77 |Unconditionally transfers control to the statement with the label /abel,

(Unconditional) which must be declared within the code of the program unit containing

the GOTO statement and must be unique within that program unit.

Chapter 3. Fortran Statements

Intrinsic Description

IF (Arithmetic) F77 [Obsolescent]. Transfers control to one of three labeled statements,
depending on the value of the arithmetic expression.

IF (Block) F77 Consists of a series of statements that are conditionally executed.

IF (Logical) F77 |Executes or does not execute a statement based on the value of a logical
expression.

IMPLICIT F77 |Redefines the implied data type of symbolic names from their initial
letter, overriding implied data types.

INCLUDE F77 ext |Directs the compiler to start reading from another file.

INQUIRE F77 |Inquires about the current properties of a particular file or the current
connections of a particular unit.

INTEGER F77 |Establishes the data type of a variable by explicitly attaching the name of
a variable to an integer data type, overriding implied data types.

INTENT F90 |Specifies intended use of a dummy argument, but may not be used in a
main program's specification statement.

INTERFACE F90 |Makes an implicit procedure an explicit procedure where the dummy
parameters and procedure type are known to the calling module; Also
overloads a procedure name.

INTRINSIC F77 |Identifies a symbolic name as an intrinsic function and allows it to be
used as an actual argument.

LOGICAL F77 |Establishes the data type of a variable by explicitly attaching the name of
a variable to a logical data type, overriding implied data types.

MAP F77 ext | Designates each unique field or group of fields within a UNION
statement.

MODULE F90 |Specifies the entry point for a Fortran 90/95 module program unit. A
module defines a host environment of scope of the module, and may
contain subprograms that are in the same scoping unit.

NAMELIST FO0 |Allows the definition of namelist groups for namelist-directed 1/0.

NULLIFY F90 Disassociates a pointer from its target.

OPEN F77 |Connects an existing file to a unit, creates and connects a file to a unit,
creates a file that is preconnected, or changes certain specifiers of a
connection between a file and a unit.

OPTIONAL F90 |Specifies dummy arguments that may be omitted or that are optional.

OPTIONS F77 ext | Confirms or overrides certain compiler command-line options.

PARAMETER F77 | Gives a symbolic name to a constant.

PAUSE F77 [Obsolescent]. Stops the program's execution.

POINTER F90 |Provides a means for declaring pointers.

37

Fortran Statement Summary Table

Intrinsic Description

POINTER (Cray) F77 ext |Seclares a scalar variable to be a pointer variable (of type INTEGER),
and another variable to be its pointer-based variable.

PRINT F77 |Transfers data to the standard output device from the items specified in
the output list and format specification.

PRIVATE F90 Specifies entities defined in a module are not accessible outside of the
module.

PROGRAM F77 |Specifies the entry point for the linked Fortran program.

PUBLIC F90 |Specifies entities defined in a module are accessible outside of the
module.

PURE F95 |Indicates that a function or subroutine has no side effects.

READ F90 |Transfers data from the standard input device to the items specified in
the input and format specifications.

REAL FO0 |Establishes the data type of a variable by explicitly attaching the name of
a variable to a data type, overriding implied data types.

RECORD F77 ext |A VAX Fortran extension, defines a user-defined aggregate data item.

RECURSIVE F90 |Indicates whether a function or subroutine may call itself recursively.

REDIMENSION F77 ext | Dynamically defines the bounds of a deferred-shape array.

RETURN F77 |Causes a return to the statement following a CALL when used in a

subroutine, and returns to the relevant arithmetic expression when used
in a function.

REWIND F77 |Positions the file at its beginning. The statement has no effect if the file
is already positioned at the start or if the file is connected but does not
exist.

SAVE F77 |Retains the definition status of an entity after a RETURN or END
statement in a subroutine or function has been executed.

SELECT CASE F90 Begins a CASE construct.

SEQUENCE F90 |A derived type qualifier that specifies the ordering of the storage

associated with the derived type. This statement specifies storage for use
with COMMON and EQUIVALENCE statements.

STOP F77 |Stops the program's execution and precludes any further execution of
the program.
STRUCTURE F77 |A VAX extension to FORTRAN 77 that defines an aggregate data type.
Vax ext
SUBROUTINE F77 |Introduces a subprogram unit.
TARGET FO0 |Specifies that a data type may be the object of a pointer variable (e.g.,

pointed to by a pointer variable). Types that do not have the TARGET
attribute cannot be the target of a pointer variable.

38

Chapter 3. Fortran Statements

Intrinsic Description

THEN F77 |Part of a block IF statement, surrounds a series of statements that are
conditionally executed.

TYPE FO0 |Begins a derived type data specification or declares variables of a
specified user-defined type.

UNION F77 |A multi-statement declaration defining a data area that can be shared
intermittently during program execution by one or more fields or
groups of fields.

USE FO0 |Gives a program unit access to the public entities or to the named
entities in the specified module.

VOLATILE F77 ext |Inhibits all optimizations on the variables, arrays and common blocks
that it identifies.

WHERE FO0 |Permits masked assignments to the elements of an array or to a scalar,

zero dimensional array.

WRITE F90 |Transfers data to the standard output device from the items specified in
the output list and format specification.

ACCEPT

The ACCEPT statement has the same syntax as the PRINT statement and causes formatted input to be read on
standard input. ACCEPT is identical to the READ statement with a unit specifier of asterisk (*).

F77 extension

Syntax

ACCEPT f [,iolist]
ACCEPT nanel i st

f
format-specifier, a * indicates list directed input.
iolist
is a list of variables to be input.
namelist
is the name of a namelist specified with the NAMELIST statement.
Examples
ACCEPT *, |A, ZA
ACCEPT 99, I, J, K
ACCEPT SUM

99 FORMAT(12, 14, 13)

Non-character Format-specifier

If a format-specifier is a variable which is neither CHARACTER nor a simple INTEGER variable, the compiler
accepts it and treats it as if the contents were character. For example, below sum is treated as a format
descriptor:

39

ALLOCATABLE

real sum
sum = 4h()
accept sum

and is roughly equivalent to

character*4 ch
ch =" ()’
accept ch

See Also

HREADH, A‘PRINTH

ALLOCATABLE

The ALLOCATABLE specification statement (attribute) specifies that an array with fixed rank but deferred shape
is available for a future ALLOCATE statement. An ALLOCATE statement allocates space for the allocatable array.

F90
Syntax

ALLOCATABLE [::] array-nanme [(deferred-array-spec-1list)]
[, array-name [(deferred-array-spec-list)]]...

array-name
is the name of the allocatable array.

deferred-array-spec
is a: character.

Example
REAL SCORE(:), NAMES(:,:)

ALLOCATABLE SCORE, NAMES
| NTEGER, ALLOCATABLE :: RECI1(: ,: , :)

See Also
“ALLOCATE”, “DEALLOCATE”

ALLOCATE

The ALLOCATE statement is an extension to FORTRAN 77 but is part of the Fortran 90/95 standard. It allocates
storage for each allocatable array, pointer object, or pointer-based variable that appears in the statement.
ALLOCATE also declares storage for deferred-shape arrays.

F90
Syntax

ALLCCATE (allocation-list [, STAT= var])

40

Chapter 3. Fortran Statements

allocation-list is:

al | ocat e-obj ect [all ocate-shape-spec-list]

allocate-object is:

vari abl e- nane
st ruct ur e- conponent

allocate-shape-spec is:

[allocate-lower-bound :] allocate-upper-bound

var
is an integer variable, integer array element or an integer member of a STRUCTURE (that is, an integer
scalar memory reference). This variable is assigned a value depending on the success of the ALLOCATE
statement.

name
is a pointer-based variable or name of an allocatable COMMON enclosed in slashes.

Description

For a pointer-based variable, its associated pointer variable is defined with the address of the allocated memory
area. If the specifier STAT= is present, successful execution of the ALLOCATE statement causes the status
variable to be defined with a value of zero. If an error occurs during execution of the statement and the
specifier STAT= is present, the status variable is defined to have the integer value one. If an error occurs and
the specifier STAT= is not present, program execution is terminated.

A dynamic or allocatable COMMON block is a common block whose storage is not allocated until an explicit
ALLOCATE statement is executed. Note: Allocatable COMMON blocks are an extension to FORTRAN 77
supported only by PGF77 compiler, and not by the PGF95 or PGHPF compilers.

For an ALLOCATABLE array, the array is allocated with the executable ALLOCATE statement.

Examples

COWON P, N, M

PO NTER (P, A(N, M)

COMON, ALLOCATABLE /ALL/ X(10), Y
ALLOCATE (/ALL/, A, STAT=IS)
PRINT *, IS

X(5) = A(2, 1)

DEALLCCATE (A)

DEALLOCATE (A, STAT=IS)

PRINT *, 'should be 1', IS
DEALLOCATE (/ALL/)

For a deferred shape array, the allocate must include the bounds of the array.

REAL, ALLOCATABLE :: A(:), B(:)
ALLOCATE (A(10), B(SIZE(A)))
REAL A(:,:)

N=3

M=1

ALLOCATE (A(1:11, MN))

| NTEGCER FLAG N

REAL, ALLOCATABLE:: B(:,:)

41

ARRAY

ALLOCATE (B(N, N), STAT=FLAG)

ARRAY

CMF

The ARRAY attribute defines the number of dimensions in an array that may be defined and the number of
elements and bounds in each dimension.

Syntax

ARRAY [::] array-nane (array-spec)
[, array-name (array-spec)]

array-name
is the symbolic name of an array.

array-spec
is a valid array specification, either explicit-shape, assumed-shape, deferred-shape, or assumed size (refer
to Chapter 4, “Fortran Arrays”, for details on array specifications).

Description

ARRAY can be used in a subroutine as a synonym for DIMENSION to establish an argument as an array, and
in this case the declarator can use expressions formed from integer variables and constants to establish the
dimensions (adjustable arrays).

Note

These integer variables must be either arguments or declared in COMMON,; they cannot be local.
Further, in this case, the function of ARRAY statement is merely to supply a2 mapping of the argument to
the subroutine code, and not to allocate storage.

The typing of the array in an ARRAY statement is defined by the initial letter of the array name in the same way
as variable names, unless overridden by an IMPLICIT or type declaration statement. Arrays may appear in type
declaration and COMMON statements but the array name can appear in only one array declaration.

Example

REAL, ARRAY(3:10):: ARRAY_ONE
| NTEGER, ARRAY(3,-2:2):: ARRAY_TWO

This specifies ARRAY_ONE as a vector having eight elements with the lower bound of 3 and the upper bound of
10.

ARRAY_TWO as a matrix of two dimensions having fifteen elements. The first dimension has three elements
and the second has five with bounds from -2 to 2.

See Also

42

“ALLOCATE”, “DEALLOCATE”

Chapter 3. Fortran Statements

ASSIGN

(Obsolescent) The assign statement assigns a statement label to a variable. Internal procedures can be used
in place of the assign statement. Other cases where the assign statement is used can be replaced by using
character strings (for different format statements that were formally assigned labels by using an integer
variable as a format specifier).

F77

Syntax

ASSIGN a TO b

a
is the statement label.
b
is an integer variable.
Description

Executing an ASSIGN statement assigns a statement label to an integer variable. This is the only way that a
variable may be defined with a statement label value.

The statement label must be:

* A statement label in the same program unit as the ASSIGN statement.

o The label of an executable statement or a FORMAT statement.
A variable must be defined with a statement label when it is referenced:

e In an assigned GOTO statement.

e As a format identifier in an input/output statement and while so defined must not be referenced in any other
way.

An integer variable defined with a statement label can be redefined with a different statement label, the same
statement label or with an integer value.

Example
ASSIGN 40 TO K
&0 TO K
40 L =P+ 1 + 56
BACKSPACE

When a BACKSPACE statement is executed the file connected to the specified unit is positioned before the
preceding record.

43

BLOCK DATA

F77
Syntax
BACKSPACE uni t
BACKSPACE ([UNI T=]unit [, ERR=errs] [,
| OSTAT=i os])
UNIT=unit
unit is the unit specifier.
ERR=s
s is an executable statement label for the statement used for processing an error condition.
IOSTAT=io0s
ios is an integer variable or array element. ios becomes defined with 0 if no error occurs, and a positive
integer when there is an error.
Description
If there is no preceding record, the position of the file is not changed. A BACKSPACE statement cannot be
executed on a file that does not exist. Do not issue a BACKSPACE statement for a file that is open for direct or
append access.
Examples

BACKSPACE 4
BACKSPACE (UNIT=3)
BACKSPACE (7, |OSTAT=I OCHEK, ERR=50)

BLOCK DATA

The BLOCK DATA statement introduces a number of statements that initialize data values in COMMON blocks.
No executable statements are allowed in 2 BLOCK DATA segment.

F77

Syntax

BLOCK DATA [nane]
[specification]
END [BLOCK DATA [nane]]

name
is a symbol identifying the name of the block data and must be unique among all global names (COMMON
block names, program name, module names). If missing, the block data is given a default name.

Example

BLOCK DATA
COWDN / SI DE/ BASE, ANGLE, HEI GAT, W DTH
I NTEGER SI ZE
PARAMETER (SI ZE=100)

44

Chapter 3. Fortran Statements

| NTEGER BASE(0: SI ZE)

REAL W DTH(0: Sl ZE), ANGLE(O: SI ZE)

DATA (BASE(1),1=0, SI ZE)/ Sl ZE*- 1, - 1/,
+ (WDTH(1),1=0, SI ZE)/ Sl ZE*0. 0, 0. 0/
END

BYTE

The BYTE statement establishes the data type of a variable by explicitly attaching the name of a variable to a 1-
byte integer. This overrides data typing implied by the initial letter of a symbolic name.

F77 extension

Syntax

BYTE nane [/clist/],

name
is the symbolic name of a variable, array, or an array declarator (see the DIMENSION statement for an
explanation of array declarators).

clist
is a list of constants that initialize the data, as in a DATA statement.

Description

Byte statements may be used to dimension arrays explicitly in the same way as the DIMENSION statement. BYTE
declaration statements must not be labeled.

Example
BYTE TB3, SEC, STORE (5, 5)

CALL

The CALL statement transfers control to a subroutine.
F77

Syntax

CALL subroutine [([actual-arg-list]...])]

subroutine
is the name of the subroutine.

argument
is the actual argument being passed to the subroutine. The first argument corresponds to the first dummy
argument in the SUBROUTINE statement and so on.

actual-arg
has the form:

45

CASE

Desc

[keyword = |
subroutine-argument.

keyword
is 2 dummy argument name in the subroutine interface.

subroutine-argument
is an actual argument.

ription
Actual arguments can be expressions including: constants, scalar variables, function references and arrays.

Actual arguments can also be alternate return specifiers. Alternate return specifiers are labels prefixed by
asterisks (*) or ampersands (&). The ampersand is an extension to FORTRAN 77.

Recursive calls are allowed using the —Mrecursive command-line option.

Examples

CALL CRASH ! no argunents

CALL BANG 1.0) ! one argunent

CALL WALLOP(V, INT) ! two arguments
CALL ALTRET(I, *10, *20)

SUBROUTI NE ONE

DI MENSI ON ARR (10, 10)

REAL WORK
| NTEGER ROW COL
Pl =3. 142857
CALL EXPENS(ARR, ROW COL, WORK, SI N(Pl / 2) +3. 4)
RETURN
END
CASE
The CASE statement begins a case-statement-block portion of a SELECT CASE construct.
F90
Syntax
[case-nane :] SELECT CASE (case-expr)
[CASE (selector) [nane]
bl ock]
[CASE DEFAULT [case- nane]
bl ock]

END SELECT [case- nane]

Example

46

SELECT CASE (FLAG)
CASE (1, 2, 3)
TYPE=1

CASE (4:6)
TYPE=2

CASE DEFAULT

Chapter 3. Fortran Statements

TYPE=0
END SELECT

Type

Executable

See Also

“SELECT CASE”

CHARACTER

The CHARACTER statement establishes the data type of a variable by explicitly attaching the name of a variable
to a character data type. This overrides the data typing implied by the initial letter of a symbolic name.

F90

Syntax

The syntax for CHARACTER has two forms, the standard Fortran form and the PGI extended form. This section
describes both syntax forms.

CHARACTER [char acter-sel ector] [,
attribute-list ::] entity-list

character-selector
the character selector specifies the length of the character string. This has one of several forms:

([LEN=] type- param val ue)
* character-length [,]

Character-selector also permits a KIND specification. Refer to the Fortran 95 Handbook for more syntax
details.

attribute-list
is the list of attributes for the character variable.
entity-list
is the list of defined entities.
Syntax Extension

CHARACTER [*l en][,] name [dinmension] [*len] [/clist/],

len
is a constant or *. A * is only valid if the corresponding name is a dummy argument.

name
is the symbolic name of a variable, array, or an array declarator (see the DIMENSION statement for an
explanation of array declarators).

47

CLOSE

clist
is a list of constants that initialize the data, as in a DATA statement.

Description

Character type declaration statements may be used to dimension arrays explicitly in the same way as the
DIMENSION statement. Type declaration statements must not be labeled.

Note: The data type of a symbol may be explicitly declared only once. It is established by type declaration
statement, IMPLICIT statement or by predefined typing rules. Explicit declaration of a type overrides any
implicit declaration. An IMPLICIT statement overrides predefined typing rules.

Examples

CHARACTER A*4, B*6, C
CHARACTER (LEN=10):: NAME

Ais 4 and B is 6 characters long and C is 1 character long. NAME is 10 characters long.

CLOSE

Fr7

The CLOSE statement terminates the connection of the specified file to a unit.

Syntax

CLCSE ([UNIT=] u [,ERR=errs] [, DI SP[CSE] = st a]
[, OSTAT=i os] [, STATUS= sta])

u
is the external unit specifier where u is an integer.

errs
is an error specifier in the form of a statement label of an executable statement in the same program unit.
If an error condition occurs, execution continues with the statement specified by errs.

ios
is an integer scalar; if this is included ios becomes defined with 0 (zero) if no error condition exists or a
positive integer when there is an error condition. A value of -1 indicates an end-of-file condition with no
error. A value of -2 indicates an end-of-record condition with no error when using non-advancing I/0.

sta
is a character expression, where case is insignificant, specifying the file status and the same keywords are
used for the dispose status. Status can be 'KEEP' or 'DELETE' (the quotes are required). KEEP cannot be
specified for a file whose dispose status is SCRATCH. When KEEP is specified (for a file that exists) the file
continues to exist after the CLOSE statement; conversely DELETE deletes the file after the CLOSE statement.
The default value is KEEP unless the file status is SCRATCH.

Description

48

A unit may be the subject of a CLOSE statement from within any program unit. If the unit specified does not
exist or has no file connected to it the use of the CLOSE statement has no effect. Provided the file is still in

Chapter 3. Fortran Statements

existence it may be reconnected to the same or a different unit after the execution of a CLOSE statement. Note
that an implicit CLOSE is executed when a program stops.

Example

In the following example, the file on UNIT 8 is closed and deleted.
CLOSE(UNI T=8, STATUS=' DELETE')

COMMON

The COMMON statement defines global blocks of storage that are either sequential or non sequential. There
are two forms of the COMMON statement, a static form and a dynamic form. Each common block is identified
by the symbolic name defined in the COMMON block.

F77
Syntax

COWON /[nanme] /nlist [, /nanme/nlist]...

name

is the name of each common block and is declared between the /.../ delimiters for a named common and
with no name for a blank common.

nlist
is a list of variable names where arrays may be defined in DIMENSION statements or formally declared by
their inclusion in the COMMON block.

Common Block Rules and Behaviors

A common block is a global entity. Any common block name (or blank common) can appear more than once

in one or more COMMON statements in a program unit. The following is a list of rules associated with common
blocks:

Blank Common

The name of the COMMON block need not be supplied; without a name, the common is a BLANK
COMMON. In this case the compiler uses a default name.

Same Names
There can be several COMMON block statements of the same name in a program segment; these are
effectively treated as one statement, with variables concatenated from one COMMON statement of the same

name to the next. This is an alternative to the use of continuation lines when declaring a common block
with many symbols.

Common blocks with the same name that are declared in different program units share the same storage
area when combined into one executable program and they are defined using the SEQUENCE attribute.

HPF
In HPE a common block is non-sequential by default, unless there is an explicit SEQUENCE directive
that specifies the array as sequential. Note this may require that older FORTRAN 77 programs assuming
sequence association in COMMON statements have SEQUENCE statements for COMMON variables.

49

COMMON

Example

DI MENSI ON R(10)
COWON /HOST/ A, R Q3), U

This declares a common block called HOST

Note

The different types of declaration used for R (declared in a DIMENSION statement) and Q (declared
in the COMMON statement).

The declaration of HOST in 2 SUBROUTINE in the same executable program, with a different shape for its
elements would require that the array be declared using the SEQUENCE attribute.

SUBROUTI NE DEMO
| HPF$ SEQUENCE HOST
COVWON HOST/ STORE(15)

RETURN
END

Common Blocks and Subroutines

If the main program has the common block declaration as in the previous example, the COMMON statement
in the subroutine causes STORE(1) to correspond to A, STORE(2) to correspond to R(1), STORE(3) to
correspond to R(2), and so on through to STORE(15) corresponding to the variable U.

Common Block Records and Characters

You can name records within a COMMON block. Because the storage requirements of records are machine-
dependent, the size of a COMMON block containing records may vary between machines. Note that this may
also affect subsequent equivalence associations to variables within COMMON blocks that contain records.

Both character and non-character data may reside in one COMMON block. Data is aligned within the COMMON
block in order to conform to machine-dependent alignment requirements.

Blank COMMON is always saved. Blank COMMON may be data initialized.

See Also

“SEQUENCE” and the “SEQUENCE ” directive.

Syntax Extension — dynamic COMMON

A dynamic, or allocatable, COMMON block is a common block whose storage is not allocated until an explicit
ALLOCATE statement is executed. PGF77 supports dynamic COMMON blocks, while PGF95 and PGHPF do not.

If the ALLOCATABLE attribute is present, all named COMMON blocks appearing in the COMMON statement are
marked as allocatable. Like a normal COMMON statement, the name of an allocatable COMMON block may

50

Chapter 3. Fortran Statements

appear in more than one COMMON statement. Note that the ALLOCATABLE attribute need not appear in every
COMMON statement.

The following restrictions apply to the dynamic COMMON statement:

¢ Before members of an allocatable COMMON block can be referenced, the common block must have been
explicitly allocated using the ALLOCATE statement.

e The data in an allocatable common block cannot be initialized.
¢ The memory used for an allocatable common block may be freed using the DEALLOCATE statement.

e If 2 SUBPROGRAM declares a COMMON block to be allocatable, all other subprograms containing
COMMON statements of the same COMMON block must also declare the COMMON to be allocatable.

Example (dynamic COMMON)

COVMON, ALLOCATABLE /ALL1/ A, B, /ALL2/ AA
BB

COWDON / STAT/ D, /ALL1l/ C

This declares the following variables:

ALL1
is an allocatable COMMON block whose members are A, B, and C.

ALL2
is an allocatable COMMON block whose members are AA, and BB.

STAT
is a statically-allocated COMMON block whose only member is D.

A reference to a member of an allocatable COMMON block appears in a Fortran statement just like 2 member
of a normal (static) COMMON block. No special syntax is required to access members of allocatable common
blocks. For example, using the above declarations, the following is a valid pgf77 statement:

AA =B * D

COMPLEX

The COMPLEX statement establishes the data type of a variable by explicitly attaching the name of a variable to
a complex data type. This overrides the data typing implied by the initial letter of a symbolic name.

F90

Syntax

The syntax for COMPLEX has two forms, the standard Fortran form and the PGI extended form. This section
describes both syntax forms.

COWLEX [([KIND =] ki nd-val ue
) 1 [, attribute-list ::] entity-list

51

CONTAINS

COMPLEX permits a KIND specification. Refer to the Fortran 95 Handbook for more syntax details.

attribute-list
is the list of attributes for the character variable.
entity-list
is the list of defined entities.
Syntax Extension

COWPLEX nane [*n] [dinmensions] [/clist/] [,
nane] [/clist/] ...

name
is the symbolic name of a variable, array, or an array declarator (see the DIMENSION statement below for
an explanation of array declarators).

clist
is a list of constants that initialize the data, as in a DATA statement.

Description

COMPLEX statements may be used to dimension arrays explicitly in the same way as the DIMENSION statement.
COMPLEX statements must not be labeled.

The default size of a COMPLEX variable is 8 bytes. With the -r8 option, the default size of a COMPLEX variable is
16 bytes.

Note

The data type of a symbol may be explicitly declared only once. It is established by type declaration
statement, IMPLICIT statement or by predefined typing rules. Explicit declaration of a type overrides
any implicit declaration. An IMPLICIT statement overrides predefined typing rules.

Example

COVPLEX CURRENT
COWPLEX DI MENSI ON(8) :: CONV1, FLUX1

See Also

“DOUBLE COMPLEX”

CONTAINS

The CONTAINS statement precedes a subprogram, a function or subroutine, that is defined inside 2 main
program, external subprogram, or module subprogram (internal subprogram). The CONTAINS statement is a
flag indicating the presence of a subroutine or function definition. An internal subprogram defines a scope for
the internal subprogram's labels and names. Scoping is defined by use and host scoping rules within scoping
units. Scoping units have the following precedence for names:

52

Chapter 3. Fortran Statements

e A derived-type definition.
e A procedure interface body.

* A program unit or a subprogram, excluding contained subprograms.

F90

Syntax

SUBROUTI NE X
INTEGER H, |

CONTAI NS
SUBRQUTI NE Y
I NTEGER |
I =1 +H

END SUBROUTI NE Y
END SUBROUTI NE X

Type
Non-executable
See Also

“MODULE”

CONTINUE

The CONTINUE statement passes control to the next statement. It is supplied mainly to overcome the problem
that transfer of control statements are not allowed to terminate a DO loop.

F77

Syntax

CONTI NUE

Example
DO 100 I = 1,10
SUM = SUM + ARRAY (1)
I F(SUM . GE. 1000. 0) GOTO 200

100 CONTI NUE
200 ...

See Also

“GOTO (Computed)”, “GOTO (Unconditional)”

53

CYCLE

CYCLE

The CYCLE statement interrupts a DO construct execution and continues with the next iteration of the loop.

F90

Syntax

CYCLE [do- const ruct - nane]

Example

DO

IF (A(l).EQ0) CYCLE
B=100/ A(1)

IF (B.EQ5) EXIT
END DO

See Also

“EXIT”, “DO (Iterative)”

DATA

The DATA statement assigns initial values to variables before execution.

F77

Syntax

DATA vlist/dlist/[[, Jvlist/dlist/]...

vlist
is a list of variable names, array element names or array names separated by commas.

dlist
is a list of constants or PARAMETER constants, separated by commas, corresponding to elements in the
vlist. An array name in the vlist demands that dlist constants be supplied to fill every element of the array.

Repetition of a constant is provided by using the form:

n*const ant - val ue

a positive integer, is the repetition count.

Example

REAL A, B, C(3), D(2)
DATA A, B, C(1), D/1.0, 2.0, 3.0, 2*4.0/

This performs the following initialization:

54

Chapter 3. Fortran Statements

M =

90>
e
Eal SR
ooo

D(2)
DEALLOCATE

The DEALLOCATE statement causes the memory allocated for each pointer-based variable or allocatable array
that appears in the statement to be deallocated (freed). Deallocate also deallocates storage for deferred-shape
arrays.

F77

Syntax
DEALLOCATE (al l ocate-object-list [, STAT= var |)

Where:

allocate-object-list
is a variable name or a structure component.

al
is a pointer-based variable or the name of an allocatable COMMON block enclosed in slashes.

var is
the status indicator, an integer variable, integer array element or an integer member of a structure.

Description

An attempt to deallocate a pointer-based variable or an allocatable COMMON block which was not created by
an ALLOCATE statement results in an error condition.

If the specifier STAT= is present, successful execution of the statement causes var to be defined with the value
of zero. If an error occurs during the execution of the statement and the specifier STAT= is present, the status
variable is defined to have the integer value one. If an error occurs and the specifier STAT= is not present,
program execution is terminated.

Examples

REAL, ALLOCATABLE :: X(:,:)
ALLOCATE (X(10,2))

X=0

DEALLCCATE (X)

COWON P, N, M
PO NTER (P, A(N, M)

COWON, ALLOCATABLE /ALL/ X(10), Y
ALLOCATE (/ALL/, A, STAT=IS)
PRINT *, 1S

X(5) = A(2, 1)

DEALLOCATE (A)

99

DECODE

DEALLCOCATE (A, STAT=IS)
PRINT *, 'should be 1', IS
DEALLOCATE (/ALL/)

DECODE

The DECODE statement transfers data between variables or arrays in internal storage and translates that data
from character form to internal form, according to format specifiers. Similar results can be accomplished
using internal files with formatted sequential READ statements.

F77 extension

Syntax

DECODE (¢, f, b [,IOSTAT=io0s] [,
ERR= errs]) [list]

c
is an integer expression specifying the number of bytes involved in translation.

f
is the format-specifier.

b
is a scalar or array reference for the buffer area containing formatted data (characters).

ios
is an integer scalar memory reference which is the input/output status specifier: if this is specified ios
becomes defined with zero if no error condition exists or a positive integer when there is an error
condition.

errs

an error specifier which takes the form of a statement label of an executable statement in the same
program unit. If an error condition occurs execution continues with the statement specified by errs.

list
is a list of input items.

Non-character Format-specifier

56

If a format-specifier is a variable which is neither CHARACTER nor a simple INTEGER variable, the compiler
accepts it and treats it as if the contents were character. For example, below sum is treated as a format
descriptor:

real sum
sum = 4h()
accept sum

and is roughly equivalent to
character*4 ch

ch ="()
accept ch

Chapter 3. Fortran Statements

See Also

HREADH, “PRINTN

DIMENSION

The DIMENSION statement defines the number of dimensions in an array and the number of elements in each
dimension.

F90

Syntax

DIMENSION [::] array-name (array-spec)

[, array-nanme (array-spec)] ...

DI MENSI ON array-nanme ([l b:Jub[,[Ib:]Jub]...)
[,name([I b:Jub[,[Ib:Jub]...)]

array-name
is the symbolic name of an array.

array-spec is
a valid array specification, either explicit-shape, assumed-shape, deferred-shape, or assumed size. For
more information on array specifications, refer to Chapter 4, “Fortran Arrays”.

Ib:ub
is a dimension declarator specifying the bounds for a dimension (the lower bound Ib and the upper
bound ub). Ib and ub must be integers with ub greater than Ib. The lower bound Ib is optional; if it is not
specified, it is taken to be 1.

Description

DIMENSION can be used in a subroutine to establish an argument as an array, and in this case the declarator
can use expressions formed from integer variables and constants to establish the dimensions (adjustable
arrays). Note however that these integer variables must be either arguments or declared in COMMON; they
cannot be local. In this case the function of DIMENSION is merely to supply a2 mapping of the argument to the
subroutine code, and not to allocate storage.

The default typing of the array in a DIMENSION statement is defined by the initial letter of the array name in

the same way as variable names. The letters IJ,K.L,M and N imply that the array is of INTEGER type and an
array with a name starting with any of the letters A to H and O to Z will be of type REAL, unless overridden by
an IMPLICIT or type declaration statement. Arrays may appear in type declaration and COMMON statements but
the array name can appear in only one array declaration.

DIMENSION statements must not be labeled.

Examples
DI MENSI ON ARRAY1(3:10), ARRAY2(3, -2:2)

This specifies ARRAY1 as a vector having eight elements with the lower bound of 3 and the upper bound of 10.

o7

DO (Iterative)

ARRAY?2 as a matrix of two dimensions having fifteen elements. The first dimension has three elements and the
second has five with bounds from -2 to 2.

CHARACTER B(0: 20) * 4

This example sets up an array B with 21 character elements each having a length of four characters. Note that
the character array has been dimensioned in a type declaration statement and therefore cannot subsequently
appear in 2 DIMENSION statement.

DO (lterative)

F90

The DO statement introduces an iterative loop and specifies the loop control index and parameters. There

are two forms of DO statement, block and non-block (FORTRAN 77 style). There are two forms of block do
statements, DO iterative and DO WHILE. Refer to the description of DO WHILE for more details on this form of
DO statement.

Syntax
DO (block)

[do-construct-name :] DO [l abel] [index=el,e2 [,e3]]
[executi on-part-construct]
[l abel] END DO

label
labels the end do.

index
is the name of a variable called the DO variable.

el
is an expression which yields an initial value for i.

e
is an expression which yields a final value for i.

e3
is an optional expression yielding a value specifying the increment value for i. The default for e3 is 1.

DO (non-block)

58

DO | abel [,] index = el, e2 [,
e3]

label

labels the last executable statement in the loop (this must not be a transfer of control).

index
is the name of a variable called the DO variable.

el
is an expression which yields an initial value for i.

Chapter 3. Fortran Statements

e2
is an expression which yields a final value for i.

e3
is an optional expression yielding a value specifying the increment value for i. The default for e3 is 1.

Description

The DO loop consists of all the executable statements after the specifying DO statement up to and including the
labeled statement, called the terminal statement. The label is optional. If omitted, the terminal statement of the
loop is an END DO statement.

Before execution of a DO loop, an iteration count is initialized for the loop. This value is the number of times
the DO loop is executed, and is:

I NT((e2-el+e3)/e3)
If the value obtained is negative or zero the loop is not executed.

The DO loop is executed first with i taking the value el, then the value (el+e3), then the value (el+e3+e3),
etc.

It is possible to jump out of 2 DO loop and jump back in, as long as the do index variable has not been
adjusted. In a nested DO loop, it is legal to transfer control from an inner loop to an outer loop. It is illegal,
however, to transfer into a nested loop from outside the loop.

Syntax Extension

Nested DO loops may share the same labeled terminal statement if required. They may not share an END DO
statement.

Examples

DO 100 J = -10, 10
DO 100 | = -5,5

100 SUM = SUM + ARRAY (I, J)
DO

A(l)=A(1)+1

IF (A(1).EQ4) EXIT

END DO

DO 1=1, N

A(l)=A(1)+1

END DO

See Also

“DO WHILE”, “END DO ”

DO WHILE

The DO WHILE statement introduces a logical do loop and specifies the loop control expression.

The DO WHILE statement executes for as long as the logical expression continues to be true when tested at the
beginning of each iteration. If expression is false, control transfers to the statement following the loop.

59

DOUBLE COMPLEX

F77

Syntax

DO [l abel[,]] WHI LE
expr essi on

The end of the loop is specified in the same way as for an iterative loop, either with a labeled statement or an
END DO.

label
labels the last executable statement in the loop (this must not be a transfer of control).

expression
is a logical expression and label.

Description

The logical expression is evaluated. If it is .FALSE., the loop is not entered. If it is .TRUE., the loop is
executed once. Then logical expression is evaluated again, and the cycle is repeated until the expression
evaluates .FALSE.

Example

DO WHI LE (K == 0)
SUM = SUM + X
END DO

See Also

“DO (Iterative)”, “END DO ”

DOUBLE COMPLEX

The DOUBLE COMPLEX statement establishes the data type of a variable by explicitly attaching the name of a
variable to a double complex data type. This overrides the data typing implied by the initial letter of a symbolic
name.

F77 extension

Syntax

The syntax for DOUBLE COMPLEX has two forms, a standard Fortran 90/95 entity based form, and the PGI
extended form. This section describes both syntax forms.

DOUBLE COWPLEX [, attribute-list ::] entity-Ilist

attribute-list
is the list of attributes for the double complex variable.

entity-list
is the list of defined entities.

60

Chapter 3. Fortran Statements

Syntax Extension
DOUBLE COWPLEX nane [/clist/] [,name] [/clist/]...

name
is the symbolic name of a variable, array, or an array declarator (see the DIMENSION statement for an
explanation of array declarators).

clist
is a list of constants that initialize the data, as in a DATA statement.

Description

Type declaration statements may be used to dimension arrays explicitly in the same way as the DIMENSION
statement. Type declaration statements must not be labeled. Note: The data type of a symbol may be explicitly
declared only once. It is established by type declaration statement, IMPLICIT statement or by predefined
typing rules. Explicit declaration of a type overrides any implicit declaration. An IMPLICIT statement overrides
predefined typing rules.

The default size of a DOUBLE COMPLEX variable is 16 bytes. With the -r8 option, the default size of a DOUBLE
COMPLEX variable is also 16 bytes.

Examples
DOUBLE COVPLEX CURRENT, NEXT

See Also

“COMPLEX”

DOUBLE PRECISION

The DOUBLE PRECISION statement establishes the data type of a variable by explicitly attaching the name of a
variable to a double precision data type. This overrides the data typing implied by the initial letter of a symbolic
name.

F90
Syntax

The syntax for DOUBLE PRECISION has two forms, a standard Fortran 90/95 entity based form, and the PGI
extended form. This section describes both syntax forms.
DOUBLE PRECI SION [, attribute-list ::] entity-list

attribute-list
is the list of attributes for the double precision variable.

entity-list
is the list of defined entities.

Syntax Extension
DOUBLE PRECI SION nane [/clist/] [,

61

ELSE

nane] [/clist/]...

name
is the symbolic name of a variable, array, or an array declarator (see the DIMENSION statement for an
explanation of array declarators).

clist
is a list of constants that initialize the data, as in a DATA statement.

Description

Type declaration statements may be used to dimension arrays explicitly in the same way as the DIMENSION
statement. Type declaration statements must not be labeled. Note: The data type of a symbol may be explicitly
declared only once. It is established by type declaration statement, IMPLICIT statement or by predefined
typing rules. Explicit declaration of a type overrides any implicit declaration. An IMPLICIT statement overrides
predefined typing rules.

The default size of a DOUBLE PRECISION variable is 8 bytes, with or without the - r 8 option.

Example
DOUBLE PRECI SI ON PLONG

ELSE

The ELSE statement begins an ELSE block of an IF block and encloses a series of statements that are
conditionally executed.

F77

Syntax

I F | ogi cal expression THEN
st at enent s

ELSE | F | ogi cal expression THEN
st at enent s

ELSE
st at enent s

END | F

The ELSE section is optional and may occur only once. Other IF blocks may be nested within the statements
section of an ELSE block.

Example
IF (1.LT.15) THEN
M= 4
ELSE

M=5
END | F

See Also

“ELSE IF”, “END IF”, “END IF”

62

Chapter 3. Fortran Statements

ELSE IF

The ELSE IF statement begins an ELSE IF block of an IF block series and encloses statements that are
conditionally executed.

F77

Syntax

| F | ogi cal expression THEN
st at ement s

ELSE | F | ogi cal expression THEN
st at ement s

ELSE
st at ement s

END | F

The ELSE IF section is optional and may be repeated any number of times. Other IF blocks may be nested
within the statements section of an ELSE IF block.

Example

IF (I.GT.70) THEN

Me1

ELSE IF (1.LT.5) THEN
Me2

ELSE IF (1.LT.16) THEN
ME3

END | F

See Also

“ELSE”, “END IF”, “END IF”

ELSE WHERE

The ELSE WHERE portion of the WHERE ELSE WHERE construct permits conditional masked assignments to
the elements of an array or to a scalar, zero-dimensional array.

F90

Syntax

WHERE (| ogi cal - array-expr)
array-assi gnnent s

[ELSE WHERE
array-assi gnnents |

END WHERE

Description

The WHERE statement and the WHERE ELSE WHERE construct permit masked assignments to the elements of
an array or to a scalar, zero dimensional array. The ELSE WHERE portion of the WHERE ELSE WHERE construct
allows you to conditionally mark assignments to elements of an array or to a scalar, zero-dimentional array.

63

ENCODE

Examples

| NTEGER SCORE(30)
CHARACTER GRADE(30)
WHERE (SCORE > 60)
GRADE = ' P
ELSE WHERE
GRADE = ' F
END WHERE

See Also

“ELSE”, “END IF”, “END WHERE”, “WHERE”

ENCODE

The ENCODE statement transfers data between variables or arrays in internal storage and translates that data
from internal to character form, according to format specifiers. Similar results can be accomplished using
internal files with formatted sequential WRITE statements.

F77 extension

Syntax
ENCODE (c, f,b[,| OSTAT=i os] [,ERR=errs])[list]

c
is an integer expression specifying the number of bytes involved in translation.

is the format-specifier.

is a scalar or array reference for the buffer area receiving formatted data (characters).
ios
is an integer scalar memory reference which is the input/output status specifier: if this is included,

ios becomes defined with zero if no error condition exists or a positive integer when there is an error
condition.

errs
an error specifier which takes the form of a statement label of an executable statement in the same
program. If an error condition occurs execution continues with the statement specified by errs.
list
a list of output items.

Non-character Format-specifier

If a format-specifier is a variable which is neither CHARACTER nor a simple INTEGER variable, the compiler
accepts it and treats it as if the contents were character. For example, below sum is treated as a format
descriptor:

real sum

64

Chapter 3. Fortran Statements

sum = 4h()
accept sum

and is roughly equivalent to

character*4
ch

ch =" ()’
accept ch

See Also

“READ”, HPRINTH

END

The END statement terminates a segment of a Fortran program. There are several varieties of the END
statement, each described in the sections that follow.

F77

Syntax

END

Description

The END statement terminates a programmed module. The END statement has the same effect as a RETURN
statement in 2 SUBROUTINE or FUNCTION, or the effect of a STOP statement in 2 PROGRAM program unit. END
may be the last statement in a compilation or it may be followed by a new program unit or module.

END DO

The END DO statement terminates a DO or DO WHILE loop.
F77

Syntax
END DO
Description

The END DO statement terminates an indexed DO or DO WHILE statement which does not contain a terminal-
statement label.

The END DO statement may also be used as a labeled terminal statement if the DO or DO WHILE statement
contains a terminal-statement label.

See Also

“DO (Iterative)”, “DO WHILE”

65

END FILE

END FILE

The END FILE statement writes an endfile record to the files.
F77

Syntax

END FILE u
END FILE ([UNIT=]u, [,|COSTAT =ios] [,ERR=errs])

u
is the external unit specifier where u is an integer.

I0STAT=i0s
an integer scalar memory reference which is the input/output specifier: if this is included in list, ios
becomes defined with zero if no error condition exists or a positive integer when there is an error
condition.

ERR=errs
an error specifier which takes the form of a statement label of an executable statement in the same
program. If an error condition occurs execution continues with the statement specified by errs.

Description

When an END FILE statement is executed, an endfile record is written to the file as the next record. The file is
then positioned after the endfile record. Note that only records written prior to the endfile record can be read
later.

A BACKSPACE or REWIND statement must be used to reposition the file after an END FILE statement prior to the
execution of any data transfer statement. A file is created if there is an END FILE statement for a file connected
but not in existence.

For example:

END FI LE(20)
END FI LE(UNI T=34, | OSTAT=I CERR, ERR=140)

END IF

The END IF statement terminates an IF ELSE or ELSE IF block.

F77
Syntax

END | F
Description

The END IF statement terminates an IF block. Earlier in the same subprogram, there must be a matching block
IF statement at the same IF level. For more information, refer to the IF statement.

66

Example

IF (I.GT.70) THEN

Me1

ELSE IF (1.LT.5) THEN
Me2

ELSE IF (1.LT.16) THEN
ME3

END | F

END MAP

The END MAP statement terminates 2 MAP declaration.
F77 extension

Syntax

END MAP

Description

For more information, refer to the “MAP” statement.

Example

MAP | Structure for a custoner
| NTEGER*4 acct _cust

REAL*4 credit_amt

CHARACTER*8 due_dat e

END VAP

END SELECT

The END SELECT statement terminates a SELECT declaration.
F77

Syntax

END SELECT

Description

For more information, refer to the “SELECT CASE” statement.

Example

SELECT CASE (FLAG)
CASE (1, 2, 3)
TYPE=1

CASE (4:6)
TYPE=2

CASE DEFAULT
TYPE=0

END SELECT

Chapter 3. Fortran Statements

67

END STRUCTURE

END STRUCTURE

The END STRUCTURE statement terminates a STRUCTURE declaration.
F77 extension

Syntax

END STRUCTURE
Description
For more information, refer to the “STRUCTURE” statement.

END UNION

The END UNION statement terminates a UNION declaration.
F77 extension

Syntax

END UNI ON
Description

For more information, refer to the “UNION” statement.
END WHERE

The END WHERE statement terminates 2 WHERE ELSE WHERE construct.
F77 extension

Syntax

END WHERE

Description

For more information, refer to the “WHERE” statement.

ENTRY

The ENTRY statement allows a subroutine or function to have more than one entry point.

F77
Syntax

ENTRY nane [(variable, variable...)]

name
is the symbolic name, or entry name, by which the subroutine or function may be referenced.

68

Chapter 3. Fortran Statements

variable
is 2 dummy argument. A dummy argument may be a variable name, array name, dummy procedure or, if
the ENTRY is in a subroutine, an alternate return argument indicated by an asterisk. If there are no dummy
arguments, name may optionally be followed by (). There may be more than one ENTRY statement within a
subroutine or function, but they must not appear within a block IF or DO loop.

Description

The ENTRY statement provides a method to provide several procedures in a single subprogram, such as
additional Function statements in a Function subprogram or additional Subroutine statements in a subroutine
subprogram. An ENTRY statement is called in exactly the same manner as a subroutine or function, depending
on in which type of construct it appears

There are a number of rules that govern ENTRY statements:

¢ The name of an ENTRY must not be used as a dummy argument in a FUNCTION, SUBROUTINE or ENTRY
statement, nor may it appear in an EXTERNAL statement.

e Within a function a variable name which is the same as the entry name may not appear in any statement that
precedes the ENTRY statement, except in a type statement.

e If name is of type character the names of each entry in the function and the function name must be of type
character. If the function name or any entry name has a length of (*) all such names must have a length of
(*); otherwise they must all have a length specification of the same integer value.

* A name which is used as a dummy argument must not appear in an executable statement preceding the
ENTRY statement unless it also appears in a FUNCTION, SUBROUTINE or ENTRY statement that precedes the
executable statement. Neither must it appear in the expression of a statement function unless the name is
also a dummy argument of the statement function, or appears in a FUNCTION or SUBROUTINE statement, or
in an ENTRY statement that precedes the statement function statement.

e If a dummy argument appears in an executable statement, execution of that statement is only permitted
during the execution of a reference to the function or subroutine if the dummy argument appears in the
dummy argument list of the procedure name referenced.

e If name is of type character the names of each entry in the function and the function name must be of type
character. If the function name or any entry name has a length of (*) all such names must have a length of
(*); otherwise they must all have a length specification of the same integer value.

* A name which is used as a dummy argument must not appear in an executable statement preceding the
ENTRY statement unless it also appears in a FUNCTION, SUBROUTINE or ENTRY statement that precedes the
executable statement. Neither must it appear in the expression of a statement function unless the name is
also 2 dummy argument of the statement function, or appears in 2 FUNCTION or SUBROUTINE statement, or
in an ENTRY statement that precedes the statement function statement.

e If a dummy argument appears in an executable statement, execution of that statement is only permitted
during the execution of a reference to the function or subroutine if the dummy argument appears in the
dummy argument list of the procedure name referenced.

e When a subroutine or function is called using the entry name, execution begins with the statement
immediately following the ENTRY statement. If a function entry has no dummy arguments the function must

69

EQUIVALENCE

be referenced by name() but a subroutine entry without dummy arguments may be called with or without
the parentheses after the entry name.

* Recursive referencing is not allowed.

e The order, type, number, and names of dummy arguments in an ENTRY statement can be different from
those used in the FUNCTION, SUBROUTINE or other ENTRY statements in the same program unit but each
reference must use an actual argument list which agrees in order, type, and number with the dummy
argument list of the corresponding FUNCTION, SUBROUTINE or ENTRY statement. When a subroutine name
or an alternate return specifier is used as an actual argument, there is no need to match the type.

¢ Entry names within 2 FUNCTION subprogram need not be of the same data type as the function name, but
they all must be consistent within one of the following groups of data types:

BYTE, | NTEGER*2, | NTEGER*4, LOG CAL*1
LOG CAL*2, LOGQ CAL*4, REAL*4, REAL*8
COVPLEX* 8
COWPLEX* 16
CHARACTER

e If the function is of character data type, all entry names must also have the same length specification as that
of the function.

Example

FUNCTI ON SUM TALL, SHORT, TI NY)

SUMETALL- (SHORT+TI NY)
RETURN
ENTRY SUML(X, LONG, TALL, W DE, NARROW

SUML=(X* LONG) +(TALL* W DE) +NARROW
RETURN
ENTRY SUMR(SHORT, SMALL, TALL, W DE)

SUMR=(TALL- SMALL) +(W DE- SHORT)
RETURN
END

When the calling program calls the function SUM it can do so in one of three ways depending on which ENTRY
point is desired.

For example, for the following call, the ENTRY point is SUM2.
Z=SUM2(LI TTLE, SMALL, BI G, HUGE)

As another example, for the call that follows, the ENTRY point is SUM.

Z=SUM T, X, Y)

EQUIVALENCE

70

The EQUIVALENCE statement allows two or more named regions of data memory to share the same start
address. Arrays that are subject to the EQUIVALENCE statement in HPF are treated as sequential and any attempt
at non-replicated data distribution or mapping is ignored for such arrays.

Chapter 3. Fortran Statements

F77
Syntax

EQUI VALENCE (1ist)[, (list)...]
list
is a set of identifiers (variables, arrays or array elements) which are to be associated with the same
address in data memory. The items in a list are separated by commas, and there must be at least two

items in each list. When an array element is chosen, the subscripts must be integer constants or integer
PARAMETER constants.

Description

You use the EQUIVALENCE statement to make a single region of data memory have different types, such as
treating the imaginary part of a complex number as a real value. You can also use this statement to make
arrays overlap, so that the same region of storage can be dimensioned in several different ways. Records and
record fields cannot be specified in EQUIVALENCE statements.

Syntax Extension

An array element may be identified with a single subscript in an EQUIVALENCE statement even though the
array is defined to be a multidimensional array. Further, EQUIVALENCE of character and non-character data is
allowed as long as misalignment of non-character data does not occur.

Example

COVPLEX NUM
REAL QUER(2)
EQUI VALENCE (NUM QUER(1))

In the preceding example, QWER(1) is the real part of NUM and QWER(2) is the imaginary part.

Note

EQUIVALENCE statements are illegal if there is any attempt to make a mapping of data memory
inconsistent with its linear layout.

EXIT

The EXIT statement interrupts a DO construct execution and continues with the next statement after the loop.
F90
Syntax

EXIT [do- construct - nane]

Example

DO
IF (A(l).EQ0) CYCLE
B=100/ A(1)

71

EXTERNAL

IF (B.EQ5) EXIT
END DO

See Also

“CYCLE”, “DO (Iterative)”

EXTERNAL

The EXTERNAL statement identifies a symbolic name as an external or dummy procedure. This procedure can
then be used as an actual argument.

F77
Syntax

EXTERNAL proc [, proc]..

proc
is the name of an external procedure, dummy procedure or block data program unit. When an external or
dummy procedure name is used as an actual argument in a program unit, it must appear in an EXTERNAL
statement in that program unit.

Description

If an intrinsic function appears in an EXTERNAL statement an intrinsic function of the same name cannot then
be referenced in the program unit. A symbolic name can appear only once in all the EXTERNAL statements of a
program unit.

EXTRINSIC

The EXTRINSIC statement identifies a symbolic name as an external or dummy procedure that is written in
some language other than HPE

HPF
Syntax

EXTRI NSI C (extrinsic-ki nd-keyword) procedure nane

extrinsic-kind-keyword
is the name of an extrinsic interface supported. The currently supported value is are HPF_LOCAL, and
F77_LOCAL.

procedure name
is either a subroutine-statement or a function-statement defining a name for an external and extrinsic
procedure.

Description

The EXTRINSIC procedure can then be used as an actual argument once it is defined. The call to an EXTRINSIC
procedure should be semantically equivalent to the execution of an HPF procedure in that on return from the

72

Chapter 3. Fortran Statements

procedure, all processors are still available, and all data and templates will have the same distribution and
alignment as when the procedure was called.

See Also

For a complete description of the PGHPF extrinsic facility, along with examples, refer to the PGHPF User’s
Guide available online at www.pgroup.com/doc/pghpf_ug/hpfug.htm.

FORALL
The FORALL statement and the FORALL construct provide a parallel mechanism to assign values to the elements
of an array.

F95

Syntax
FORALL (forall-triplet-spec-list [, scal ar-mask-expr])

foral |l -assi gnment

or

FORALL (forall-triplet-spec-list [, scal ar-nmask-expr])
foral |l - body

[forall-body]...

END FORALL

where forall-body is one of:

forall -assi gnment
wher e- st at enent
wher e- const r uct
forall -statenent
forall -construct

Description

The FORALL statement is computed in four stages:

1. Compute the valid set of index values.

Compute the active set of index values, taking into consideration the scalar-mask-expr. If no scalar-mask-
expr is present, the valid set is the same as the active set of index values.

Third, for each index value, the right-hand side of the body of the FORALL is computed. Finally, the right-
hand side is assigned to the left-hand side, for each index value.

2. Compute the valid set of index values.

Compute the active set of index values, taking into consideration the scalar-mask-expr. If no scalar-mask-
expr is present, the valid set is the same as the active set of index values.

3. For each FORALL statement, in order, computer the right hand side of the assignment or the expression for
each active value.

For each index value, the right-hand side of the body of the FORALL is computed.

73

FORMAT

4. For each FORALL assignment, the right-hand side is assigned to the left-hand side for each active index
value.

Examples

FORALL (I
FORALL (I
FORALL (I
ACl) = D(1)

B(l1) = C(1) * 2

END FORALL FORALL (I = 1:5) WHERE (A(l,:) /= 0.0)

1:3) A(l) = B(I)
1:L, A(l) == 0.0) A(l) = R(I)
1: 3)

A(l,:) = A(1-1,:) + A(1+1,:) ELSEWHERE
B(l,:) = A(6-1,:) END WHERE END FORALL FORALL (I = 1:5)
WHERE

(A(l,:) /I=0.0) ACl,:) =
ELSEWHERE B(1,:) = A(6-1,
FORALL (I = 1:5)

VWHERE (A(l,:) /= 0.0)
A(Cl,:) = A(I-1,:) + A(I+1,:)
EL SEWHERE

B(l,:) = A(6-1,:)

END WHERE

END FORALL

FORMAT

The FORMAT statement specifies format requirements for input or output.

A(l-1,:) + A(l+1,:)
:) END WHERE END FORALL

F77
Syntax

| abel FORMAT (list-itens)
list-items
can be any of the following, separated by commas:

* Repeatable editor commands which may or may not be preceded by an integer constant that defines the
number of repeats.

¢ Nonrepeatable editor commands.

* A format specification list optionally preceded by an integer constant that defines the number of
repeats.

Each action of format control depends on the next edit code and the next item in the input/output list where
one is used. If an input/output list contains at least one item there must be at least one repeatable edit code

in the format specification. An empty format specification () can only be used if no list items are specified; in
such a case one input record is skipped or an output record containing no characters is written. Unless the
edit code or the format list is preceded by a repeat specification, a format specification is interpreted from left
to right. Where a repeat specification is used the appropriate item is repeated the required number of times.

Description
For details on using the FORMAT statement, refer to Chapter 5, “Input and Output’.

74

Chapter 3. Fortran Statements

Examples

WRI TE (6, 90) NPAGE
90 FORMAT(' 1PAGE NUMBER ', | 2, 16X, ' SALES REPORT, Cont.')

produces:
PAGE NUMBER 10 SALES REPCRT, Cont.

The following example shows use of the tabulation specifier T:

PRI NT 25
25 FORMAT (T41,' COLUWN 2',T21,' COLUW 1')

produces:
COLUWN 1 COLUWN 2

The following example shows use of formating with an array:
DI MENSI ON A(6)

DO10 | = 1,6
10 A(l) = 25.
TYPE 100, A

100 FORMAT(' ', F8.2,2PF8.2,F8.2) !
C ! gives single spacing
produces:

25. 00
2500. 00 2500. 00
2500. 00 2500. 00 2500. 00

Note

The effect of the scale factor continues until another scale factor is used.

Non-character Format-specifier

If a format-specifier is a variable which is neither CHARACTER nor a simple INTEGER variable, the compiler
accepts it and treats it as if the contents were character. In the following example, sum is treated as a format
descriptor:

real sum
sum = 4h()
accept sum

and is roughly equivalent to

character*4
ch

ch =" ()’
accept ch

See Also
HREADH, “PRINT”

FUNCTION

The FUNCTION statement introduces a program unit; the statements that follow all apply to the function itself
and are laid out in the same order as those in a PROGRAM program unit.

75

FUNCTION

F77
Syntax

[function-prefix] FUNCTION nanme [*n] ([argument [,argunent]...])

iEND [FUNCTI ON [function-nang]]

function-prefix

is one of:

[type-spec] RECURSIVE

[RECURSIVE] type-spec

where type-spec is a valid type specification. Type will explicitly apply a type to the function. If the function
is not explicitly typed then the function type is taken from the initial letter and is dictated by the usual
default.

name

is the name of the function and must be unique among all the program unit names in the program. name
must not clash with any local, COMMON or PARAMETER names.

*n

is the optional length of the data type.
argument
is a symbolic name, starting with a letter and containing only letters and digits. An argument can be of type
REAL, INTEGER, DOUBLE PRECISION, CHARACTER, LOGICAL, COMPLEX, or BYTE, and so on.
Description

FUNCTION statements and names apply only to the function, except for subroutine or function references and

the names of COMMON blocks. These rules govern the FUNCTION statement:

e The function must be terminated by an END statement.

* A function produces a result; this allows a function reference to appear in an expression, where the result is
assumed to replace the actual reference.

e The symbolic name of the function must appear as a variable in the function, unless the RESULT keyword is
used. The value of this variable, on exit from the function, is the result of the function. The function result is
undefined if the variable has not been defined.

e The type of a FUNCTION refers to the type of its result.

e Recursion is allowed if you use the —M ecur si ve option on the command-line or if the RECURSIVE prefix
is included in the function definition.

Examples

FUNCTI ON FRED(A, B, C)

76

Chapter 3. Fortran Statements

REAL X

END

FUNCTI ON EMPTY() ! Note parentheses
END

PROGRAM FUNCALL

S| DE=TOTAL(A, B, O

END

FUNCTI ON TOTAL(X, Y, Z)
END
FUNCTI ON AORB(A, B)
IF(A-B)1,2, 3

1 ACRB = A
RETURN

2 ACRB = B
RETURN

3 ARB=A+B
RETURN
END

See Also

“PURE”, “RECURSIVE”, “RETURN”

GOTO (Assigned)

(Obsolescent) The assigned GOTO statement transfers control so that the statement identified by the statement
label is executed next. Internal procedures can be used in place of the assign statement used with an assigned
GO TO.

F77

Syntax

GOTO i nteger-variabl e-name[[,] (list)]

integer-variable-name
must be defined with the value of a statement label of an executable statement within the same program
unit. This type of definition can only be done by the ASSIGN statement.

list
consists of one or more statement labels attached to executable statements in the same program unit. If a
list of statement labels is present, the statement label assigned to the integer variable must be in that list.
Examples
ASSI GN 50 TO K
GO TO K(50, 90)
90 G=D**5

50 F=R/' T

"7

GOTO (Computed)

GOTO (Computed)

The computed GOTO statement allows transfer of control to one of a list of labels according to the value of an
expression.

F77

Syntax

GOTO (list) [,] expression

list
is a list of labels separated by commas.

expression
selects the label from the list to which to transfer control. Thus a value of 1 implies the first label in the
list, a value of 2 implies the second label and so on. An expression value outside the range will result in
transfer of control to the statement following the computed GOTO statement.

Example

READ *, A B
GO TO (50, 60, 70) A
WRI TE (*, 10) A B

10 FORMAT (' ', I3, F10.4, 5X, "Anust be 1, 2 or 3')
STOP

50 X=A**B | Cone here if A has the value 1

@O TO 100

60 X=(A*56)*(B/3) ! Cone here if Ais 2

@O TO 100

70 X=A*B ! Cone here if A has the value 3
100 WRI TE (*, 20) A B, X
20 FORMAT (' ', 13, F10.4, 5X, F10.4)

GOTO (Unconditional)

The GOTO statement unconditionally transfers control to the statement with the label label. The statement label
label must be declared within the code of the program unit containing the GOTO statement and must be unique
within that program unit.

F77

Syntax

GOTO | abel

label
is a statement label

Example

TOTAL=0. 0
30 READ *, X

IF (X. GE.0) THEN
TOTAL=TOTAL+X

78

Chapter 3. Fortran Statements

GOTO 30
END | F

IF (Arithmetic)

(Obsolescent) The arithmetic IF statement transfers control to one of three labeled statements. The statement
chosen depends upon the value of an arithmetic expression.

F77

Syntax
IF (arithnetic-expression) |abel-1, |abel-2, |abel-3
Control transfers to label-1, label-2 or label-3 if the result of the evaluation of the arithmetic-expression is less
than zero, equal to zero or greater than zero respectively.

Example

IF X 10, 20, 30

If X is less than zero then control is transferred to label 10. If X equals zero then control is transferred to label
20. If X is greater than zero then control is transferred to label 30.

IF (Block)

The block IF statement consists of a series of statements that are conditionally executed.
F77

Syntax

I F | ogi cal expression THEN
st at enent s

ELSE | F | ogi cal expression THEN
st at enent s

ELSE
st at enent s

END | F

The ELSE IF section is optional and may be repeated any number of times. Other IF blocks may be nested
within the statements section of an IF block or ELSE IF block.

The ELSE section is optional and may occur only once. Other IF blocks may be nested within the statements
section of an ELSE block.

Example

IF (I.GT.70) THEN
Me1

ELSE IF (1.LT.5) THEN
Me2

ELSE IF (1.LT.16) THEN
ME3

END I F

IF (I.LT.15) THEN

79

IF (Logical)

M= 4
ELSE
M=5
END | F

IF (Logical)
The logical IF statement executes or does not execute a statement based on the value of a logical expression.

Fr7
Syntax

I F (I ogi cal - expression) statenent
logical-expression

is evaluated and if it is true the statement is executed. If it is false, the statement is not executed and
control is passed to the next executable statement.

statement
can be an assignment statement, a CALL statement or a GOTO statement.

Examples

IF(N .LE. 2) GOTO 27
IF(HIGH . GT. 1000.0 .OR HIGH .LT. 0.0) H GH=1000.0

IMPLICIT

The IMPLICIT statement redefines the implied data type of symbolic names from their initial letter. Without the
use of the IMPLICIT statement all names that begin with the letters I,JK.L,M or N are assumed to be of type
integer and all names beginning with any other letters are assumed to be real.

F77

Syntax

IMPLICIT spec (a[,a]...) [,spec(a[,a]...)]
| MPLI CI' T NONE

spec

is a data type specifier.

is an alphabetic specification expressed either as a or al-a2, specifying an alphabetically ordered range of
letters.

Description
IMPLICIT statements must not be labeled.

Symbol names may begin with a dollar sign ($) or underscore (_) character, both of which are of type REAL
by default. In an IMPLICIT statement, these characters may be used in the same manner as other characters,
but they cannot be used in a range specification.

80

Chapter 3. Fortran Statements

The IMPLICIT NONE statement specifies that all symbolic names must be explicitly declared, otherwise an error
is reported. If IMPLICIT NONE is used, no other IMPLICIT can be present.

Examples

IMPLICIT REAL (L, N)
I MPLICI T | NTEGER (S, W 2)
IMPLICIT | NTEGER (A-D, $,)

INCLUDE

The INCLUDE statement directs the compiler to start reading from another file.

Note

The INCLUDE statement is used for FORTRAN 77. There is no support for VAX/VMS text libraries or the
module_name pathname qualifier that exists in the VAX/VMS version of the INCLUDE statement.

F77 extension

Syntax

I NCLUDE 'filenane [/[NQ LIST]"
I NCLUDE "“filenane [/[NJO LIST]"

The INCLUDE statement may be nested to a depth of 20 and can appear anywhere within a program unit as
long as Fortran's statement-ordering restrictions are not violated.

§ The qualifiers /LIST and /NOLIST can be used to control whether the include file is expanded in the listing
file (if generated).

Note that there is no support for VAX/VMS text libraries or the module_name pathname qualifier that exists in
the VAX/VMS version of the INCLUDE statement.Either single or double quotes may be used.

If the final component of the file pathname is /LIST or /NOLIST, the compiler will assume it is a qualifier, unless
an additional qualifier is supplied.

The filename and the /LIST or /NOLIST qualifier may be separated by blanks.
The include file is searched for in the following directories:
e Each —I directory specified on the command-line.

e The directory containing the file that contains the INCLUDE statement (the current working directory.)

o The standard include area.

Example
I NCLUDE '/ nypath/list /list’

This line includes a file named /mypath/list and expands it in the listing file, if a listing file is used.

81

INQUIRE

INQUIRE

F77

An INQUIRE statement has two forms and is used to inquire about the current properties of a particular file

or the current connections of a particular unit. INQUIRE may be executed before, during or after a file is
connected to a unit.

Syntax

82

I NQUI RE (FILE=fil ename, list)
INQUI RE ([UNI T=]unit,list)

In addition list may contain one of each of the following specifiers in any order, following the unit number if
the optional UNIT specifier keyword is not supplied.

ACCESS=acc
acc returns a character variable which is defined according to the access method for the file as either
DIRECT or SEQUENTIAL.

ACTION=acc
acc is a character variable which is defined according to the access types for the connection: READ,
WRITE, or READWRITE.

BLANK= blnk
blnk is a character variable which is defined as NULL, ZERO, or UNDEFINED. NULL means all blank
characters in numeric formatted input fields to be ignored with the exception of an all-blank field which
has a value of zero. ZERO means all blanks other than leading blanks to be treated as zeros. This specifier
must only be used when a file is connected for formatted input/output. UNDEFINED is returned if there is
no connection or if the connection is not for formatted 1/0.

DELIM= del_char del_char
is a character values which is defined as the value APOSTROPHE, QUOTE, NONE or UNDEFINED. These
values specify the character delimiter for list-directed or namelist formatted data transfer statements
according tothe value used on the corresponding OPEN statement.

DIRECT = dir_char
dir_char is a character reference which is defined as the value YES, NO, or UNKNOWN. YES means DIRECT
is one of the allowed access methods for the file. NO means DIRECT is not an allowed access method for
the file. UNKNOWN means it is not known if DIRECT is included in the allowed access methods.

ERR= errs
errs is an error specifier which returns the value of a statement label of an executable statement within the
same program. If an error condition occurs execution continues with the statement specified by errs.

EXIST= value
value is a logical variable or logical array element which becomes .TRUE. if there is a file/unit with the
name or .FALSE. otherwise.

FILE= fin
fin is a character expression whose value is the file name expression, the name of the file connected to the
specified unit.

Chapter 3. Fortran Statements

FORM= fm
fm is a character expression specifying whether the file is being connected for FORMATTED or
UNFORMATTED input/output. The default is UNFORMATTED.

FORMATTED= fmt
fmt is a character memory reference which takes the value YES if FORMATTED is one of the allowed access
methods for the file, NO if not and UNKNOWN if it is not known if FORMATTED is included.

IOSTAT = ios
ios input/output status specifier where ios is an integer reference: if this is included in list, ios is defined as
0 if no error condition occurred and a positive integer when there is an error condition.

NAME= fn
fn is a character scalar memory reference which is assigned the name of the file when the file has a name,
otherwise it is undefined

NAMED= nmd
nmd is a logical scalar memory reference which becomes .TRUE. if the file has a name, otherwise it
becomes .FALSE.

NEXTREC= nr
nr is an integer scalar memory reference which is assigned the value n+1, where n is the number of
the record read or written. It takes the value 1 if no records have been read or written. If the file is not
connected or its position is indeterminate nr is undefined.

NUMBER= num
num is an integer scalar memory reference or integer array element assigned the value of the external unit
number of the currently connected unit. It becomes undefined if no unit is connected.

OPENED= od
od is a logical scalar memory reference which becomes .TRUE. if the file/unit specified is connected
(open) and .FALSE. if the file is not connected (.FALSE.).

PAD= pad_char
pad_char is a character expression specifying whether to use blank padding. Values for pad_char are YES
or NO: yes specifies blank padding is used, no requires that input records contain all requested data.

POSITION= pos_char
pos_char is a character expression specifying the file position. Values are ASIS, REWIND or APPEND. For
a connected file, on OPEN ASIS leaves the position in the current position, REWIND rewinds the file and
APPEND places the current position at the end of the file, immediately before the end-of-file record.

READ= 1l
rl is a character reference which takes the value YES if UNFORMATTED is one of the allowed access
methods for file, NO if not, or UNKNOWN fif it is not known if UNFORMATTED is included.

READWRITE= rl
rl is a character scalar memory reference which takes the value YES if UNFORMATTED is one of the
allowed access methods for the file, NO if not and UNKNOWN if it is not known if UNFORMATTED is
included.

83

INTEGER

RECL= rcl
rcl is an integer expression defining the record length in a file connected for direct access. When
sequential input/output is specified this is the maximum record length. This specifier must only be given
when a file is connected for direct access.

SEQUENTIAL= seq
seq is a character scalar memory reference which takes the value YES if UNFORMATTED is one of the
allowed access methods for the file, NO if not and UNKNOWN if it is not known if UNFORMATTED is
included.

UNFORMATTED= unf
unf is a character scalar memory reference which takes the value YES if UNFORMATTED is one of the
allowed access methods for the file, NO if not and UNKNOWN if it is not known if UNFORMATTED is
included.

WRITE= 1l
rl is a character scalar memory reference which takes the value YES, NO, or UNKNOWN. These values
indicate that WRITE is allowed, not allowed, or indeterminate for the specified file, respectively.

Description

When an INQUIRE by file statement is executed the following specifiers will only be assigned values if the file
name is acceptable: nmd, fn, seq, dir, fmt and unf. num is defined, and acc, fm, rcl, nr and blnk may become
defined only if od is defined as .TRUE..

When an INQUIRE by unit statement is executed the specifiers num, nmd, fn, acc, seq, dir, fm, fmt, unf, rcl, nr
and blnk are assigned values provided that the unit exists and a file is connected to that unit. Should an error
condition occur during the execution of an INQUIRE statement all the specifiers except ios become undefined.

INTEGER

The INTEGER statement establishes the data type of a variable by explicitly attaching the name of a variable to
an integer data type. This overrides the data typing implied by the initial letter of a symbolic name.

Fr77

Syntax

The syntax for INTEGER has two forms, a standard FORTRAN 77 or 90/95 attributed form, and the PGI
extended form. This section describes both syntax forms.

I NTEGER [([KIND = ki nd-val ue)]
[, attribute-list ::] entity-Ilist

INTEGER permits a KIND specification. Refer to the Fortran 95 Handbook for more syntax details.

attribute-list

is the list of attributes for the character variable.
entity-list

is the list of defined entities.

84

Chapter 3. Fortran Statements

Syntax Extension

I NTEGER [*n] [,] name [*n] [dinmensions] [/clist/]...

n
is an optional size specification.

name
is the symbolic name of a variable, array, or an array declarator (see the DIMENSION statement for an
explanation of array declarators).

clist
is a list of constants that initialize the data, as in a DATA statement.

Description

Integer type declaration statements may be used to dimension arrays explicitly in the same way as the
DIMENSION statement. INTEGER statements must not be labeled. The default size of an INTEGER variable is 4
bytes. With the -Mnoi4 option, the default size of an INTEGER variable is 2 bytes.

Note

The data type of a symbol may be explicitly declared only once. It is established by type declaration
statement, IMPLICIT statement or by predefined typing rules. Explicit declaration of a type overrides
any implicit declaration. An IMPLICIT statement overrides predefined typing rules.

Example

I NTEGER Tl ME, SECOND, STORE (5, 5)

INTENT

The INTENT specification statement (attribute) specifies intended use of a dummy argument. This statement
(attribute) may not be used in a main program's specification statement.

F90

Syntax

I NTENT (intent-spec) [::] dummy-arg-|ist

intent-spec
is one of:

e IN
e OUT
e INOUT

dummy-arg-list
is the list of dummy arguments with the specified intent.

85

INTERFACE

Description
With intent specified as IN, the subprogram argument must not be redefined by the subprogram.

With intent specified as OUT, the subprogram should use the argument to pass information to the calling
program.

With intent specified as INOUT, the subprogram may use the value passed through the argument, but should
also redefine the argument to pass information to the calling program.

See Also

“OPTIONAL”

Example
SUBROUTI NE | N_ OUT(R1, 1)
REAL: : R1
INTENT (IN):: Rl
I NTEGER, | NTENT(OUT): : 11
| 1=R1
END SUBROUTI NE | N_OQUT

INTERFACE

The INTERFACE statement block makes an implicit procedure an explicit procedure where the dummy
parameters and procedure type are known to the calling module. This statement is also used to overload a
procedure name.

F90

Syntax

| NTERFACE [generi c- spec]
[interface-body]...
[MODULE PROCEDURE procedure-name-1list]. ..
END | NTERFACE

where generic-spec is one of the following:

generi c- nane
OPERATOR (defi ned operator)
ASSI GNVENT (=)

and the interface body specifies the interface for a function or a subroutine:

functi on- st at ement
[specification-part]
END FUNCTI ON [functi on nane]
subrouti ne- st at ement
[specification-part]
END SUBROUTI NE [subrouti ne nane]

See Also

“END ", “INTERFACE”

86

Chapter 3. Fortran Statements

Example

| NTERFACE

SUBROUTI NE | N_OUT(RL, | 1)
REAL, INTENT (IN)::RL

I NTEGER, | NTENT(OUT):: 11
END SUBROUTI NE | N_OUT
END | NTEFACE

INTRINSIC

An INTRINSIC statement identifies a symbolic name as an intrinsic function and allows it to be used as an
actual argument.

F77
Syntax
I NTRINSI C func [, func]
func
is the name of an intrinsic function such as SIN, COS, etc.
Description

Do not use any of the following functions in INTRINSIC statements:

* type conversions:

INT, IFIX |1DINT, FLOAT, SNG., REAL, DBLE, CMPLX, |CHAR,
CHAR

e lexical relationships:
LGE, LGT, LLE, LLT
e values:

MAX, MAXO, AMAX1, DMVAX1, AMAXO, MAX1, M N, M NO, AM NI,
DM N1, AM NO, M N1

When a specific name of an intrinsic function is used as an actual argument in a program unit it must appear
in an INTRINSIC statement in that program unit. If the name used in an INTRINSIC statement is also the name
of a generic intrinsic function, it retains its generic properties. A symbolic name can appear only once in

all the INTRINSIC statements of a program unit and cannot be used in both an EXTERNAL and INTRINSIC
statement in a program unit.

The following example illustrates the use of INTRINSIC and EXTERNAL:

EXTERNAL MYOAN
I NTRINSIC SIN, COS

CALL TRI G (ANGLE, SI N, SI NE)

87

LOGICAL

CALL TRI G (ANGLE, MYOAN, COTANGENT)

CALL TRI G (ANGLE, CCS, S| NE)
SUBROUTINE TRI G (X, F, Y)
Y=F(X)

RETURN

END

FUNCTI ON MYOWN
MYOWRE=COS(X) / SI N(X)

RETURN

END

In this example, when TRIG is called with a second argument of SIN or COS the function reference F(X)
references the intrinsic functions SIN and COS; however when TRIG is called with MYOWN as the second
argument F(X) references the user function MYOWN.

LOGICAL

The LOGICAL statement establishes the data type of a variable by explicitly attaching the name of a variable to a
logical data type. This overrides the data typing implied by the initial letter of a symbolic name.

F77

Syntax

The syntax for LOGICAL has two forms, a standard FORTRAN 77 and 90/95 attributed form, and the PGI
extended form. This section describes both syntax forms.

LOG CAL [([KIND = ki nd-val ue)]
[, attribute-list ::] entity-Ilist

LOGICAL permits a KIND specification. Refer to the Fortran 95 Handbook for more syntax details.

attribute-list

is the list of attributes for the character variable.
entity-list

is the list of defined entities.

Syntax Extension

LOA CAL [*n] [,] name [*n] [dinmensions] [/clist/]
[, name] [*n][dinmensions] [/clist/]...

is an optional size specification.

name
is the symbolic name of a variable, array, or an array declarator (see the DIMENSION statement for an
explanation of array declarators).

clist
is a list of constants that initialize the data, as in a DATA statement.

88

Chapter 3. Fortran Statements

Description

Logical type declaration statements may be used to dimension arrays explicitly in the same way as the
DIMENSION statement. Type declaration statements must not be labeled. Note: The data type of a symbol may
be explicitly declared only once. It is established by type declaration statement, IMPLICIT statement or by
predefined typing rules. Explicit declaration of a type overrides any implicit declaration. An IMPLICIT statement
overrides predefined typing rules.

The default size of a LOGICAL variable is 4 bytes. With the -Mnoi4 option, the default size of a LOGICAL variable
is 2 bytes.

Example

LOG CAL TIME, SECOND, STORE(5, 5)

MAP

A union declaration is initiated by a UNION statement and terminated by an END UNION statement. Enclosed
within these statements are one or more map declarations, initiated and terminated by MAP and END MAP
statements, respectively. Each unique field or group of fields is defined by a separate map declaration. For
more information on field alignment, refer to “Structures,” on page 28.

F77 extension
Syntax

MAP
field declaration
[field_declaration]

[field_declaration]
END VAP

field_declaration

is a structure declaration or RECORD statement contained within a union declaration, a union declaration
contained within a union declaration, or the declaration of a typed data field within a union.

Description

Data can be initialized in field declaration statements in union declarations. However, it is illegal to initialize
multiple map declarations in a single union.

The size of the shared area for a union declaration is the size of the largest map defined for that union. The
size of a map is the sum of the sizes of the field(s) declared within it plus the space reserved for alignment
purposes.

Manipulating data using union declarations is similar to using EQUIVALENCE statements. However, union
declarations are probably more similar to union declarations for the language C. The main difference is that
the language C requires one to associate a name with each map (union). Fortran field names must be unique
within the same declaration nesting level of maps.

89

MODULE

Example

The following is an example of RECORD, STRUCTURE and UNION usage. The size of each element of the recarr
array would be the size of typetag (4 bytes) plus the size of the largest MAP (the employee map at 24 bytes).

STRUCTURE [/ account /

I NTEGER typetag ! Tag to determ ne defined nap
UNI ON

MAP ! Structure for an enpl oyee
CHARACTER*12 ssn ! Social Security Nunber
REAL*4 sal ary

CHARACTER*8 enpdate ! Enpl oynent date
END AP

MAP | Structure for a customner

| NTEGER*4 acct _cust

REAL*4 credit_ant

CHARACTER*8 due_dat e

END AP

MAP ! Structure for a supplier

| NTEGER*4 acct _supp

REAL*4 debit_ant

BYTE num.i t ens

BYTE itens(12) ! Itens supplied

END VAP

END UNI ON

END STRUCTURE

RECORD / account/ recarr (1000)

MODULE

(PGF95 and PGHPF only) The MODULE statement specifies the entry point for a Fortran 90/95 module
program unit. A module defines a host environment of scope of the module, and may contain subprograms
that are in the same scoping unit.

F90

Syntax

MODULE nane

[specification-part]

[CONTAINS [nodul e- subprogram part]]
END [MODULE [nodul e-nane]]

name
the name of the program module. This name must not clash with any other names used in the program.

specification-part
contains specification statements. See the Fortran 95 Handbook for a complete description of the valid
statements.

module-subprogram-part
contains function and subroutine definitions for the module, preceded by a single CONTAINS keyword.

Modules can be independently compiled and used within programs using the USE statement. Use of Fortran
90/95 modules causes the compiler to create a modul e_name. nod file in the current directory (a .mod

90

Chapter 3. Fortran Statements

file). This file contains all the information the compiler needs concerning interface specifications and the data
types for the routines defined in the module. When a program, routine, or another module encounters the USE
statement, the .mod file is read and "included" in the program, using the scope rules defined in Fortran 90/95
for USE association. If you are using separate modules, this creates another step in the program development
process. When a module is compiled, both a .mod and an object file are created. The .mod file is used when a
USE statement is encountered, and the object file is used when the program is linked.

For example, if modulel.f contains a module with several procedures, and test1.f contains a USE statement that
uses modulel, the compilation would involve the steps.

% pgf 95 -c nodul el. f
% pgf 95 -0 testl testl.f nodul el.o

The search for a .mod file includes the following directories:

The directory containing the file that contains the USE statement (the current working directory.)

The directory containing the file that contains the USE statement (the current working directory.)

Each —I directory specified on the command-line.

The directory specified on the - noddi r command-line switch.

The standard include area.
You can use the —I command-line option to add directories to the search path for .mod files.

Example

MODULE MYOWN
REAL MEAN, TOTAL
| NTEGER, ALLOCATABLE, DI MENSION(:):: A
CONTAI NS
RECURSI VE | NTEGER FUNCTI ON X(Y)

END FUNCTI ON X
END MODULE MYOWN

NAMELIST

The NAMELIST statement allows for the definition of namelist groups for namelist-directed 1/0.

F90

Syntax

NAMELI ST / gr oup- name/ nanelist [[,] /group-name/ nanelist]...

group-name
is the name of the namelist group.

namelist
is the list of variables in the namelist group.

91

NULLIFY

Example

In the following example a2 named group PERS consists of 2 name, an account, and a value.

CHARACTER* 12 NAME

| NTEGER*$ ACCOUNT

REAL*4 VALUE

NAMELI ST / PERS/ NAME, ACCOUNT, VALUE

NULLIFY

The NULLIFY statement disassociates a pointer from its target.

F90

Syntax

NULLI FY (poi nter-object-1list)

Example

NULLI FY (PTRL)

See Also

“ALLOCATE”, “DEALLOCATE”

OPEN

The OPEN statement connects an existing file to a unit, creates and connects a file to a unit, creates a file that is
preconnected or changes certain specifiers of a connection between a file and a unit.

F77

Syntax

OPEN (list)

list
must contain exactly one unit specifier of the form:

[UNIT=] u
where the UNIT= is optional and the external unit specifier u is an integer.

In addition, | i st may contain one of each of the following specifiers in any order, following the unit number
if the optional UNIT specifier keyword is not supplied.

ACCESS= acc
acc is a character expression specifying the access method for file connection as SEQUENTIAL, DIRECT or
STREAM; the default is SEQUENTIAL.

92

Chapter 3. Fortran Statements

ACTION= acc
acc is a character expression specifying the permitted access types for connection. One of READ, WRITE,
UNKNOWN or READWRITE is allowed. The default is UNKNOWN .

ASYNCHRONOUS=async
async is a character expression specifying whether to allow asynchronous data transfer on this file
connection. One of ‘YES’ or ‘NO’ is allowed.

BLANK=DbInk
blnk is a character expression which takes the value 'NULL' or 'ZERO'. 'NULL' causes all blank characters
in numeric formatted input fields to be ignored with the exception of an all-blank field which has a value
of zero. 'ZERO' causes all blanks other than leading blanks to be treated as zeros. The default is 'NULL.'
This specifier must only be used when a file is connected for formatted input/output.

DELIM= del_char
del_char is a character expression which takes the value 'APOSTROPHE', 'QUOTE' or 'NONE'. These
values specify the character delimiter for list-directed or namelist formatted data transfer statements.

ERR=errs
errs is an error specifier; it takes the form of a statement label of an executable statement within the
program. If an error condition occurs execution continues with the statement specified by errs.

FILE= fin
fin is a character expression whose value is the file name expression, the name of a file to be connected to
the specified unit.

FORM=fm
fm is a character expression specifying whether the file is being connected for 'FORMATTED' or
'UNFORMATTED' input/output.

IOSTAT = ios
ios is an integer scalar; if this is included ios becomes defined with 0 (zero) if no error condition exists or
a positive integer when there is an error condition. A value of -1 indicates an end-of-file condition with no
error. A value of -2 indicates an end-of-record condition with no error when using non-advancing 1/0.

PAD= pad_char
pad_char is a character expression specifying whether to use blank padding. Acceptable values are YES or
NO; yes specifies that blank padding is used and no requires that input records contain all requested data.

POSITION= pos_char
pos_char is a character expression specifying the file position. Values are ASIS, REWIND or APPEND. For
a connected file, on OPEN ASIS leaves the position in the current position, REWIND rewinds the file and
APPEND places the current position at the end of the file, immediately before the end-of-file record.

RECL= 1l
rl is an integer expression defining the record length in a file connected for direct access. When sequential
input/output is specified this is the maximum record length.

STATUS= sta
sta is a character expression whose value can be: NEW, OLD, SCRATCH, UNKNOWN or REPLACE. When
OLD or NEW is specified a file specifier must be given. SCRATCH must not be used with a named file.
The default status is UNKNOWN which specifies that the file's existence is unknown. If the file exists,

93

OPEN

the existing file is used; otherwise the file is created. With status OLD, the file must exist or an error
is reported. With status NEW, the file is created,; if the file exists, an error is reported. Status SCRATCH
specifies that the file is removed when closed.

Description

The record length, RECL=, must be specified if a file is connected for direct access and optionally one of each
of the other specifiers may be used. RECL is ignored if the access method is sequential.

The unit specified must exist and once connected by an OPEN statement can be referenced in any program unit
of the executable program. If a file is connected to a unit it cannot be connected to a different unit by the OPEN
statement.

If a unit is connected to an existing file, execution of another OPEN statement for that file is allowed. Where
FILE= is not specified the file to be connected is the same as the file currently connected. If the file specified
for connection to the unit does not exist but is the same as a preconnected file, the properties specified

by the OPEN statement become part of the connection. However, if the file specified is not the same as the
preconnected file this has the same effect as the execution of a CLOSE statement without a STATUS= specifier
immediately before the execution of the OPEN statement. When the file to be connected is the same as the file
already connected only the BLANK= specifier may be different from the one currently defined.

The sequential and direct access methods access files that contain fixed-length records. The stream access
method, a Fortran 2003 language extension, allows access to files that do not contain fixed-length records.
Stream 1/0 is enabled by specifying access='STREAM'. Stream I/O may be formatted or unformatted.

Asynchronous i/0, the ability to return control before the statement has completed, is supported in certain
situations. If ASYNCHRONOUS="yes’ is specified on the OPEN statement and a READ or WRITE statement for a
particular file connection, a processor may perform an asynchronous data transfer asynchronously, but is not
required to do so. In practice, the underlying operating system controls much of what can be performed. A file
must be seekable to support aysynchronous 1/0; i.e. you cannot perform asynchronous I/0 on a non-seekable
file such as a fifo. Asynchronous I/0 is only supported for the stream access method.

Examples

94

In the following example a new file, BOOK,; is created and connected to unit 12 for direct formatted input/
output with a record length of 98 characters. Numeric values will have blanks ignored and E1 will be assigned
some positive value if an error condition exists when the OPEN statement is executed; execution will then
continue with the statement labeled 20. If no error condition pertains, E1 is assigned the value zero (0) and
execution continues with the next statement.

OPEN(12, | OSTAT=E1l, ERR=20, FILE=' BOX',

+ BLANK=" NULL', ACCESS='DI RECT', RECL=98,
+ FORMF' FORVATTED , STATUS=' NEW)

The next example shows how to use asynchronous 1/0.

programt est

character*13 b

b = "hello, world\n"

open(uni t=10,file="u.dat', access="'stream ,form=" unformatted',
&

asynchr onous="'yes")

Chapter 3. Fortran Statements

wite (unit=10, asynchronous='yes') b
I Do sonet hi ng useful

wai t (10)

cl ose(10)

end

Environment Variables

For an OPEN statement which does not contain the FILE= specifier, an environment variable may be used to
specify the file to be connected to the unit. If the environment variable FORddd exists, where ddd is a 3 digit
string whose value is the unit, the environment variable's value is the name of the file to be opened.

PGl Fortran Extensions

PGI has extended the OPEN statement as follows:

CONVERT=order
order is a character expression specifying the byte order of the file. One of ‘BIG_ENDIAN’,
‘LITTLE_ENDIAN’, or ‘NATIVE’ is allowed.

The CONVERT specifier allows byte-swapping I/0 to be performed on specific logical units. The value
'BIG_ENDIAN' is used to convert big-endian format data files produced by most RISC workstations and high-
end servers to the little-endian format used on Intel Architecture systems on-the-fly during file reads/writes.
This value assumes that the record layouts of unformatted sequential access and direct access files are the
same on the systems. For the values 'LITTLE_ENDIAN' and 'NATIVE’, byte-swapping is not performed during
file reads/writes since the little-endian format is used by the x86 architecture.

VAX/VMS Fortran Extensions

VAX/VMS introduced a number of extensions to the OPEN statement. Many of these relate only to the VMS
file system and are not supported (e.g., KEYED access for indexed files). The following keywords for the
OPEN statement have been added or augmented as shown in the following list. Refer to Programming in VAX
FORTRAN for additional details on these keywords that are available for the OPEN statement.

ACCESS=acc
The value of 'APPEND' will be recognized and implies sequential access and positioning after the last

record of the file. Opening a file with append access means that each appended record is written at the
end of the file.

ASSOCIATEVARIABLE=var
This keyword specifies an INTEGER*4 integer scalar memory reference which is updated to the next
sequential record number after each direct access I/O operation. Applies only to direct access mode.

DISPOSE=disp and DISP=disp
These keywords specify the disposition for the file after it is closed. 'KEEP' or 'SAVE' is the default on
anything other than STATUS="SCRATCH' files. 'DELETE' indicates that the file is to be removed after it is
closed. The PRINT and SUBMIT values are not supported.

NAME=file
This keyword is a synonym for FILE.

95

OPTIONAL

READONLY
This keyword specifies that an existing file can be read but prohibits writing to that file. The default is
read/write.

RECL=len
The record length given is interpreted as the number of words in a record if the runtime environment
parameter FINOPT is set to "vaxio". This simplifies the porting of VAX/VMS programs. The default is that
len is given in number of bytes in a record.

TYPE=sta
This keyword is a synonym for STATUS.

OPTIONAL

The OPTIONAL specification statement (attribute) specifies dummy arguments that may be omitted or that are

optional.
F90
Syntax

OPTIONAL [::] dummy-arg-1Iist
Examples

OPTIONAL :: VAR4, VAR5

OPTI ONAL VARG, VARY

I NTEGER, OPTIONAL :: VARS, VAR9
See Also

“INTENT”
OPTIONS

The OPTIONS statement confirms or overrides certain compiler command-line options.
F77 extension

Syntax

CPTIONS /option [/option ...]

The following table shows what options are available for the OPTIONS statement:

Table 3.2. OPTIONS Statement

Option Action Taken
CHECK=ALL Enable array bounds checking
CHECK=[NO]OVERFLOW None (recognized but ignored)

96

Chapter 3. Fortran Statements

Option Action Taken

CHECK=[NO]BOUNDS (Disable) Enable array bounds checking

CHECK=[NO]UNDERFLOW None

CHECK=NONE Disable array bounds checking

NOCHECK Disable array bounds checking

[NO]EXTEND_SOURCE (Disable) Enable the —Mextend option

[NO]G_FLOATING None

[NO]F77 (Disable) Enable the —Mstandard option

[NO]14 (Disable) Enable the —Mi4 option

[NO]RECURSIVE (Disable) Enable the —Mrecursive option

[NO]REENTRANT (Enable) Disable optimizations that may result in
code that is not reentrant.

[NO]STANDARD (Disable) Enable the —Mstandard option

The following restrictions apply to the OPTIONS statement:

The OPTIONS statement must be the first statement in a program unit; it must precede the PROGRAM,
SUBROUTINE, FUNCTION, and BLOCKDATA statements.

The options listed in the OPTIONS statement override values from the driver command-line for the program
unit (subprogram) immediately following the OPTIONS statement.

Any abbreviated version of an option that is long enough to identify the option uniquely is a legal
abbreviation for the option.

Case is not significant, unless the —Mupcase is present on the command line. If it is, each option must be in
lowercase.

PARAMETER
The PARAMETER statement gives a symbolic name to a constant.
F77
Syntax
PARAMETER (nane = expression[,name = expression...])
expression
is an arithmetic expression formed from constant or PARAMETER elements using the arithmetic operators
+, -, *, />. The usual precedence order can be changed by using parentheses. The expression may include
a previously defined PARAMETER.
Examples

PARAMETER (Pl = 3.142)

97

PAUSE

PARAMETER (| NDEX = 1024)
PARAMETER (I NDEX3 = INDEX * 3)

The following VAX/VMS extensions to the PARAMETER statement are fully supported:

e Its list is not bounded with parentheses.

e The form of the constant (rather than the implicit or explicit typing of the symbolic name) determines the
data type of the variable.

The form of the alternative PARAMETER statement is:
PARAMETER p=c [, p=c]. ..

where p is 2 symbolic name and c is a constant, symbolic constant, or a compile time constant expression.

PAUSE

(Obsolescent) The PAUSE statement stops the program's execution. The PAUSE statement is obsolescent
because a WRITE statement may send a message to any device, and a READ statement may be used to wait for a
message from the same device.

Syntax
PAUSE [character-expression | digits]

The PAUSE statement stops the program's execution. The program may be restarted later and execution will
then continue with the statement following the PAUSE statement.

POINTER

The POINTER statement provides a means for declaring pointers.

F90
Syntax
PO NTER [::] object-nanme [(deferred-shape-spec-list)]
[, object-name [(deferred-shape-spec-list)]]
Example

REAL, DIMENSION(:,:), PONTER :: X

POINTER (Cray)

The POINTER statement is an extension to FORTRAN 77. It declares a scalar variable to be a pointer variable
(of type INTEGER), and another variable to be its pointer-based variable.

F77 extension
Syntax

98

Chapter 3. Fortran Statements

PO NTER (pl1, v1) [, (p2, v2) ...]

vl and v2
are pointer-based variables. A pointer-based variable can be of any type, including STRUCTURE. A pointer-
based variable can be dimensioned in a separate type, in 2 DIMENSION statement, or in the POINTER
statement. The dimension expression may be adjustable, where the rules for adjustable dummy arrays
regarding any variables which appear in the dimension declarators apply.

pl and p2
are the pointer variables corresponding to v1 and v2. A pointer variable may not be an array. The pointer
is an integer variable containing the address of a pointer-based variable. The storage located by the pointer
variable is defined by the pointer-based variable (for example, array, data type, etc.). A reference to a
pointer-based variable appears in Fortran statements like 2 normal variable reference (for example, a
local variable, a COMMON block variable, or a dummy variable). When the based variable is referenced,
the address to which it refers is always taken from its associated pointer (that is, its pointer variable is
dereferenced).

The pointer-based variable does not have an address until its corresponding pointer is defined. The pointer is
defined in one of the following ways:

e By assigning the value of the LOC function.
* By assigning a value defined in terms of another pointer variable.

e By dynamically allocating a memory area for the based variable. If a pointer-based variable is dynamically
allocated, it may also be freed.

Example

REAL XC(10)
COWON | C, XC
PO NTER (P, I)
PO NTER (Q X(5))

P = LOC(1C

I =0 I 1C gets O

P = LOC(XC)

Q=P+ 20 I sanme as LOC(XC(6))

X(1) =0 I XC(6) gets O

ALLCCATE (X) ! Q locates a dynam cally

I allocated nmenory area

Restrictions

The following restrictions apply to the POINTER statement:

* No storage is allocated when a pointer-based variable is declared.
e If a pointer-based variable is referenced, its pointer variable is assumed to be defined.

e A pointer-based variable may not appear in the argument list of 2 SUBROUTINE or FUNCTION and may not
appear in COMMON, EQUIVALENCE, DATA, NAMELIST, or SAVE statements.

* A pointer-based variable can be adjusted only in a SUBROUTINE or FUNCTION subprogram. If a pointer-
based variable is an adjustable array, it is assumed that the variables in the dimension declarator(s) are

99

PRINT

defined with an integer value at the time the SUBROUTINE or FUNCTION is called. For a variable which
appears in a pointer-based variable's adjustable declarator, modifying its value during the execution of the
SUBROUTINE or FUNCTION does not modify the bounds of the dimensions of the pointer-based array.

* A pointer-based variable is assumed not to overlap with another pointer-based variable.

PRINT

F77

The PRINT statement is a data transfer output statement.

Syntax

PRI NT format-specifier [, iolist]
or

PRI NT nanel i st - group

format-specifier
a label of a format statement or a variable containing a format string or asterisk.
iolist
is an input/output list that must either be one of the items in an input list or any other expression. A

character expression involving concatenation of an operand of variable length cannot be included in an
output list, however, unless the operand is the symbolic name of a constant.

namelist-group
the name of the namelist group.

Description

When a PRINT statement is executed the following operations are carried out: data is transferred to the
standard output device from the items specified in the output list and format specification.' The data are
transferred between the specified destinations in the order specified by the input/output list. Every item whose
value is to be transferred must be defined.

Non-character Format-specifier

If a format-specifier is a variable which is neither CHARACTER nor a simple INTEGER variable, the compiler
accepts it and treats it as if the contents were character. For example, below sum is treated as a format
descriptor:

real sum
sum = 4h()
print sum

and is roughly equivalent to

'If an asterisk (*) is used instead of a format identifier, the list-directed formatting rules apply.

100

character*4 ch
ch = ()’
print ch

See Also

“READH, A‘PRINTN

PRIVATE

Chapter 3. Fortran Statements

The PRIVATE statement specifies entities defined in 2 module are not accessible outside of the module. This
statement is only valid in 2 module. The default specification for a module is PUBLIC.

F90

Syntax

PRI VATE [:: [access-id-list]]

Description

Example
MODULE FORMULA
PRI VATE
PUBLI C :: VARA
END MODULE
Type

Non-executable

See Also

“PUBLIC”, “MODULE”

PROGRAM

The PROGRAM statement specifies the entry point for the linked Fortran program.

F77

Syntax

PROGRAM [nane]

iEND [PROGRAM [pr ogr amt nane]]

101

PUBLIC

name
is optional; if supplied it becomes the name of the program module and must not clash with any other
names used in the program. If it is not supplied, a default name is used.

Description

The program statement specifies the entry point for the linked Fortran program. An END or END PROGRAM
statement terminates the program.

The END PROGRAM statement terminates a main program unit that begins with the optional PROGRAM
statement. The program name found in the END PROGRAM must match that in the PROGRAM statement.

Example

PROGRAM MYOMN
REAL MEAN, TOTAL

CALL TR G(A B, C, MEAN)
END
PUBLIC

The PUBLIC statement specifies entities defined in 2 module are accessible outside of the module. This
statement is only valid in 2 module. The default specification for a module is PUBLIC.

F90
Syntax

PUBLIC [:: [access-id-list]]
Example
MODULE FORMULA

PRI VATE
PUBLI C :: VARA

END MODULE

Type

Non-executable

See Also

“MODULE”, “PRIVATE”

PURE

The PURE attribute indicates that a function or subroutine has no side effects. Use of PURE can enable
additional opportunities for optimization, and for HPF indicates that a subroutine or function can be used in a
FORALL statement or construct or within an INDEPENDENT DO loop.

102

Chapter 3. Fortran Statements

F95
Syntax
PURE [type-specification] FUNCTI ON
or
type-speci ficati on PURE FUNCTI ON
or
PURE SUBROUTI NE
Type
Non-executable
See Also
“FUNCTION”, “SUBROUTINE”
READ
The READ statement is a data transfer input statement.
F90
Syntax

READ ([unit=] u, format-specifier [,control-infornmation] [iolist]
READ f or mat - specifier [,iolist]
READ ([unit=] u, [NM.=] nanelist-group [,control-information])

where the UNI T= is optional and the external unit specifier u is an integer. cont r ol - i nf or mat i on is an
optional control specification that may contain one each of the following specifiers in any order.

Note

The specifier follows the unit number if the optional UNIT specifier keyword is not supplied.

ASYNCHRONOUS= async
async is a character expression specifying whether to allow the data transfer to be done asynchronously.
The value specified may be ‘YES’ or ‘NO’.

FMT= format
format is a label of a format statement or a variable containing a format string.

NML= namelist
namelist is 2 namelist group

ADVANCE= spec
spec is a character expression specifying the access method for file connection as either YES or NO.

END=s
s is an executable statement label for the statement used for processing an end of file condition.

103

READ

EOR=s
s is an executable statement label for the statement used for processing an end of record condition.

ERR=s
s is an executable statement label for the statement used for processing an error condition.

I0STAT=i0s
ios is an integer variable or array element. ios is 0 if no error occurs, -1 if an EOF occurs, and a positive
integer when there is an error.

REC=rn
rn is a record number to read and must be a positive integer. This is only used for direct access files.

SIZE=n
n is the number of characters read.

iolist
(input list) must either be one of the items in an input list or any other expression.

Description

When a READ statement is executed, the following operations are carried out:

e Data is transferred from the standard input device to the items specified in the input and format
specification.’

e The data are transferred between the specified destinations in the order specified by the input/output list.

Every item whose value is to be transferred must be defined.

Example

READ(2, 110) I,J, K
110 FORMAT(12, 14, 13)

Non-character Format-specifier

If a format-specifier is a variable which is neither CHARACTER nor a simple INTEGER variable, the compiler
accepts it and treats it as if the contents were character. For example, below sum is treated as a format
descriptor:

real sum

sum = 4h(i)
read sumj

and is roughly equivalent to

character*4 ch

ch ="' (i)’
read ch, |j
See Also

“OPEN”, “PRINT”, “WRITEH

104

Chapter 3. Fortran Statements

REAL

The REAL statement establishes the data type of a variable by explicitly attaching the name of a variable to a
data type. This overrides the data typing implied by the initial letter of a symbolic name.

F90

Syntax

The syntax for REAL has two forms, a standard Fortran 90/95 attributed form, and the PGI extended form. This
section describes both syntax forms.

REAL [([KIND =] ki nd-val ue)
[, attribute-list ::] entity-list

REAL permits a KIND specification. Refer to the Fortran 95 Handbook for more syntax details.

attribute-list
is the list of attributes for the character variable.

entity-list
is the list of defined entities.
Syntax Extension

REAL [*n] nane [*n] [dinmensions] [/clist/]
[,name] [*n] [dinmensions][/clist/]...

is an optional size specification.

name
is the symbolic name of a variable, array, or an array declarator (see the DIMENSION statement below for
an explanation of array declarators).

clist
is a list of constants that initialize the data, as in a DATA statement.

Description

The REAL type declaration statements may be used to dimension arrays explicitly in the same way as the
DIMENSION statement. Type declaration statements must not be labeled.

Note

The data type of a symbol may be explicitly declared only once. It is established by type declaration
statement, IMPLICIT statement or by predefined typing rules. Explicit declaration of a type overrides
any implicit declaration. An IMPLICIT statement overrides predefined typing rules.

The default size of a REAL variable is 4 bytes. With the -Mr8 option, the default size of an REAL variable is 8
bytes.

105

RECORD

Example

REAL KNOTS

RECORD

The RECORD statement, a VAX Fortran extension, defines a user-defined aggregate data item.
F77 extension

Syntax

RECORD / structure_nane/record_nanel i st
[,/structure_name/record_nanelist]

[,/structure_name/record_nanelist]
END RECORD

structure_name
is the name of a previously declared structure.

record_namelist
is a list of one or more variable or array names separated by commas.

Description

You create memory storage for a record by specifying a structure name in the RECORD statement. You define
the field values in a record either by defining them in the structure declaration or by assigning them with
executable code.

You can access individual fields in a record by combining the parent record name, a period (.), and the

field name (for example, recordname.fieldname). For records, a scalar reference means a reference to a
name that resolves to a single typed data item (for example, INTEGER), while an aggregate reference means a
reference that resolves to a structured data item.

Scalar field references may appear wherever normal variable or array elements may appear with the exception
of the COMMON, SAVE, NAMELIST, DATA and EQUIVALENCE statements. Aggregate references may only appear
in aggregate assignment statements, unformatted 1/0 statements, and as parameters to subprograms.

Records are allowed in COMMON and DIMENSION statements.

Example

STRUCTURE / PERSON ! Declare a structure
defining a person
| NTEGER | D
LOG CAL LI VI NG
CHARACTER*5 FI RST, LAST, M DDLE
I NTEGER ACE
END STRUCTURE
! Define population to be an array where each el enent is of
I type person. Also define a variable, ne, of type person.
RECORD / PERSON/ POPULATI ON(2), ME

106

Chapter 3. Fortran Statements

ME. AGE = 34 I Assign values for the variable nme
ME.LIVING = .TRUE. ! to sone of the fields.

ME. FI RST = ' St eve'

ME. | D = 542124822

POPULATI ON(1) . LAST = 'Jones' ! Assign the "LAST" field of
I element 1 of array popul ation.
POPULATION(2) = ME ! Assign all the values of record
I "IME' to the record popul ation(2)

RECURSIVE

The RECURSIVE statement indicates whether a function or subroutine may call itself recursively.
F90

Syntax
RECURSI VE [t ype-specification] FUNCTI ON
or
type-speci ficati on RECURSI VE FUNCTI ON

or

RECURSI VE SUBROUTI NE

Type
Non-executable
See Also

“FUNCTION”, “SUBROUTINE”

REDIMENSION

The REDIMENSION statement, a CRAY extension to FORTRAN 77, dynamically defines the bounds of a deferred-
shape array. After a REDIMENSION statement, the bounds of the array become those supplied in the statement,
until another such statement is encountered.

F77 extension

Syntax

REDI MENSI ON nanme ([l b:Jub[,[lb:]Jub]...)
[,name([I b:Jub[,[Ib:Jub]...)]...

Where:

name
is the symbolic name of an array.

107

RETURN

[Ib:]ub

is a dimension declarator specifying the bounds for a dimension (the lower bound Ib and the upper
bound ub). Ib and ub must be integers with ub greater than Ib. The lower bound Ib is optional; if it is not
specified, it is assumed to be 1. The number of dimension declarations must be the same as the number of

dimensions in the array.

Example

REAL A(:, :)

PO NTER (P, A)

P = malloc(12 * 10 * 4)
REDI MENSI ON A(12, 10)
A(3, 4) = 33

RETURN

F77

The RETURN statement causes a return to the statement following a CALL when used in a subroutine, and
returns to the relevant arithmetic expression when used in a function.

Syntax

RETURN

Alternate RETURN

(Obsolescent) The alternate RETURN statement is obsolescent for HPF and Fortran 90/95. Use the CASE
statement where possible in new or updated code. The alternate RETURN statement takes the following form:

RETURN expr essi on

expression

expression is converted to integer if necessary (expression may be of type integer or real). If the value

of expression is greater than or equal to 1 and less than or equal to the number of asterisks in the
SUBROUTINE or subroutine ENTRY statement then the value of expression identifies the nth asterisk in the
actual argument list and control is returned to that statement.

Example

108

SUBROUTI NE FI X (A B, *,*, C)

40 IF (T) 50, 60, 70

50 RETURN

60 RETURN 1

70 RETURN 2

END

PROGRAM FI XI T

CALL FIX(X, Y, *100, *200, S)

WRI TE(*,5) X, S! Cone here if (T) <0
STOP

100 WRI TE(*, 10) X, Y ! Cone here if (T) = 0
STOP

200 WRI TE(*,20) Y, S! Come here if (T) >0

Chapter 3. Fortran Statements

REWIND

The REWIND statement positions the file at its beginning. The statement has no effect if the file is already
positioned at the start or if the file is connected but does not exist.

F77

Syntax
REW ND uni t
REW ND (unit,|ist)
unit
is an integer value which is the external unit.
list
contains the optional specifiers as follows:

UNIT=unit
unit is the unit specifier.

ERR=errs
errs is an executable statement label for the statement used for processing an error condition. If an
error condition occurs execution continues with the statement specified by errs.

I0STAT=io0s
ios is an integer value or array element. ios is 0 if no erro occurs and a positive integer when there is
an error.

Examples

REW ND 5
REW ND(2, ERR=30)
REW ND(3, | OSTAT=I CERR)

SAVE

The SAVE statement retains the definition status of an entity after a RETURN or END statement in a subroutine
or function has been executed.

F77
Syntax
SAVE [v [, Vv]...]
v
name of array, variable, or common block (enclosed in slashes)
Description

Using a common-block name, preceded and followed by a slash, ensures that all entities within that COMMON
block are saved.

109

SELECT CASE

* SAVE may be used without a list, in which case all the allowable entities within the program unit are saved.
This approach is the same as using the —~Msave command-line option.

e Dummy arguments, names of procedures and names of entities within a common block may not be
specified in a SAVE statement.

o Use of the SAVE statement with local variables ensures the values of the local variables are retained for the
next invocation of the SUBROUTINE or FUNCTION.

e Within a main program the SAVE statement is optional and has no effect.

When a RETURN or END is executed within a subroutine or function, all entities become undefined with the
exception of:

* Entities specified by a SAVE statement
¢ Entities in blank common or named common

e Entities initially defined which have not been changed in any way

Example

PROGRAM SAFE
CALL KEEP
SUBROUTI NE KEEP
COWDN / LI ST/ TOP, M DDLE
I NTEGER LOCAL1

SAVE /LI ST/, LOCAL1

SELECT CASE

The SELECT CASE statement begins a CASE construct.
F90

Syntax

[case- nanme:] SELECT CASE (case-expr)
[CASE sel ector [nane]
bl ock]
[CASE DEFAULT [case- nane]
bl ock
END SELECT [case- nane]

Description
he SELECT CASE statement defines the case expression that is to be evaluated.

Example

SELECT CASE (FLAG)
CASE (1, 2, 3)
TYPE=1

110

Chapter 3. Fortran Statements

CASE (4:6)
TYPE=2
CASE DEFAULT
TYPE=0

END SELECT

SEQUENCE

The SEQUENCE statement is a derived type qualifier that specifies the ordering of the storage associated with
the derived type. This statement specifies storage for use with COMMON and EQUIVALENCE statements (the
preferred method for derived type data sharing is using MODULES).

Note

There is also an HPF SEQUENCE directive that specifies whether an array, common block, or
equivalence is sequential or non-sequential. Refer to the PGHPF User’s Guide for more information.

F90

Syntax

TYPE
[SEQUENCE]

type-specification...
END TYPE

Example

TYPE RECORD
SEQUENCE
CHARACTER NAME(25)
| NTEGER CUST_NUM
REAL COST

END TYPE

STOP

The STOP statement stops the program's execution and precludes any further execution of the program.
F77

Syntax

STOP [character-expression | digits]
STRUCTURE
The STRUCTURE statement, a VAX extension to FORTRAN 77, defines an aggregate data type.

F77 VAX extension

Syntax

STRUCTURE [/structure_name/][field_nanelist]

1M

STRUCTURE

field declaration
[field_declaration]

[field_declaration]
END STRUCTURE

structure_name
is unique and is used both to identify the structure and to allow its use in subsequent RECORD statements.

field_namelist
is a list of fields having the structure of the associated structure declaration. A field_namelist is allowed
only in nested structure declarations.

field_declaration
can consist of any combination of substructure declarations, typed data declarations, union declarations
or unnamed field declarations.

Description

112

Fields within structures conform to machine-dependent alignment requirements. Alignment of fields also
provides a C-like "struct" building capability and allows convenient inter-language communications. Note that
aligning of structure fields is not supported by VAX/VMS Fortran.

Field names within the same declaration nesting level must be unique, but an inner structure declaration can
include field names used in an outer structure declaration without conflict. Also, because records use periods
to separate fields, it is not legal to use relational operators (for example, .EQ., .XOR.), logical constants
(.TRUE. or .FALSE.), or logical expressions (.AAND., .NOT., .OR.) as field names in structure declarations.

Fields in a structure are aligned as required by hardware and a structure's storage requirements are therefore
machine-dependent. Note that VAX/VMS Fortran does no padding. Because explicit padding of records is not
necessary, the compiler recognizes the %FILL intrinsic, but performs no action in response to it.

Data initialization can occur for the individual fields.
The UNION and MAP statements are supported.

The following is an example of record and structure usage.

STRUCTURE [/ account /
I NTEGER typetag ! Tag to determ ne defined map

UNI ON
VAP I Structure for an enpl oyee
CHARACTER* 12 ssn I Social Security Number

REAL*4 sal ary

CHARACTER*8 enpdate ! Enpl oynent date
END VAP

MAP I Structure for a custoner
| NTEGER*4 acct cust

REAL*4 credit_ amt

CHARACTER*8 due_dat e

END VAP

VAP I Structure for a supplier
| NTEGER*4 acct _supp

REAL*4 debit ant

BYTE num it ens

BYTE itens(12) I Items supplied

Chapter 3. Fortran Statements

END NVAP
END UNI ON
END STRUCTURE
RECORD / account/ recarr (1000)

SUBROUTINE

The SUBROUTINE statement introduces a subprogram unit. The statements that follow should be laid out in the
same order as a PROGRAM module.

F77
Syntax
[RECURSI VE] SUBROUTI NE nane &
[(argunent[,argunent...])] &
[specification-part]
[execution-part]
[internal -subspart]
END [SUBROUTI NE [nane]]
name
is the name of the subroutine being declared and must be unique among all the subroutine and function
names in the program. name should not clash with any local, COMMON, PARAMETER or ENTRY names.
argument
is a symbolic name, starting with a letter and containing only letters and digits. The type of argument can
be REAL, INTEGER, DOUBLE PRECISION, CHARACTER, COMPLEX, or BYTE, efc.
specification-part
is the specification of data types for the subroutine.
execution-part
contains the subprogram's executable statements.
internal-subs-part
contains subprograms defined within the subroutine.
Description
A SUBROUTINE must be terminated by an END statement. The statements and names in the subprogram only
apply to the subroutine except for subroutine or function references and the names of COMMON blocks.
Dummy arguments may be specified as * which indicates that the SUBROUTINE contains alternate returns.
Recursion is allowed if the —M ecur si ve option is used on the command-line or the RECURSIVE prefix is
included in the function definition.
Example

SUBROUTI NE DAXTIM (A, X, Y, N, M ITER FP, TOH)
| NTEGER*4 N, M |ITER
REAL*8 A, X(N,M, Y(N,M, FP, TOH

113

TARGET

END SUBROUTI NE DAXTI M

See Also

“PURE”, “RECURSIVE”

TARGET

The TARGET specification statement (attribute) specifies that a data type may be the object of a pointer variable
(e.g., pointed to by a pointer variable). Likewise, types that do not have the TARGET attribute cannot be the
target of a pointer variable.

F90

Syntax

TARGET [::] object-name [(array-spec)]
[, object-nane [(array-spec)]]...

See Also
“ALLOCATABLE”, “POINTER”

THEN

The THEN statement is part of a block IF statement and surrounds a series of statements that are conditionally
executed.

F77

Syntax

| F | ogi cal expression THEN
st at ement s

ELSE | F | ogi cal expression THEN
st at ement s

ELSE
st at ement s

ENDI F

The ELSE IF section is optional and may be repeated any number of times. Other IF blocks may be nested
within the statements section of an IF block.

Example

IF (I.GT.70) THEN

Me1

ELSE IF (1.LT.5) THEN
Me2

ELSE IF (1.LT.16) THEN
ME3

ENDI F

IF (1.LT.15) THEN

M= 4

114

Chapter 3. Fortran Statements

ELSE
M=5
ENDI F

TYPE

The TYPE statement begins a derived type data specification or declares variables of a specified user-defined

type.
F90

Syntax for Type Declaration

TYPE (type-nane) [, attribute-list ::] entity-Ilist

Syntax for Derived Type Definition

TYPE [[access-spec] ::] type-nane
[private-sequence-statenment]
conponent - def i ni ti on- st at enent
[conmponent-definition-statenent]...
END TYPE [type-nane]

Syntax for FORTRAN 77 Type Statement

TYPE

The TYPE statement has the same syntax and effect as the PRINT statement. For a full description, refer to
“PRINT,” on page 100.

UNION

A UNION declaration, a DEC extension to FORTRAN 77, is a multi-statement declaration defining a data area
that can be shared intermittently during program execution by one or more fields or groups of fields. It
declares groups of fields that share a common location within a structure. Each group of fields within a union
declaration is declared by a map declaration, with one or more fields per map declaration.

Union declarations are used when one wants to use the same area of memory to alternately contain two or
more groups of fields. Whenever one of the fields declared by a union declaration is referenced in a program,
that field and any other fields in its map declaration become defined. Then, when a field in one of the other
map declarations in the union declaration is referenced, the fields in that map declaration become defined,
superseding the fields that were previously defined.

A union declaration is initiated by a UNION statement and terminated by an END UNION statement. Enclosed
within these statements are one or more map declarations, initiated and terminated by MAP and END MAP
statements, respectively. Each unique field or group of fields is defined by a separate map declaration. The
format of a UNION statement is as follows:

F77 extension

Syntax

UNI ON

115

UNION

map_decl arati on
[map_decl arati on]

[map_decl arati on]
END UNI ON

The format of the map_declaration is as follows:

MAP
field_declaration
[field_declaration]

[field_declaration]
END MAP

field_declaration
where field declaration is a structure declaration or RECORD statement contained within a union
declaration, a union declaration contained within a union declaration, or the declaration of a typed data
field within a union.

Description

116

Data can be initialized in field declaration statements in union declarations. Note, however, it is illegal to
initialize multiple map declarations in a single union.

The size of the shared area for a union declaration is the size of the largest map defined for that union. The
size of a map is the sum of the sizes of the field(s) declared within it plus the space reserved for alignment
purposes.

Manipulating data using union declarations is similar to using EQUIVALENCE statements. However, union
declarations are probably more similar to union declarations for the language C. The main difference is that
the language C requires one to associate a name with each map (union). Fortran field names must be unique
within the same declaration nesting level of maps.

The following is an example of RECORD, STRUCTURE and UNION usage. The size of each element of the recarr
array would be the size of typetag (4 bytes) plus the size of the largest MAP (the employee map at 24 bytes).

STRUCTURE / account /

| NTEGER t ypet ag ! Tag to determ ne defined map.
UNI ON

VAP I Structure for an enpl oyee
CHARACTER* 12 ssn I Social Security Number
REAL*4 sal ary

CHARACTER*8 enpdat e I Enpl oynent date

END VAP

VAP I Structure for a custoner

| NTEGER*4 acct _cust

REAL*4 credit_amt

CHARACTER*8 due_dat e

END VAP

VAP I Structure for a supplier
| NTEGER*4 acct _supp

REAL*4 debit ant

BYTE num it ens

BYTE itenms(12) I Items supplied
END VAP

END UNI ON

Chapter 3. Fortran Statements

END STRUCTURE
RECORD / account/ recarr (1000)

USE

The USE statement gives a program unit access to the public entities or to the named entities in the specified
module.

F90

Syntax

USE nodul e-nane [, renane-list]
USE nodul e-nane, ONLY: [only-list]

module-name
is the name of a file that has an associated compiled .mod file which is included when the module isused.

rename-list
is a comma-separated list of rename.

ONLY: [only-list]

is the method to restrict access, limiting it to only those entities specified in only-list.

Description

The USE statement makes modules available. A module-name file has an associated compiled .mod file that is
included when the module is used. The .mod file is searched for in the following directories:

e Each —I directory specified on the command-line.
e The directory containing the file that contains the USE statement (the current working directory.)

o The standard include area.

A module's public specifications include declared variables, named constants, derived-type definitions,
procedure interfaces, procedures, generic identifiers, and namelist groups.

All USE statements must appear after the program unit header statement and before any other statements. More
than one USE statement may be present, including more than one referring to the same module.

Modules may contain USE statements referring to other modules; however, references must not directly or
indirectly be recursive. The USE statement makes available by use association all publicly accessible entities in
the module, except that the USE statement may rename some module entities.

The same name or specifier may be made accessible by means of two or more USE statements. Such an entity
must not be referenced in the scoping unit containing the USE statements, except where specific procedures
can be distinguished by the overload rules. A rename or ONLY clause may be used to restrict access to one
name or to rename one entity so that both are accessible.

Examples
USE MOD1

117

VOLATILE

USE MOD2, TEMP => VAR
USE MOD3, ONLY: RESULTS, SCORES => VAR2

Type

Non-executable

See Also

“MODULE”

VOLATILE

The VOLATILE statement inhibits all optimizations on the variables, arrays and common blocks that it identifies.
F77 extension

Syntax

VOLATILE nitem [, nitem...]

nitem
is the name of a variable, an array, or a common block enclosed in slashes.

Description

If nitem names a common block, all members of the block are volatile. The volatile attribute of a variable is
inherited by any direct or indirect equivalences, as shown in the example.

Example
COWON /COM C1, 2
VOLATILE /COM, DR I /COM and DIR are vol atile
EQUI VALENCE (DI R, X) I Xis volatile
EQUI VALENCE (X, Y) | Yis volatile

The WHERE statement and the WHERE END WHERE construct permit masked assignments to the elements of
an array (or to a scalar, zero dimensional array).

F90
Syntax
WHERE Statement

WHERE (| ogi cal -array-expr) array-variable = array-expr

WHERE Construct

WHERE (| ogi cal - array-expr)
array-assi gnnent s

118

Chapter 3. Fortran Statements

[ELSE WHERE
array-assi gnnents |
END WHERE

Description

This construct allows for conditional assignment to an array based on the result of a logical array expression.
The logical array expression and the array assignments must involve arrays of the same shape.

Examples

| NTEGER SCORE(30)
CHARACTER GRADE(30)
WHERE (SCORE > 60)
GRADE = ' P
ELSE VHERE
GRADE = ' F'
END V\HERE

WRITE

The WRITE statement is a data transfer output statement.
F90

Syntax

WRITE ([unit=] u, [,control-information) [iolist]
WRITE ([unit=] u, [NML=] namelist-group [,control-information])

where the UNIT= is optional and the external unit specifier u is an integer. This may also be a * indicating
output to the default output unit, 6.

In addition to the unit specification, control-information are optional control specifications, and may be any
of those listed in the following (there are some limits on the allowed specifications depending on the type of
output, for example, non-advancing, direct and sequential):

ADVANCE=spec
spec is a character expression specifying the access method for the write. YES indicates advancing
formatted sequential data transfer. NO indicates non-advancing formatted sequential data transfer.

ASYNCHRONOUS= async
async is a character expression specifying whether to allow the data transfer to be done asynchronously.
The value specified may be ‘YES’ or ‘NO’.

ERR=s
s is an executable statement label for the statement used for processing an error condition.

[FMT=|format
format is a label of a format statement or a character expression that contains a format string.

I0STAT=ios
ios is an integer variable or array element. ios becomes defined with 0 if no error occurs, and a positive
integer when there is an error.

119

WRITE

[NML=] namelist
namelist is the name of a namelist group

REC=rn

rn is a record number to read and must be a positive integer. This is only used for direct access files.
iolist

iolist must either be one of the items in an input list or any other expression. However a character

expression involving concatenation of an operand of variable length cannot be included in an output list
unless the operand is the symbolic name of a constant.

Description

When a WRITE statement is executed the following operations are carried out: data is transferred to the
standard output device from the items specified in the output list and format specification.3 The data are
transferred between the specified destinations in the order specified by the input/output list. Every item whose
value is to be transferred must be defined.

Example
VRI TE (6,90) NPAGE
90 FORMAT(' 1PAGE NUMBER ', |2, 16X, ' SALES REPORT, Cont.')

Non-character Format-specifier

If a format-specifier is a variable which is neither CHARACTER nor a simple INTEGER variable, the compiler
accepts it and treats it as if the contents were character. For example, below sum is treated as a format
descriptor:

real sum

sum = 4h(a)
write(*,sun) string

and is roughly equivalent to

character*4 ch
ch ="'(a)’
wite(*,ch) string

See Also

“READH, “PRINT”

31f an asterisk (*) is used instead of a format identifier, the list-directed formatting rules apply.

120

Chapter 4. Fortran Arrays

Fortran arrays are any object with the dimension attribute. In Fortran 90/95, and in HPE, arrays may be

very different from arrays in older versions of Fortran. Arrays can have values assigned as a whole without
specifying operations on individual array elements, and array sections can be accessed. Also, allocatable arrays
that are created dynamically are available as part of the Fortran 90/95 and HPF standards. Arrays in HPF play

a central role in data distribution and data alignment (refer to this chapter and The High Performance Fortran
Handbook for details on working with arrays in HPF). This chapter describes some of the features of Fortran
90/95 and HPF arrays.

The following example illustrates valid array operations.

REAL(10, 10) A B, C

A=12 ! Assign 12 to all elements of A

B=3 I Assign 3 to all elenents of B

C=A+B ! Add each el enent of A to each of B

Array Types

Fortran supports four types of arrays: explicit-shape arrays, assumed-shape arrays, deferred-shape arrays
and assumed-size arrays. Both explicit-shape arrays and deferred shape arrays are valid in a main program.
Assumed shape arrays and assumed size arrays are only valid for arrays used as dummy arguments. Deferred
shape arrays, where the storage for the array is allocated during execution, must be declared with either the
ALLOCATABLE or POINTER attributes.

Every array has properties of type rank, shape and size. The extent of an array’s dimension is the number

of elements in the dimension. The array rank is the number of dimensions in the array, up to a maximum

of seven. The shape is the vector representing the extents for all dimensions. The size is the product of the
extents. For some types of arrays, all of these properties are determined when the array is declared. For other
types of arrays, some of these properties are determined when the array is allocated or when a procedure
using the array is entered. For arrays that are dummy arguments, there are several special cases.

Allocatable arrays are arrays that are declared but for which no storage is allocated until an allocate statement
is executed when the program is running. Allocatable arrays provide Fortran 90/95 and HPF programs with
dynamic storage. Allocatable arrays are declared with a rank specified with the ":" character rather than with
explicit extents, and they are given the ALLOCATABLE attribute.

121

Array Specification

Explicit Shape Arrays

Explicit shape arrays are those arrays familiar to FORTRAN 77 programmers. Each dimension is declared with
an explicit value. There are two special cases of explicit arrays. In a procedure, an explicit array whose bounds
are passed in from the calling program is called an automatic-array. The second special case, also found in a
procedure, is that of an adjustable-array which is a dummy array where the bounds are passed from the calling
program.

Assumed Shape Arrays

An assumed shape array is a dummy array whose bounds are determined from the actual array. Intrinsics
called from the called program can determine sizes of the extents in the called program’s dummy array.

Deferred Shape Arrays

A deferred shape array is an array that is declared, but not with an explicit shape. Upon declaration, the array's
type, its kind, and its rank (number of dimensions) are determined. Deferred shape arrays are of two varieties,
allocatable arrays and array pointers.

Assumed Size Arrays

An assumed size array is a dummy array whose size is determined from the corresponding array in the calling
program. The array’s rank and extents may not be declared the same as the original array, but its total size
(number of elements) is the same as the actual array. This form of array should not need to be used in new
Fortran programs.

Array Specification

Arrays may be specified in either of two types of data type specification statements, attribute-oriented
specifications or entity-oriented specifications. Arrays may also optionally have data assigned to them when
they are declared. This section covers the basic form of entity-based declarations for the various types of
arrays. Note that all the details of array passing for procedures are not covered here; refer to The Fortran 95
Handbook for complete details on the use of arrays as dummy arguments.

Explicit Shape Arrays
Explicit shape arrays are defined with a specified rank, each dimension must have an upper bound specified,
and a lower bound may be specified. Each bound is explicitly defined with a specification of the form:

[l ower - bound:] upper-bound

An array has a2 maximum of seven dimensions. The following are valid explicit array declarations:

| NTEGER NUML(1, 2, 3)

| NTEGER NUMR(- 12: 6, 100: 1000)
| NTEGER NUMB(0, 12, 12, 12)

| NTEGER NUMB(M N, P: Q L, 99)

Three di mensi ons
Two di mensions with | ower & upper bounds
Array of size 0

!
!
!
I Array with 4 di mensions

Assumed Shape Arrays

An assumed shape array is always a dummy argument. An assumed shape array has a specification of the form:

122

Chapter 4. Fortran Arrays

[ower - bound]

The number of colons (:) determines the array’s rank. An assumed shape array cannot be an ALLOCATABLE or
POINTER array.

Deferred Shape Arrays

An deferred shape array is an array pointer or an allocatable array. An assumed shape array has a specification
that determines the array's rank and has the following form for each dimension:

For example:

| NTEGER, ALLOCATABLE: : NUM2(:)

Assumed Size Arrays
An assumed size array is a dummy argument with an assumed size. The array’s rank and bounds are specified
with a declaration that has the following form:
[explicit-shape-spec-list ,][|ower-bound:]*
For example:

SUBROUTI NE YSUML(M B, C)
I NTEGER M
REAL, DI MENSION(M 4,5,*) :: B,C

Array Subscripts and Access

There are a variety of ways to access an array in whole or in part. Arrays can be accessed, used, and assigned
to as whole arrays, as elements, or as sections. Array elements are the basic access method, for example:

| NTEGER, DI MENSI ON(3, 11) :: NUMB
NUMB(3, 1) =5

This assigns the value 5 to element 3,1 of NUMB

The array NUMB may also be accessed as an entire array:
NUVB=5

This assigns the value 5 to all elements of NUMB.

Array Sections and Subscript Triplets

Another possibility for accessing array elements is the array section. An array section is an array accessed by a
subscript that represents a subset of the entire array's elements and is not an array element. An array section
resulting from applying a subscript list may have a different rank than the original array. An array section's
subscript list consists of subscripts, subscript triplets, and/or vector subscripts.

The following example uses a subscript triplet and a subscript, assigning the value 6 to all elements of NUMB
with the second dimension of value 3 (NUMB(1,3), NUMB(2,3), NUMB(3,3)).

NUVB(: , 3) =6

123

Array Constructors

The following array section uses the array subscript triplet and a subscript to access three elements of the
original array. This array section could also be assigned to a rank one array with three elements, as shown
here:

| NTEGER(3, 11) NUMB

| NTEGER(3) NUMC

NUMB(: , 3) =6

NUMC=NUMB(: , 3)

In this example, NUMC is rank 1 and NUMB is rank 2. This assignment, using the subscript 3, illustrates how
NUMC, and the array section of NUMB, has a shape that is of a different rank than the original array.

The general form for an array's dimension with a vector subscript triplet is:

[subscript] : [subscript] [:stride]

The first subscript is the lower bound for the array section, the second is the upper bound and the third is the
stride. The stride is by default one. If all values except the : are omitted, then all the values for the specified

dimensions are included in the array section. For example, using the NUMB previously defined, the following
statementhas a stride of 2, and assigns the value 7 to the elements NUMB(1,3) and NUMB(3,3). :

NUMB(1: 3: 2, 3) =7
Array Sections and Vector Subscripts

Vector-valued subscripts specify an array section by supplying a set of values defined in a one dimensional
array (vector) for a dimension or several dimensions of an array section. For example:

I NTEGER J(2), 1(2)
| NTEGER NUMB(3, 6)
I1=(/1,2/)
J=(12,3/)
NUVB(J, |) =7

This array section uses the vectors I and J to assign the value 7 to each of the elements: NUMB(2,1),
NUMB(2,2), NUMB(3,1), and NUMB(3,2).

Array Constructors

An array constructor can be used to assign values to an array. Array constructors form one-dimensional vectors
to supply values to a one-dimensional array, or one dimensional vectors and the RESHAPE function to supply
values to arrays with more than one dimension.

Array constructors can use a form of implied DO similar to that in a DATA statement. For example:

| NTEGER DI MENSION(4):: K = (/1,2,7,11/)
| NTEGER DI MENSI ON(20):: J = (/(I,1=1,40,2)/)

CM Fortran Extensions

The ARRAY Attribute §

The PGHPF compiler provides several extensions for handling arrays. The compiler handles the CM Fortran
attribute ARRAY. The ARRAY attribute is similar to the DIMENSION attribute. Refer to for more details on the
ARRAY statement.

124

Chapter 4. Fortran Arrays

Array Constructors Extensions §

The PGHPF compiler supports an extended form of the array constructor specification. In addition to the (/ ../)
specification for array constructors, PGHPF supports the notation where [and] begin and end, respectively, an
array constructor.

In addition, an array constructor item may be a 'subscript triplet' in the form of an array section where the
values are assigned to the array:

| ower - bound : upper-bound [: <stride>]

For the values i : j : k the array would be assigned values i, i+k, i+2k; ..., j. If k is not present, stride is
assumed to be 1.

For example:
I NTEGER, DI MENSI ON(20):: K = [1:40: 2]

125

126

Chapter 5. Input and Output

Input, output, and format statements provide the means for transferring data to or from files. Data is
transferred as records to or from files. A record is a sequence of data which may be values or characters and
afile is a sequence of such records. A file may be internal, that is, held in memory, or external such as those
held on disk. To access an external file a formal connection must be made between a unit, for example a disk
file, and the required file. An external unit must be identified either by a positive integer expression, the value
of which indicates a unit, or by an asterisk (*) which identifies a standard input or output device.

This chapter describes the types of input and output available and provides examples of input, output and
format statements. There are four types of input/output used to transfer data to or from files: unformatted,
formatted, list directed, and namelist.

e unformatted data is transferred between the item(s) in the input/output list (iolist) and the current record
in the file. Exactly one record may be read or written.

e formatted data is edited to conform to a format specification, and the edited data is transferred between
the item or items in the iolist, and the file. One or more records may be read or written. Non-advancing
formatted data transfers are a variety of formatted 1/0 where a portion of a data record is transferred with
each input/output statement.

e list directed input/output is an abbreviated form of formatted input/output that does not use a format
specification. Depending on the type of the data item or data items in the iolist, data is transferred to or
from the file, using a default, and not necessarily accurate format specification.

* namelist input/output is a special type of formatted data transfer; data is transferred between a named group
(namelist group) of data items and one or more records in a file.

File Access Methods

You can access files using one of two methods, sequential access, or direct access (random access). The
access method is determined by the specifiers supplied when the file is opened using the OPEN statement.
Sequential access files are accessed one after the other, and are written in the same manner. Direct access
files are accessed by specifying a record number for input, and by writing to the currently specified record on
output.

127

Opening and Closing Files

Files may contain one of two types of records, fixed length records or variable length records. To specify the
size of the fixed length records in a file, use the RECL specifier with the OPEN statement. RECL sets the record
length in bytes." RECL can only be used when access is direct.

A record in a variable length formatted file is terminated with \n. A record in a variable length unformatted file
is preceded and followed by a word indicating the length of the record.

Standard Preconnected Units

Certain input and output units are predefined, depending on the value of compiler options. The PGI Fortran
compilers —Mdef aul t uni t option tells the compiler to treat "*" as a synonym for standard input for
reading and standard output for writing. When the option is —~Mhodef aul t uni t, the compiler treats "*" as a
synonym for unit 5 on input and unit 6 on output.

Opening and Closing Files

The OPEN statement establishes a connection to a file. OPEN allows you to do any of the following

¢ Connect an existing file to a unit.
e (Create and connect a file to a unit.
e (Create a file that is preconnected.

o Establish the access method and record format for a connection.

OPEN has the form:
OPEN (i st)

where list contains a unit specifier of the form:
[UNIT=] u

where u, an integer, is the external unit specifier.

In addition list may contain one of each of the specifiers shown in Table 5.1, “OPEN Specifiers”.

Direct Access Files

If a file is connected for direct access using OPEN with ACCESS="DIRECT", the record length must be specified
using RECL=, and optionally one of each of the other specifiers may be used.

Any file opened for direct access must be via fixed length records.

In the following example a new file, book.dat, is created and connected to unit 12 for direct formatted input/
output with a record length of 98 characters. Numeric values will have blanks ignored and the variable E1 will
be assigned some positive value if an error condition exists when the OPEN statement is executed; execution
will then continue with the statement labeled 20. If no error condition pertains, E1 is assigned the value 0 and
execution continues with the statement following the OPEN statement.

OPEN(12, | OSTAT=E1, ERR=20, FI LE=" book. dat ' , BLANK=" NULL"' ,
+ACCESS=' DI RECT' , RECL=98, FORM=' FORVATTED , STATUS=" NEW)

"The units depend on the value of the FORTRANOPT environment variable. If the value is vaxio, then the record length is in units of 32-bit words. If
FORTRANOPT is not defined, or its value is something other than vaxio, then the record length is always in units of bytes.

128

Chapter 5. Input and Output

Closing a File

Close a unit by specifying the CLOSE statement from within any program unit. If the unit specified does not exist
or has no file connected to it, the CLOSE statement has no effect.

Provided the file is still in existence, it may be reconnected to the same or a different unit after the execution of
a CLOSE statement. An implicit CLOSE is executed when a program stops.

The CLOSE statement terminates the connection of the specified file to a unit.

CLCSE ([UNIT=] u [,| OSTAT=ios] [,ERR= errs]
[, STATUS= sta] [, D SPOCSE= sta] [, DI SP= sta])

CLOSE takes the status values IOSTAT, ERR, and STATUS, similar to those described in Table 5.1, “OPEN
Specifiers”. In addition, CLOSE allows the DISPOSE or DISP specifier which can take a status value sta which
is a character string, where case is insignificant, specifying the file status (the same keywords are used for the
DISP and DISPOSE status). Status can be KEEP or DELETE. KEEP cannot be specified for a file whose dispose
status is SCRATCH. When KEEP is specified (for a file that exists) the file continues to exist after the CLOSE
statement, conversely DELETE deletes the file after the CLOSE statement. The default value is KEEP unless the
file status is SCRATCH.

Table 5.1. OPEN Specifiers

Specifier Description

ACCESS=acc Where acc is a character string specifying the access method for file
connection as DIRECT (random access) or SEQUENTIAL. The default is
SEQUENTIAL.

ACTION=act Where act is a character string specifying the allowed actions for the file
and is one of READ, WRITE, or READWRITE.

BLANK=bInk Where blnk is a character string which takes the value NULL or ZERO:
NULL causes all blank characters in numeric formatted input fields to

be ignored with the exception of an all-blank field which has a value of
zero. ZERO causes all blanks other than leading blanks to be treated as
zeros. The default is NULL. This specifier must only be used when a file is
connected for formatted input/output.

DELIM=del Specify the delimiter for character constants written by a list-directed or
namelist-formatted statement. The options are APOSTROPHE, QUOTE,
and NONE.

ERR=errs An error specifier which takes the form of a statement label of an
executable statement in the same program. If an error condition occurs,
execution continues with the statement specified by errs.2

FILE=fin Where fin is a character string defining the file name to be connected to
the specified unit.

FORM=fm Where fm is a character string specifying whether the file is being
connected for FORMATTED or UNFORMATTED output respectively. The
default is FORMATTED.

129

Data Transfer Statements

Specifier Description

IOSTAT=ios Input/output status specifier where ios is an integer scalar memory
reference. If this is included in list, ios becomes defined with 0 if no
error exists or a positive integer when there is an error condition.”

PAD=padding |Specifies whether or not to use blank padding for input items. The

padding values are YES and NO. The value NO requires that the input
record and the input list format specification match.

POSITION=pos

Specifies the position of an opened file. ASIS indicates the file position
remains unchanged. REWIND indicates the file is to be rewound, and
APPEND indicates the file is to positioned just before an end-of-file
record, or at its terminal point.

RECL=rl Where 1l is an integer which defines the record length in a file connected
for direct access and is the number of characters when formatted input/
output is specified. This specifier must only be given when a file is
connected for direct access.

STATUS=sta The file status where sta is a character expression: it can be NEW, OLD,

SCRATCH, REPLACE or UNKNOWN. When OLD or NEW is specified a file
specifier must be given. SCRATCH must not be used with a named file.
The default is UNKNOWN.

*If TOSTAT and ERR are not present, the program terminates if an error occurs.

A unit may be the subject of a CLOSE statement from within any module. If the unit specified does not exist or
has no file connected to it, the use of the CLOSE statement has no effect. Provided the file is still in existence
it may be reconnected to the same or a different unit after the execution of a CLOSE statement. Note that an

implicit CLOSE is executed when a program stops.

In the following example the file on UNIT 6 is closed and deleted.

CLOSE(UNI T=6, STATUS=' DELETE')

Data Transfer Statements

Once a unit is connected, either using a preconnection, or by executing an OPEN statement, data transfer
statements may be used. The available data transfer statements include: READ, WRITE, and PRINT. The general
form for these data transfer statements is shown in Chapter 3, “Fortran Statements”; refer to that section for

details on the READ, WRITE and PRINT statements and their valid I/0 control specifiers.

Unformatted Data Transfer

130

Unformatted data transfer allows data to be transferred between the current record and the items specified in

an input/output list. Use OPEN to open a file for unformatted output:

OPEN (2, FILE="new dat', FORM-' UNFORVATTED)

The unit specified must be an external unit.

Chapter 5. Input and Output

After data is transferred, the file is positioned after the last record read or written, if there is no error condition
or end-of-file condition set.

Note

Unformatted data transfer cannot be carried out if the file is connected for formatted input/output.

The following example shows an unformatted input statement:
READ (2, ERR=50) A, B

* On output to a file connected for direct access, the output list must not specify more values than can fit into
a record. If the values specified do not fill the record the rest of the record is undefined.

* On input, the file must be positioned so that the record read is either an unformatted record or an endfile
record.

* The number of values required by the input list in the input statement must be less than or equal to the
number of values in the record being read. The type of each value in the record must agree with that of the
corresponding entity in the input list. However one complex value may correspond to two real list entities
or vice versa. If the input list item is of type CHARACTER, its length must be the same as that of the character
value

e In the event of an error condition, the position of the file is indeterminate.

Formatted Data Transfer

During formatted data transfer, data is edited to conform to a format specification, and the edited data is
transferred between the items specified in the input or output statement’s iolist and the file; the current record
is read or written and, possibly, so are additional records. On input, the file must be positioned so that the
record read is either a formatted record or an endfile record. Formatted data transfer is prohibited if the file is
connected for unformatted input/output.

For variable length record formatted input, each newline character is interpreted as a record separator. On
output, the I/0 system writes a newline at the end of each record. If a program writes a newline itself, the
single record containing the newline will appear as two records when read or backspaced over. The maximum
allowed length of a record in a variable length record formatted file is 2000 characters.

Implied DO List Input Output List

An implied DO list takes the form

(iolist,do-var=varl, var2, var 3)

where the items in iolist are either items permissible in an input/output list or another implied DO list. The
value do-var is an INTEGER, REAL or DOUBLE PRECISION variable and var1, var2 and var3 are arithmetic
expressions of type INTEGER, REAL or DOUBLE PRECISION. Generally, do-var, var1, var2 and var3 are of type
INTEGER. Should iolist occur in an input statement, the do-var cannot be used as an item in iolist. If var3 and
the preceding comma are omitted, the increment takes the value 1. The list items are specified once for each
iteration of the DO loop with the DO-variable being substituted as appropriate.

In the following example 0XO, C(7), C(8) and C(9) are each set to 0.0. TEMP, D(1) and D(2) are set to 10.0.

131

Formatted Data Transfer

REAL C(6), D(6)
DATA OXO, (C(1),1=7,9), TEMP, (D(J), J=1, 2)/ 4*0. 0, 3*10. 0/

The following two statements have the same effect.
READ *, A B, (R(1),1=1,4),S

READ *, A B, R(1), R(2),R(3),R(4),S

Format Specifications

132

Format requirements may be given either in an explicit FORMAT statement or alternatively, as fields within
an input/output statement (as values in character variables, arrays or other character expressions within the
input/output statement).

When a format identifier in a formatted input/output statement is a character array name or other character
expression, the leftmost characters must be defined with character data that constitute a format specification
when the statement is executed. A character format specification is enclosed in parentheses. Blanks may
precede the left parenthesis. Character data may follow the right-hand parenthesis and has no effect on the
format specification. When a character array name is used as a format identifier, the length of the format
specification can exceed the length of the first element of the array; a character array format specification is
considered to be an ordered concatenation of all the array elements. When a character array element is used
as a format identifier the length must not exceed that of the element used.

The FORMAT statement has the form:
FORMAT (i st-of-format-requirenents)

The list of format requirements can be any of the following, separated by commas:

* Repeatable editor commands which may or may not be preceded by an integer constant which defines the
number of repeats.

e Non-repeatable editor commands.

» A format specification list enclosed in parentheses, optionally preceded by an integer constant which defines
the number of repeats.

Each action of format control depends on a FORMAT specified edit code and the next item in the input/output
list used. If an input/output list contains at least one item, there must be at least one repeatable edit code in the
format specification. An empty format specification FORMAT () can only be used if no list items are specified.
In such a case, one input record is skipped or an output record containing no characters is written. Unless the
edit code or the format list is preceded by a repeat specification, a format specification is interpreted from left
to right. When a repeat specification is used, the appropriate item is repeated the required number of times.

Each repeatable edit code has a corresponding item in the iolist; however when a list item is of type complex
two edit codes of E E, D or G are required. The edit codes P, X, T, TL, TR, S, SP, SS, H, BN, BZ, /, : and
apostrophe act directly on the record and have no corresponding item in the input/output list.

The file is positioned after the last character read or written when the edit codes I, E E, D, G, L, A, H or
apostrophe are processed. If the specified unit is a printer then the first character of the record is used to
control the vertical spacing as shown in the following table:

Chapter 5. Input and Output

Table 5.2. Format Character Controls for a Printer

Character Vertical Spacing
Blank One line

0 Two lines

1 To first line on next page
+ No advance

A Format Control — Character Data

The A specifier transfers characters. The A can optionally be followed by a field width w. When w is not
specified, the width is determined by the size of the data item.

On output, if is the length of the character item and w is the field width, then the following rules apply:

e If w > 1, w—1 blanks before the character.

o Ifw < I, leftmost w characters.
On input, if 1 is the length of the character I/O item and w is the field width, then the following rules apply:

e Ifw > |, rightmost 1 characters from the input filed.

e If w <, leftmost w characters from the input filed and followed by 1 — w blanks.
You can also use the A format specifier to process data types other than CHARACTER. For types other than
CHARACTER, the number of characters supplied for input/output will equal the size in bytes of the data

allocated to the data type. For example, an INTEGER*4 value is represented with 4 characters and a LOGICAL*2
is represented with 2 characters.

The following shows a simple example that reads two CHARACTER arrays from the file data.src:
CHARACTER STR1*8, STR2*12
OPEN(2, FILE="data.src')

READ(2, 10) STR1, STR2
10 FORMAT (A8, Al2)

B Format Control — Binary Data

The B field descriptor transfers binary values and can be used with any integer data type. The edit descriptor
has the form:

B[. n
where w specifies the field width and m indicates minimum field width on output.

On input, the external field to be input must contain (unsigned) binary characters only (0 or 1). An all blank
field is treated as a value of zero. If the value of the external field exceeds the range of the corresponding list
element, an error occurs.

133

Formatted Data Transfer

On output, the B field descriptor transfers the binary values of the corresponding /0 list element, right-
justified, to an external field that is w characters long.

e If the value to be transmitted does not fill the field, leading spaces are inserted.
e If the value is too large for the field, the entire field is filled with asterisks.
e If mis present, the external field consists of at least m digits, and is zero-filled on the left if necessary.

e If m is zero, and the internal representation is zero, the external field is blank-filled.

D Format Control — Real Double Precision Data with Exponent

The D specifier transfers real values for double precision data with a representation for an exponent. The form
of the D specifier is:

Dw. d
where w is the field width and d the number of digits in the fractional part.
For input, the same conditions apply as for the F specifier described later in this chapter.

For output, the scale factor k controls the decimal normalization. The scale factor k is the current scale factor
specified by the most recent P format control.

e If one hasn't been specified, the default is zero (0).
e If -d < k <= 0, the output file contains leading zeros and d-1l significant digits after the decimal point.

e If 0 < k < d+2, there are exactly |kl significant digits to the left of the decimal point and d-&+1 significant
digits to the right of the decimal point.

¢ Other values of k are not allowed.

For example:

DOUBLE PRECI SI ON VAL1
VAL1 = 141.8835

WRI TE(*, 20) VALl
20 FORMAT (D10.4)
produces the following:

0. 1418D+03

E Format Control — Real Single Precision Data with Exponent

134

The E specifier transfers real values for single precision data with an exponent. The E format specifier has two
basic forms:

Ew. d
Ew. dEe

where w is the field width, d the number of digits in the fractional part and e the number of digits to be printed
in the exponent part.

Chapter 5. Input and Output

For input the same conditions apply as for F editing.

For output the scale factor controls the decimal normalization as in the D specifier.

EN Format Control

The EN specifier transfers real values using engineering notation.

ENw. d
ENw. dEe

where w is the field width, d the number of digits in the fractional part and e the number of digits to be printed
in the exponent part.

On output, the number is in engineering notation where the exponent is divisible by 3 and the absolute value
of the significand is 1000 > Isignificand | 1. This format is the same as the E format descriptor, except for
restrictions on the size of the exponent and the significand.

ES Format Control

The ES specifier transfers real values in scientific notation. The ES format specifier has two basic forms:

ESw. d
ESw. dEe

where w is the field width, d the number of digits in the fractional part and e the number of digits to be printed
in the exponent part.

For output, the scale factor controls the decimal normalization as in the D specifier.

On output, the number is presented in scientific notation, where the absolute value of the significand is 10> |
significand | 1.

F Format Control - Real Single Precision Data

The F specifier transfers real values. The form of the F specifier is:

Fw. d
where w is the field width and d is the number of digits in the fractional part.

On input, if the field does not contain a decimal digit or an exponent, right-hand d digits, with leading zeros,
are interpreted as being the fractional part.

On output, a leading zero is only produced to the left of the decimal point if the value is less than one.

G Format Control

The G format specifier provides generalized editing of real data. The G format has two basic forms:

Gw. d
QGw. dEe

The specifier transfers real values; it acts like the F format control on input and depending on the value’s
magnitude, like E or F on output. The magnitude of the data determines the output format. For details on

135

Formatted Data Transfer

the actual format used, based on the magnitude, refer to the ANSI FORTRAN Standard (Section 13.5.9.2.3 G
Editing).

| Format Control — Integer Data

The I format specifier transfers integer values. The I format specifier has two basic forms:

I w
lw. m

where w is the field width and m is the minimum filed width on output, including leading zeros. If present, m
must not exceed width w.

On input, the external field to be input must contain (unsigned) decimal characters only. An all blank field is
treated as a value of zero. If the value of the external field exceeds the range of the corresponding list element,
an error occurs.

On output, the I format descriptor transfers the decimal values of the corresponding I/0 list element, right-
justified, to an external field that is w characters long.

e If the value to be transmitted does not fill the field, leading spaces are inserted.
o If the value is too large for the field, the entire field is filled with asterisks.
e If mis present, the external field consists of at least m digits, and is zero-filled on the left if necessary.

e If m is zero, and the internal representation is zero, the external field is blank-filled.

L Format Control — Logical Data

The L format control transfers logical data of field width w:

Lw

On input, the list item will become defined with a logical value; the field consists of optional blanks, followed
by an optional decimal point followed by T or E The values .TRUE. or .FALSE. may also appear in the input field

The output field consists of w-1 blanks followed by T or F as appropriate.

Quote Format Control

136

Quote editing prints a character constant. The format specifier writes the characters enclosed between the
quotes and cannot be used on input. The field width is that of the characters contained within quotes (you can
also use apostrophes to enclose the character constant).

To write an apostrophe (or quote), use two consecutive apostrophes (or quotes).

For example:

WRITE (*, 101)
101 FORVMAT ('Print an apostrophe '' and end.')

Produces:

Print an apostrophe ' and end.

Chapter 5. Input and Output

Similarly, you can use quotes, for example:

VRITE (*, 102)
102 FORMAT ("Print a line with a "" and end.")

Produces:

Print aline with a " and end.

BN Format Control — Blank Control

The BN and BZ formats control blank spacing. BN causes all embedded blanks except leading blanks in
numeric input to be ignored, which has the effect of right-justifying the remainder of the field. Note that a field
of all blanks has the value zero. Only input statements and I, F, E, D and G editing are affected.

BZ causes all blanks except leading blanks in numeric input to be replaced by zeros. Only input statements and
I, E E, D and G editing are affected.

H Format Control — Hollerith Control

The H format control writes the n characters following the H in the format specification and cannot be used on
input.

The basic form of this format specification is:

nHclcn. ..

where n is the number of characters to print and c1 through cn are the characters to print.

O Format Control Octal Values

The O and Z field descriptors transfer octal or hexadecimal values and can be used with an integer data type.
They have the form:

oM.mM and ZW . mM
where w specifies the field width and m indicates minimum field width on output.

On input, the external field to be input must contain (unsigned) octal or hexadecimal characters only. An all
blank field is treated as a value of zero. If the value of the external field exceeds the range of the corresponding
list element, an error occurs.

On output, the O and Z field descriptors transfer the octal and hexadecimal values, respectively, of the
corresponding 1/0 list element, right-justified, to an external field that is w characters long.

e If the value to be transmitted does not fill the field, leading spaces are inserted.
e If the value is too large for the field, the entire field is filled with asterisks.
e If m is present, the external field consists of at least m digits, and is zero-filled on the left if necessary.
e If m is zero, and the internal representation is zero, the external field is blank-filled.
P Format Specifier — Scale Control

The P format specifier

137

Formatted Data Transfer

kP

is the scale factor format which is applied as follows.

e VWith E E, D and G editing on input and F editing on output, the external number equals the internal number
multiplied by 10*#k . If there is an exponent in the field on input, editing with E E, D and G the scale factor
has no effect.

e On output with E and D editing, the basic real constant part of the number is multiplied by 10**k and the
exponent reduced by k ; with G editing the effect of the scale factor is suspended unless the size of the
datum to be edited is outside the range permitted for F editing. If E editing is required, the scale factor has
the same effect as with E output editing.

The following example uses a scale factor.

DI MENSI ON
A(6)

DO 10 | = 1,
10 A(l) = 25.
TYPE 100, A
100 FORMAT(' ', F8.2, 2PF8. 2, F8. 2)

6

This example produces this output:

25.00
2500. 00 2500. 00 2500. 00 2500. 00 2500. 00

Note

The effect of the scale factor continues until another scale factor is used.

Q Format Control - Quantity

The Q edit descriptor calculates the number of characters remaining in the input record and stores that value
in the next I/0 list item. On output, the Q descriptor skips the next I/0 item.

S Format Control — Sign Control

The S format specifier restores the default processing for writing a plus; the default is SS processing.

SP forces the processor to write a plus in any position where an optional plus is found in numeric output
fields, this only affects output statements.

SS stops the processor from writing a plus in any position where an optional plus is found in numeric output
fields, this only affects output statements.

T, TL and X Format Controls — Spaces and Tab Controls

138

The T specifier controls which portion of a record in an iolist value is read from or written to a file. The
general form, which specifies that the nth value is to be written to or from a record, is as follows:

Tn

The TL form specifies the relative position to the left of the data to be read or written:

Chapter 5. Input and Output

TLn

and specifies that the nth character to the left of the current position is to be written to or from the record. If
the current position is less than or equal to n, the transmission will begin at position one of the record.

The TR form specifies the relative position to the right of the data to be read or written:

TRn
and specifies that the nth character to the right of the current position is to be written to or from the record.

The X control specifies a number of characters to skip forward and that the next character to be written to or
from is n characters forward from the current position:

nX

The following example uses the X format specifier:

NPAGE = 19
WRI TE (6, 90) NPAGE
90 FORVAT(' 1PAGE NUMBER , |2, 16X, ' SALES REPORT, Cont.')

produces:

PAGE NUMBER 19 SALES REPORT, Cont.

The following example shows use of the T format specifier:

PRI NT 25
25 FORMAT (T41,' COLUWN 2', T21,' COLUWN 1')

produces:

COLUW 1 COLUMWN 2

Z Format Control Hexadecimal Values

The O and Z field descriptors transfer octal or hexadecimal values and can be used with any integer data type.
They have the form:

oM.m and Zwf . nj
where w specifies the field width and m indicates minimum field width on output.

On input, the external field to be input must contain (unsigned) octal or hexadecimal characters only. An all-
blank field is treated as a value of zero. If the value of the external field exceeds the range of the corresponding
list element, an error occurs.

On output, the O and Z field descriptors transfer the octal and hexadecimal values, respectively, of the
corresponding 1/0 list element, right-justified, to an external field that is w characters long.

If the value to be transmitted does not fill the field, leading spaces are inserted.

If the value is too large for the field, the entire field is filled with asterisks.

If m is present, the external field consists of at least m digits, and is zero-filled on the left if necessary.

If m is zero, and the internal representation is zero, the external field is blank-filled.

139

Non-advancing Input and Output

Slash Format Control / — End of Record
The slash (/) control indicates the end of data transfer on the current record.

On input from a file connected for sequential access, the rest of the current record is skipped and the file
positioned at the start of the next record.

On output a new record is created which becomes the last and current record.

¢ For an internal file connected for direct access, the record is filled with blank characters.

e For a direct access file, the record number is increased by one and the file is positioned at the start of the
record.

Multiple slashes are permitted, thus multiple records are skipped.

The : Format Specifier — Format Termination

The (:) control terminates format control if there are no more items in the input/output list. It has no effect if
there are any items left in the list.

$ Format Control

The §$ field descriptor allows the programmer to control carriage control conventions on output. It is ignored
on input. For example, on terminal output, it can be used for prompting.

The form of the §$ field descriptor is:
$

Variable Format Expressions

Variable format expressions, <expr>, are supported. They provide a means for substituting run-time
expressions for the field width, other parameters for the field and edit descriptors in 2 FORMAT statement
(except for the H field descriptor and repeat counts).

Variable format expressions are enclosed in "<" and ">" and are evaluated each time they are encountered in
the scan of a format. If the value of a variable used in the expression changes during the execution of the I/0
statement, the new value is used the next time the format item containing the expression is processed.

Non-advancing Input and Output

Non-advancing input/output is character-oriented and applies to sequential access formatted external files. The
file position is after the last character read or written and not automatically advanced to the next record.

For non-advancing input/output, use the ADVANCE="NO" specifier. Two other specifiers apply to non-advancing
I0: EOR applies when end of record is detected and SIZE returns the number of characters read.

List-directed formatting

List-directed formatting is an abbreviated form of input/output that does not require the use of a format
specification. The type of the data determines how a value is read/written. On output, it is not always accurate

140

Chapter 5. Input and Output

enough for certain ranges of values. The characters in a list-directed record constitute a sequence of values
which cannot contain embedded blanks except those permitted within a character string.

To use list-directed input/output formatting, specify a * for the list of format requirements, as illustrated in the
following example that uses list-directed output:

READ(1, *) VAL1l, VAL2
List-directed input

The form of the value being input must be acceptable for the type of item in the iolist. Blanks must not be used
as zeros nor be embedded in constants except in a character constant or within a type complex form contained
in parentheses.

Table 5.3. List Directed Input Values

Input List Type Form

Integer A numeric input field.

Real A numeric input field suitable for F editing with no fractional part
unless a decimal point is used.

Double precision Same as for real.

Complex An ordered pair of numbers contained within parentheses as shown:
(real part, imaginary part).

Logical A logical field without any slashes or commas.

Character A non-empty character string within apostrophes. A character

constant can be continued on as many records as required. Blanks,
slashes and commas can be used.

A null value has no effect on the definition status of the corresponding iolist item. A null value cannot represent
just one part of a complex constant but may represent the entire complex constant. A slash encountered as a
value separator stops the execution of that input statement after the assignment of the previous value. If there
are further items in the list, they are treated as if they are null values.

Commas may be used to separate the input values. If there are consecutive commas, or if the first non-blank
character of a record is a comma, the input value is a null value. Input values may also be repeated.

In the following example of list-directed formatting, assume that A and K are defined as follows and all other
variables are undefined.

A= -1.5

K= 125

Suppose that you have an input file the contains the following record, where the / terminates the input and
consecutive commas indicate a null:

10, - 14, 25. 2, - 76, 313, , 29/

Further suppose that you use the following statement to read in the list from the input file:
READ * I, J, X, Y, Z, A, C K

The variables are assigned the following values by the list-directed input/output mechanism:

141

List-directed formatting

=10 J=-14 X=25.2 Y=-76.0
7=313.0 A=-15 =29 K=125

In the example the value for A does not change because the input record is null.Input is terminated with the /
so no input is read for K; so the program assumes null and K retains its previous value.

List-directed output

List directed input/output is an abbreviated form of formatted input/output that does not require the use of a
format specification. Depending on the type of the data item or data items in the iolist, data is transferred to
or from the file, using a default, and not necessarily accurate format specification. The data type of each item
appearing in the iolist is formatted according to the rules in the following table:

Table 5.4. Default List Directed Output Formatting

Data Type Default Formatting
BYTE I5

INTEGER*2 I7

INTEGER*4 112

INTEGER*8 124

LOGICAL*1 15 (12*)

LOGICAL*2 L2

LOGICAL*4 L2

LOGICAL*8 L2

REAL*4 G15.7e2

REAL*8 G25.16€3
COMPLEX*8 (G15.7e2, G15.7e2)
COMPLEX*16 (G25.16€3, G25.16€3)
CHAR *n An

This format is applied when the option —Munixlogical is selected when compiling.

The length of a record is less than 80 characters; if the output of an item would cause the length to exceed 80
characters, a new record is created.

Issues to note when using list-directed output:

e New records may begin as necessary.
e Logical output constants are T for true and F for false.

* Complex constants are contained within parentheses with the real and imaginary parts separated by a
comma.

e Character constants are not delimited by apostrophes and have each internal apostrophe (if any are
present) represented externally by one apostrophe.

142

Chapter 5. Input and Output

e Each output record begins with a blank character to provide carriage control when the record is printed.

e A typeless value output with list-directed 1/0 is output in hexadecimal form by default. There is no other
octal or hexadecimal capability with list-directed 1/0.

Commas in External Field

Use of the comma in an external field eliminates the need to "count spaces” to have data match format edit
descriptors. The use of a comma to terminate an input field and thus avoid padding the field is fully supported.

Namelist Groups

The NAMELIST statement allows for the definition of namelist groups. A namelist group allows for a special
type of formatted input/output, where data is transferred between a named group of data items defined in a
NAMELIST statement and one or more records in a file.

The general form of a namelist statement is:
NAMELI ST / group-nane/ nanelist [[,] /group-nane/ nanelist]...

where:

group-name
is the name of the namelist group.
namelist
is the list of variables in the namelist group.

Namelist Input

Namelist input is accomplished using a READ statement by specifying a namelist group as the input item. The
following statement shows the format:

READ ([unit=] u, [NML=] nanelist-group [,control-information])
One or more records are processed which define the input for items in the namelist group.
The records are logically viewed as follows:
$group-nane itenrvalue [,itemrvalue].... $ [END|

The following rules describe these input records:

e The start or end delimiter (§) may be an ampersand (&).

e The start delimiter must begin in column 2 of a record.

e The group-name begins immediately after the start delimiter.

e The spaces or tabs may not appear within the group-name, within any item, or within any constants.

e The value may be constants as are allowed for list directed input, or they may be a list of constants
separated by commas (,). A list of items is used to assign consecutive values to consecutive elements of an
array.

143

Namelist Groups

e Spaces or tabs may precede the item, the = and the constants.
e Array items may be subscripted.

e Character items may be substringed.

Namelist Output

Namelist output is accomplished using a READ statement by specifying a namelist group as the output item. The
following statement shows the format:

WRITE ([unit=] u, [NM.=] nanelist-group [,control-information])

The records output are logically viewed as follows:

$gr oup- nane
item = val ue
$ [ENDJ

The following rules describe these output records:

* One record is output per value.
e Multiple values are separated by a comma (,).

e Values are formatted according to the rules of the list-directed write. Exception: character items are
delimited by an apostrophe (').

e An apostrophe (') or a quote (") in the value is represented by two consecutive apostrophes or quotes.

144

Chapter 6. Fortran Intrinsics

This chapter lists the FORTRAN 77 and Fortran 90/95 intrinsics and subroutines, intrinsics defined in the HPF
Language Specification, and CM Fortran intrinsics.

FORTRAN 77 and Fortran 90/95 Intrinsics by Category

The tables in this section contain the FORTRAN 77 and Fortran 90/95 intrinsics supported by the PGF77

and PGF95 compilers. Intrinsics are categorized by functionality and alphabetized by generic name within

each table. All FORTRAN 77 intrinsics are supported and details available in the ANSI FORTRAN Standard. To
simplify the tables in this section, two groups of intrinsic types have been given the following abbreviated group

names:
NUMERIC INTEGER, REAL, COMPLEX
NONCHAR LOGICAL, INTEGER, REAL, COMPLEX
Table 6.1. Numeric Functions
Generic |Purpose Number of | Specific |Argument Type Result Type
Name Args Name
ABS Absolute Value |1 NUMERIC NUMERIC
1 IABS INTEGER*2 INTEGER*2
1 JIABS INTEGER*4 INTEGER*4
1 KIABS INTEGER*8 INTEGER*8
1 ABS REAL*4 REAL*4
1 DABS REAL*8 REAL*8
1 CAB COMPLEX*8 COMPLEX*8
1 CDABS COMPLEX*16 COMPLEX*16
AIMAG |Imaginary Part |1 AIMAG COMPLEX*8 REAL*4
of Complex | DIMAG |COMPLEX*16 REAL*8
Number
AINT Truncation 1 AINT REAL*4 REAL*4
1 DINT REAL*8 REAL*8

145

FORTRAN 77 and Fortran 90/95 Intrinsics by Category

Generic |Purpose Number of | Specific |Argument Type Result Type
Name Args Name
ANINT Nearest Whole |1 ANINT REAL*4 REAL*4
Number 1 DNINT |REAL*S REAL*8
CEILING |Next Whole 1 REAL INTEGER
Number 2 REAL, INTEGER INTEGER
CMPLX Convert to 1 NUMERIC COMPLEX*8
COMPLEX*8 |y INTEGER, INTEGER | COMPLEX*8
2 REAL, REAL COMPLEX*8
CONJG Complex 1 CONJG COMPLEX*8 COMPLEX*8
Conjugate 1 DCONJG COMPLEX*16 COMPLEX*16
DBLE Convert to 1 NUMERIC REAL*8
REAL*8 1 DFLOTI |INTEGER*2 REAL*8
1 DFLOAT INTEGER*4 REAL*8
1 DFLOT] INTEGER*4 REAL*8
1 DFLOTK INTEGER*8 REAL*8
1 DREAL COMPLEX*16 REAL*8
DCMPLX |Convert to 1 NUMERIC COMPLEX*16
COMPLEX*16 |, INTEGER,INTEGER | COMPLEX*16
2 REAL, REAL COMPLEX*16
DIM Positive 2 IIDIM INTEGER*2, INTEGER*2
Difference INTEGER*2
2 JIDIM INTEGER*4, INTEGER*4
INTEGER*4
2 KIDIM INTEGER*8, INTEGER*8
INTEGER*8
2 DIM REAL*4, REAL*4 REAL*4
2 DDIM REAL*8, REAL*8 REAL*8
FLOOR Previous integer | 1 REAL INTEGER
2 REAL, INTEGER INTEGER
IINT Truncation 1 NUMERIC INTEGER*2
1 IINT REAL*4 INTEGER*2
1 IIFIX REAL*4 INTEGER*2
1 IIDINT REAL*8 INTEGER*2

146

Chapter 6. Fortran Intrinsics

Generic |Purpose Number of | Specific |Argument Type Result Type

Name Args Name

ININT Nearest Integer |1 ININT REAL*4 INTEGER*2

[a+.5% 1 IIDNNT |REAL*8 INTEGER*2
sign(a)]

INT Truncation 1 NUMERIC INTEGER*4
1 JIFIX REAL*4 INTEGER*4
1 IDINT REAL*8 INTEGER*4

INT8 Truncation 1 REAL*4 INTEGER*8
1 KIFIX REAL*4 INTEGER*8

IZEXT Zero-Extend 1 LOGICAL*1 INTEGER*2

Function 1 LOGICAL*2 INTEGER*2
(Conversion)
1 INTEGER*2 INTEGER*2

JINT Truncation 1 NUMERIC INTEGER*4
1 JINT REAL*4 INTEGER*4
1 JIDINT REAL*8 INTEGER*4

JNINT Nearest Integer |1 REAL INTEGER*4

[a+ 5% 1 JIDNNT |REAL*8 INTEGER*4
sign(a) |

KNINT Nearest Integer |1 REAL INTEGER*8

la+.5% 1 KIDNNT |REAL*S INTEGER*S
sign(a)]

MAX Maximum n>1 IMAXO0 INTEGER*2 INTEGER*2
n>1 IMAX1 REAL*4 INTEGER*2
n>1 AIMAX0 INTEGER*2 REAL*4
n>1 JMAXO INTEGER*4 INTEGER*4
n>1 INTEGER*8 INTEGER*8
n>1 JMAX1 REAL*4 INTEGER*4
n>1 KMAX1 REAL*4 INTEGER*8
n>1 AJMAXO0 INTEGER*4 REAL*4
n>1 AKMAXO0 INTEGER*8 REAL*4
n>1 MAXO0 INTEGER*4 INTEGER*4
n>1 AMAX1 REAL*4 REAL*4
n>1 DMAX1 REAL*8 REAL*8

147

FORTRAN 77 and Fortran 90/95 Intrinsics by Category

148

Generic |Purpose Number of | Specific |Argument Type Result Type
Name Args Name
MIN Minimum n>1 IMINO INTEGER*2 INTEGER*2
n>1 IMIN1 REAL*4 INTEGER*2
n>1 AIMINO INTEGER*2 REAL*4
n>1 JMINO INTEGER*4 INTEGER*4
n>1 INTEGER*8 INTEGER*8
n>1 JMIN1 REAL*4 INTEGER*4
n>1 KMIN1 REAL*4 INTEGER*8
n>1 AJMINO INTEGER*4 REAL*4
n>1 MINO INTEGER*4 INTEGER*4
n>1 AMIN1 REAL*4 REAL*4
n>1 AKNINO INTEGER*8 REAL*4
n>1 DMIN1 REAL*8 REAL*8
MOD Remainder 2 IMOD INTEGER*2, INTEGER*2
INTEGER*2
2 JMOD INTEGER*4, INTEGER*4
INTEGER*4
2 KMOD INTEGER*S, INTEGER*8
INTEGER*8
2 AMOD REAL*4, REAL*4 REAL*4
2 DMOD REAL*8, REAL*4 REAL*8
MODULO |Fortran 90/95 |2 INTEGER*2, INTEGER*2
Modulo INTEGER*2
2 INTEGER*4, INTEGER*4
INTEGER*4
2 INTEGER*8, INTEGER*8
INTEGER*8
2 REAL*4, REAL*4 REAL*4
2 REAL*8, REAL*4 REAL*8
NINT Nearest Integer |1 REAL INTEGER*4
[a+.5* 1 IDNINT ~ |REAL*8 INTEGER*4
sign(a)]

Chapter 6. Fortran Intrinsics

Generic |Purpose Number of | Specific |Argument Type Result Type
Name Args Name
REAL Convert to 1 NUMERIC REAL*4
REAL*4 1 FLOATI |INTEGER*2 REAL*4
1 FLOAT INTEGER REAL*4
1 REAL INTEGER*4 REAL*4
1 FLOAT] INTEGER*4 REAL*4
1 SNGL REAL*8 REAL*4
SIGN Transfer of Sign |2 IISIGN INTEGER*2 INTEGER*2
2 JISIGN INTEGER*4 INTEGER*4
2 KISIGN INTEGER*8 INTEGER*8
2 SIGN REAL*4 REAL*4
2 DSIGN REAL*8 REAL*8
ZEXT Zero-Extend 1 JZEXT LOGICAL*1 INTEGER*4
Function 1 LOGICAL*2 INTEGER*4
(Comversion) |, LOGICAL*4 INTEGER*4
1 INTEGER*2 INTEGER*4
1 INTEGER*4 INTEGER*4
Table 6.2. Mathematical Functions
Generic |Purpose Number of |Specific |Argument Type |Result Type
Name Args Name
ACOS ArcCosine 1 ACOS REAL*4 REAL*4
1 DACOS REAL*8 REAL*8
ACOSD ArcCosine (degree) |1 ACOSD REAL*4 REAL*4
1 DACOSD REAL*8 REAL*8
ASIN ArcSine 1 ASIN REAL*4 REAL*4
1 DASIN REAL*8 REAL*8
ASIND ArcSine (degree) |1 ASIND REAL*4 REAL*4
1 DASIND REAL*8 RFEAL*8
ATAN ArcTangent 1 ATAN REAL*4 REAL*4
1 DATAN REAL*8 REAL*8
ATAN2 ArcTangent 2 ATAN2 REAL*4, REAL*4 |REAL*4
2 DATAN2 REAL*8, REAL*8 |REAL*8

149

FORTRAN 77 and Fortran 90/95 Intrinsics by Category

150

Generic |Purpose Number of |Specific |Argument Type |Result Type
Name Args Name
ATAN2D |ArcTangent 2 ATAN2D REAL*4, REAL*4 |REAL*4
(degree) 2 DATAN2D |REAL*8, REAL*8 |REAL*8
ATAND ArcTangent 1 ATAND REAL*4 REAL*4
(degree) 1 DATAND |REAL*S REAL*S
CoS Cosine 1 COS REAL*4 REAL*4
1 DCOS REAL*8 REAL*8
1 CCOS COMPLEX*8 COMPLEX*8
1 CDCOS COMPLEX*16 COMPLEX*16
COSD Cosine (degree) 1 COSD REAL*4 REAL*4
1 DCOSD REAL*8 REAL*8
COSH Hyperbolic Cosine |1 COSH REAL*4 REAL*4
1 DCOSH REAL*8 REAL*8
DPROD Product 2 REAL*4, REAL*4 |REAL*8
EXP Exponential 1 EXP REAL*4 REAL*4
1 DEXP REAL*8 REAL*8
1 CEXP COMPLEX*8 COMPLEX*8
1 CDEXP COMPLEX*16 COMPLEX*16
LOG Natural Logarithm |1 ALOG REAL*4 REAL*4
1 DLOG REAL*8 REAL*8
1 CLOG COMPLEX*8 COMPLEX*8
1 CDLOG COMPLEX*16 COMPLEX*16
LOG10 Common 1 ALOG10 REAL*4 REAL*4
Logarithm 1 DLOGI0 |REAL*8 REAL*8
SIN Sine 1 SIN REAL*4 REAL*4
1 DSIN REAL*8 REAL*8
1 CSIN COMPLEX*8 COMPLEX*8
1 CDSIN COMPLEX*16 COMPLEX*16
SIND Sine (degree) 1 SIND REAL*4 REAL*4
1 DSIND REAL*8 REAL*8
SINH Hyperbolic Sine 1 SINH REAL*4 REAL*4
1 DSINH REAL*8 REAL*8

Chapter 6. Fortran Intrinsics

Generic |Purpose Number of |Specific |Argument Type |Result Type
Name Args Name
SQRT Square Root 1 SQRT REAL*4 REAL*4

1 DSQRT REAL*8 RFAL*8

1 CSQRT COMPLEX*8 COMPLEX*8

1 REAL*8 COMPLEX*16 COMPLEX*16
TAN Tangent 1 TAN REAL*4 REAL*4

1 DTAN REAL*8 REAL*8
TAND Tangent (degree) |1 TAND REAL*4 REAL*4

1 DTAND REAL*8 RFAL*8
TANH Hyperbelic Tangent | 1 TANH REAL*4 REAL*4

1 DTANH REAL*8 REAL*8

Table 6.3. Real Manipulation Functions

Generic Name |Purpose Number of |Argument Type Result Type
Args
EXPONENT Exponent part 1 REAL INTEGER
FRACTION Fractional part 1 REAL INTEGER
NEAREST Nearest different 2 REAL, REAL REAL
machine-
representable
number
RRSPACING Reciprocal of relative |1 REAL REAL
spacing
SCALE Value of exponent |2 REAL, INTEGER REAL
part changed by a
specified value
SET_EXPONENT |Value of exponent |2 REAL, INTEGER REAL
part set to a specified
value
SPACING Spacing near 1 REAL REAL
argument
Table 6.4. Bit Manipulation Functions
Generic Purpose |Num. |Specific |Argument Type Result Type
Name Args Name
AND Logical |2 any”, any typeless
AND

151

FORTRAN 77 and Fortran 90/95 Intrinsics by Category

152

Generic Purpose |Num. |Specific |Argument Type Result Type
Name Args Name
BIT SIZE Precision |1 INTEGER INTEGER
(in bits)
BTEST Bit Test 2 INTEGER, INTEGER LOGICAL
2 BITEST INTEGER*2, INTEGER*2 LOGICAL*2
2 BJTEST INTEGER*4, INTEGER*4 LOGICAL*4
2 KBTEST INTEGER*8, INTEGER*8 LOGICAL*8
COMPL Logical 1 any” typeless
Complement
EQV Logical |2 any”, any" typeless
Exclusive
Nor
IAND Logical 2 INTEGER, INTEGER INTEGER
AND INTEGER*2,
2 ITAND INTEGER*2 INTEGER*2
2 JIAND INTEGER*4, INTEGER*4 INTEGER*4
2 KIAND INTEGER*8, INTEGER*8 INTEGER*8
IBCLR Bit Clear |2 INTEGER, INTEGER INTEGER
2 IIBCLR INTEGER*2, INTEGER*2 INTEGER*2
2 JIBCLR INTEGER*4, INTEGER*4 INTEGER*4
2 KIBCLR INTEGER*8, INTEGER*8 INTEGER*8
IBITS Bit 3 INTEGER, INTEGER, INTEGER |INTEGER
Extraction |3 IBITS |INTEGER*2, INTEGER*2, INTEGER*2
INTEGER*2
3 JIBITS INTEGER*4, INTEGER*4, INTEGER*4
INTEGER*4
3 KIBITS INTEGER*8, INTEGER*S, INTEGER*8
INTEGER*8
IBSET Bit Set 2 INTEGER, INTEGER INTEGER
2 IIBSET INTEGER*2, INTEGER*2 INTEGER*2
2 JIBSET INTEGER*4, INTEGER*4 INTEGER*4
2 KIBSET INTEGER*8, INTEGER*8 INTEGER*8
IEOR Logical 2 INTEGER, INTEGER INTEGER
XOR 2 IIEOR INTEGER*2, INTEGER*2 INTEGER*2

Chapter 6. Fortran Intrinsics

Generic Purpose |Num. |Specific |Argument Type Result Type
Name Args Name
IOR Logical OR |2 INTEGER, INTEGER INTEGER
2 IIOR INTEGER*2, INTEGER*2 INTEGER*2
2 JIOR INTEGER*4, INTEGER*4 INTEGER*4
2 KIOR INTEGER*8, INTEGER*8 INTEGER*8
ISHFT Logical 2 INTEGER, INTEGER INTEGER
Shift 2 IISHFT INTEGER*2, INTEGER*2 INTEGER*2
2 JISHFT INTEGER*4, INTEGER*4 INTEGER*4
2 KISHFT INTEGER*8, INTEGER*8 INTEGER*8
ISHFTC Circular 3 INTEGER, INTEGER INTEGER
Shift 3 TISHFTC |INTEGER*2, INTEGER*2, |INTEGER*2
INTEGER*2
3 JISHFTC INTEGER*4, INTEGER*4, INTEGER*4
INTEGER*4
3 KISHFTC |INTEGER*8, INTEGER*S, INTEGER*8
INTEGER*8
LSHIFT Logical Left |2 INTEGER, INTEGER INTEGER
Shift
NEQV Logical |2 any”, any" typeless
Exclusive
OR
NOT Logical 1 INTEGER INTEGER
Complement INOT INTEGER*2 INTEGER*2
1 JNOT INTEGER*4 INTEGER*4
1 KNOT INTEGER*8 INTEGER*8
OR Logical OR |2 any”, any” typeless
RSHIFT Logical 2 INTEGER, INTEGER INTEGER
Right Shift
SHIFT Logical 2 anyb, INTEGER typeless
Shift

153

FORTRAN 77 and Fortran 90/95 Intrinsics by Category

154

Generic Purpose |Num. |Specific |Argument Type Result Type
Name Args Name
XOR Logical 2 INTEGER, INTEGER INTEGER
(E)XCIUSiVe JIEOR INTEGER*4, INTEGER*4 INTEGER*4
R

Arguments to the intrinsics AND, COMPL, EQV, OR, and NEQV may be of any type except for CHARACTER and COMPLEX.
PThe first argument to the SHIFT intrinsic may be of any type except for CHARACTER and COMPLEX.

Table 6.5. Fortran 90/95 Bit Manipulation Subroutine
Generic |Purpose Arguments
Name
MVBITS | Copies bit sequence |INTEGER(IN), INTEGER(IN), INTEGER(IN),, INTEGER(INOUT),
INTEGER(IN)

The functions in the following table are specific to Fortran 90/95 unless otherwise specified.

Table 6.6. Elemental Character and Logical Functions

Generic Purpose Num. Argument Type Result Type

Name Args

ACHAR Return character |1 INTEGER CHARACTER
in specified ASCIT
collating position.

ADJUSTL Left adjust string |1 CHARACTER CHARACTER

ADJUSTR Right adjust string| 1 CHARACTER CHARACTER

CHAR (f77) |Return character |1 LOGICAL*1 CHARACTER
with specified | INTEGER CHARACTER
ASCII value.

IACHAR Return position |1 CHARACTER INTEGER
of character in
ASCII collating
sequence.

ICHAR Return position |1 CHARACTER INTEGER
of character in
the character
set’s collating
sequence.

INDEX Return starting |2 CHARACTER, CHARACTER INTEGER
position of 3 CHARACTER, CHARACTER, LOGICAL |INTEGER
substring within
first string.

Chapter 6. Fortran Intrinsics

Generic Purpose Num. Argument Type Result Type
Name Args
LEN_TRIM |Return length 1 CHARACTER INTEGER
of string minus
trailing blanks.
LGE Lexical 2 CHARACTER, CHARACTER LOGICAL
comparison
LGT Lexical 2 CHARACTER, CHARACTER LOGICAL
comparison
LLE Lexical 2 CHARACTER, CHARACTER LOGICAL
comparison
LLT Lexical 2 CHARACTER, CHARACTER LOGICAL
comparison
LOGICAL Logical 1 LOGICAL LOGICAL
conversion 2 LOGICAL, INTEGER LOGICAL
SCAN Scan string for |2 CHARACTER, CHARACTER INTEGER
characters in set |3 CHARACTER, CHARACTER, LOGICAL |INTEGER
VERIFY Determine if 2 CHARACTER, CHARACTER INTEGER
string contains all |3 CHARACTER, CHARACTER, LOGICAL |INTEGER
characters in set
Table 6.7. Fortran 90/95 Vector/Matrix Functions
Generic Name |Purpose Number of |Argument Type Result Type
Args
DOT_PRODUCT |Perform dot 2 NONCHAR*K, NONCHAR*K | NONCHAR*K
product on two
vectors
MATMUL Perform matrix NONCHAR*K, NONCHAR*K | NONCHAR*K
multiply on two
matrices
Table 6.8. Fortran 90/95 Array Reduction Functions
Generic Purpose Number |Argument Type Result Type
Name of Args
ALL Determine if all |1 LOGICAL LOGICAL
array values are |, LOGICAL, INTEGER LOGICAL
true
ANY Determine if any |1 LOGICAL LOGICAL
array value is true | LOGICAL, INTEGER LOGICAL

155

FORTRAN 77 and Fortran 90/95 Intrinsics by Category

156

Generic Purpose Number |Argument Type Result Type
Name of Args
COUNT Count true values |1 LOGICAL INTEGER
in array 2 LOGICAL, INTEGER INTEGER
MAXLOC Determine 1 INTEGER INTEGER
position of array |, INTEGER, LOGICAL INTEGER
element with
. 2 INTEGER, INTEGER INTEGER
maximum value
3 INTEGER, INTEGER, LOGICAL INTEGER
1 REAL INTEGER
2 REAL, LOGICAL INTEGER
2 REAL, INTEGER INTEGER
3 REAL, INTEGER, LOGICAL INTEGER
MAXVAL Determine 1 INTEGER INTEGER
maximum value of |, INTEGER, LOGICAL INTEGER
array elements
2 INTEGER, INTEGER INTEGER
3 INTEGER, INTEGER, LOGICAL INTEGER
1 REAL REAL
2 REAL, LOGICAL REAL
2 REAL, INTEGER REAL
3 REAL, INTEGER, LOGICAL REAL
MINLOC Determine 1 INTEGER INTEGER
position of array |, INTEGER, LOGICAL INTEGER
element with
.. 2 INTEGER, INTEGER INTEGER
minimum value
3 INTEGER, INTEGER, LOGICAL INTEGER
1 REAL INTEGER
2 REAL, LOGICAL INTEGER
2 REAL, INTEGER INTEGER
3 REAL, INTEGER, LOGICAL INTEGER

Chapter 6. Fortran Intrinsics

Generic Purpose Number |Argument Type Result Type
Name of Args
MINVAL Determine 1 INTEGER INTEGER
minimum value of |, INTEGER, LOGICAL INTEGER
array elements
2 INTEGER, INTEGER INTEGER
3 INTEGER, INTEGER, LOGICAL INTEGER
1 REAL REAL
2 REAL, LOGICAL REAL
2 REAL, INTEGER REAL
3 REAL, INTEGER, LOGICAL REAL
PRODUCT |Calculate the 1 NUMERIC NUMERIC
productof the |, NUMERIC, LOGICAL NUMERIC
elements of an
artay 2 NUMERIC, INTEGER NUMERIC
3 NUMERIC, INTEGER, LOGICAL NUMERIC
SUM Calculate the sum |1 NUMERIC NUMERIC
of the elements of | NUMERIC, LOGICAL NUMERIC
an array
2 NUMERIC, INTEGER NUMERIC
3 NUMERIC, INTEGER, LOGICAL NUMERIC
Table 6.9. Fortran 90/95 String Construction Functions
Generic Purpose Number |Argument Type Result Type
Name of Args
REPEAT Concatenate copies of |2 CHARACTER, INTEGER CHARACTER
a string
TRIM Remove trailing 1 CHARACTER CHARACTER
blanks from a string
Table 6.10. Fortran 90/95 Array Construction/Manipulation Functions
Generic Purpose Number |Argument Type Result
Name of Args Type
CSHIFT Perform 2 ARRAY, INTEGER ARRAY*
circular shift on | 5 ARRAY, INTEGER, INTEGER ARRAY?
array

157

FORTRAN 77 and Fortran 90/95 Intrinsics by Category

158

yICAL

Generic Purpose Number |Argument Type Result
Name of Args Type
EOSHIFT Perform end-off | 2 ARRAY, INTEGER ARRAY*
shift on array | ARRAY, INTEGER, any* ARRAY?
3 ARRAY, INTEGER, INTEGER ARRAY*
4 ARRAY, INTEGER, any", INTEGER ARRAY*
MERGE Merge two 3 any, any", LOGICAL any”
arguments
based on
logical mask
PACK Pack array into |2 ARRAY, LOGICAL ARRAY?
rank-one array | 3 ARRAY, LOGICAL, VECTOR® ARRAY*
RESHAPE Change the 2 ARRAY, INTEGER ARRAY*
shapeofan |3 ARRAY, INTEGER, ARRAY* ARRAY?
arra
Y 3 ARRAY, INTEGER, INTEGER ARRAY*
4 ARRAY, INTEGER, ARRAY*, INTEGER | ARRAY*
SPREAD Replicatesan |3 any, INTEGER, INTEGER ARRAY"
array by adding
a dimension
TRANSPOSE |Transpose an |1 ARRAY ARRAY?
array of rank
two
UNPACK Unpack a rank- |3 VECTOR, LOGICAL, ARRAY* ARRAY*
one array
into an array
of multiple
dimensions
*Must be of the same type as the first argument.
Table 6.11. Fortran 90/95 General Inquiry Functions
Generic Purpose Number |Argument Type Result
Name of Args Type
ASSOCIATED |Determine association 12 POINTER, POINTER,..., LOGICALLO(
status POINTER, TARGET
KIND Determine argument’s 1 any intrinsic type INTEGER
kind

Chapter 6. Fortran Intrinsics

Generic Purpose Number |Argument Type Result
Name of Args Type
PRESENT Determine presence of |1 any LOGICAL
optional argument
Table 6.12. Fortran 90/95 Numeric Inquiry Functions
Generic Name Purpose Number |Argument Type Result
of Args Type
DIGITS Determine number |1 INTEGER INTEGER
of SigﬂiﬁC'&nt dlgltS 1 REAL INTEGER
EPSILON Smallest 1 REAL REAL
representable
number
HUGE Largest 1 INTEGER INTEGER
representable 1 REAL REAL
number
MAXEXPONENT Value of maximum |1 REAL INTEGER
exponent
MINEXPONENT Value of minimum |1 REAL INTEGER
exponent
PRECISION Decimal precision |1 REAL INTEGER
1 COMPLEX INTEGER
RADIX Base of model 1 INTEGER INTEGER
1 REAL INTEGER
RANGE Decimal exponent |1 INTEGER INTEGER
range 1 REAL INTEGER
1 COMPLEX INTEGER
SELECTED_INT_KIND Kind type titlemeter |1 INTEGER INTEGER
in range
SELECTED_REAL_KIND |Kind type titlemeter |1 INTEGER INTEGER
in range 2 INTEGER, INTEGER |INTEGER

159

FORTRAN 77 and Fortran 90/95 Intrinsics by Category

160

Generic Name Purpose Number |Argument Type Result
of Args Type
TINY Smallest 1 REAL REAL
representable
positive number
Table 6.13. Fortran 90/95 Array Inquiry Functions
Generic Name |Purpose Number of |Argument Type Result
Args Type
ALLOCATED Determine if array is 1 ARRAY LOGICAL
allocated
LBOUND Determine lower bounds 1 ARRAY INTEGER
2 ARRAY, INTEGER INTEGER
SHAPE Determine shape 1 any INTEGER
SIZE Determine number of 1 ARRAY INTEGER
elements 2 ARRAY, INTEGER | INTEGER
UBOUND Determine upper bounds |1 ARRAY INTEGER
2 ARRAY, INTEGER INTEGER
Table 6.14. Fortran 90/95 String Inquiry Function
Generic Name |Purpose Number of |Argument Type Result Type
Args
LEN Length of string 1 CHARACTER INTEGER
Table 6.15. Fortran 90/95 Subroutines
Generic Name Purpose Number of |Argument Type
Args
CPU_TIME Returns processor |1 REAL (OUT)
time
DATE_AND_TIME Returns date and 4 (optional) |DATE (CHARACTER, OUT)
time

TIME (CHARACTER, OUT)
ZONE (CHARACTER, OUT)
VALUES (INTEGER, OUT)

RANDOM_NUMBER

Generate pseudo-
random numbers

REAL (OUT)

Chapter 6. Fortran Intrinsics

Generic Name Purpose Number of |Argument Type
Args
RANDOM_SEED Set or query 0
pseudo-random | SIZE (INTEGER, OUT)
number generator
PUT (INTEGER ARRAY, IN)
1 GET (INTEGER ARRAY, OUT)
SYSTEM_CLOCK Query real time 3 (optional) |COUNT (INTEGER, OUT)
clock COUNT_RATE (INTEGER, OUT)

COUNT_MAX (INTEGER, OUT)

Table 6.16. Fortran 90/95 Transfer Function

Generic Purpose Number |Argument Type Result Type
Name of Args
TRANSFER ~ |Change type 23 any, any any"

but maintain bit 3 any, any, INTEGER

representation

*Must be of the same type as the second argument.

Table 6.17. Miscellaneous Functions

Generic |Purpose Lang |[Number |Argument Type Result Type

Name of Args

LOC Return address of F77 1 NUMERIC INTEGER
argument

NULL Assign disassociated F95 0 POINTER
Status 1 POINTER POINTER

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

This section contains descriptions of each FORTRAN 77 and Fortran 90/95 intrinsic supported by the PGF77,
PGF95 and PGHPF compilers. Intrinsics and subroutines are listed alphabetically.

Intrinsic Summary Table

This section contains an alphabetical summary of the intrinsics with the specific Fortran Language with which
each is associated . F77 indicates a FORTRAN 77 intrinsic while F90 represents a Fortran 90/95 intrinsic.

161

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

162

Table 6.18. Intrinsic Summary Table

Intrinsic Description

ABS F77 |Determine the absolute value of the supplied argument.

ACHAR F90 |Return the character in the ASCII collating position specified by the
argument.

ACOS F77 |Return the arccosine of the specified value.

ACOSD F77 Return the arccosine (in degrees) of the specified value.

ADJUSTL F90 |Adjust string to the left, removing all leading blanks and inserting
trailing blanks.

ADJUSTR F90 |Adjust string to the right, removing all trailing blanks and inserting
leading blanks.

AIMAG F77 |Determine the value of the imaginary part of a complex number.

AINT F77 |Truncate the supplied value to a whole number.

ALL F90 |Determine if all the values in the supplied argument are logical true.

ALLOCATED F90 |Determine if the supplied allocatable array is currently allocated.

AND F77 ext |Performs a logical AND on corresponding bits of the arguments.

ANINT F77 |Return the nearest whole number to the supplied argument.

ANY F90 |Determine if any value in the supplied argument MASK is true.

ASIN F77 |Return the arcsine of the specified value.

ASIND F77 Return the arcsine (in degrees) of the specified value.

ASSOCIATED FO0 |Determines the association status of the supplied argument or
determines if the supplied pointer is associated with the supplied target.

ATAN F77 |Return the arctangent of the specified value.

ATAN2 F77 |Return the arctangent of the specified value.

ATAN2D F77 Return the arctangent (in degrees) of the specified value.

ATAND F77 |Return the arctangent (in degrees) of the specified value.

BIT_SIZE FO0 |Return the number of bits (the precision) of the integer argument.

BTEST F77 |Tests the binary value of a bit in a specified position of an integer
argument.

CEILING FO0 |Return the least integer greater than or equal to the supplied real
argument.

CHAR F77 |Returns the character in the specified collating sequence.

CMPLX F77 |Convert the supplied argument or arguments to complex type.

COMPL F77 ext |Performs a logical complement on the argument.

CONJG F77 |Return the conjugate of the supplied complex number.

CoS F77 |Return the cosine of the specified value.

Chapter 6. Fortran Intrinsics

Intrinsic Description

COSD F77 Return the cosine (in degrees) of the specified value.

COSH F77 |Return the hyperbolic cosine of the specified value.

COUNT F90 |Return the number of true elements in the supplied logical argument
(array), along the specified dimension if the optional argument is
present.

CPU_TIME F95 A non-elemental intrinsic subroutine that returns the processor time.

CSHIFT F90 |Perform a circular shift on the specified array.

DATE_AND_TIME |F90 |A subroutine that returns the date and time.

DBLE F77 |Convert to double precision real.

DCMPLX F77 |Convert the supplied argument or arguments to double complex type.

DIGITS F90 |Returns the number of significant digits in the model representing the
argument.

DIM F77 |Returns the difference X-Y if the value is positive, otherwise it returns 0.

DOT_PRODUCT F90 Perform a dot product on two vectors (arrays).

DPROD F90 |Double precision real product.

EOSHIFT F90 |Perform an end-off shift on the specified array.

EPSILON FO0 |Return the smallest number representable in the kind of the supplied
argument.

EQV F77 ext | Performs a logical exclusive NOR on the arguments.

EXP F77 |Exponential function.

EXPONENT F90 |Return the exponent part of a real number.

FLOOR F90 |Return the greatest integer less than or equal to the supplied real
argument.

FRACTION F90 Return the fractional part of a real number.

HUGE F90 |Return the largest number representable in the kind of the supplied
argument.

TACHAR F90 |Returns the position of the character in the ASCII collating sequence.

IAND F77 |Perform a bit-by-bit logical AND on the arguments.

IBCLR F77 |Clears one bit to zero.

IBITS F77 |Extracts a sequence of bits.

IBSET F77 |Set one bit to one.

ICHAR F90 |Returns the position of a character in the character set's collating
sequence.

IEOR F77 |Perform a bit-by-bit logical exclusive OR on the arguments.

T[INT F77 ext |Converts a value to a short integer type.

163

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

164

Intrinsic Description

INDEX F90 |Returns the starting position of a substring within a string.

ININT F77 ext |Returns the nearest short integer to the real argument.

INT F77 |Converts a value to integer type.

INTS F77 ext |Converts a real value to a long integer type.

IOR F77 |Perform a bit-by-bit logical OR on the arguments.

ISHFT F77 |Perform a logical shift.

ISHFTC F77 |Perform a circular shift of the rightmost bits.

IZEXT F77 ext | Zero-extend the argument.

JINT F77 ext |Converts a value to an integer type.

JNINT F77 ext |Returns the nearest integer to the real argument.

KIND F77 ext |Returns the kind of the supplied argument.

KNINT F77 ext |Returns the nearest integer to the real argument.

LBOUND F90 |Returns the lower bounds of an array, or the lower bound for the
specified dimension.

LEN F90 |Returns the length of the supplied string.

LEN_TRIM F90 |Returns the length of the supplied string minus the number of trailing
blanks.

LGE FO0 |Test the supplied strings to determine if the first string STRING_A is
lexically greater than or equal to the second string STRING_B, that is, if
the first string follows the second string alphabetically.

LGT F90 |Test the supplied strings to see if the first string STRING_A is lexically
greater than the second string STRING_B, that is, if the first string
follows the second string alphabetically.

LLE FO0 |Test the supplied strings to see if the first string STRING_A is lexically
less than or equal to the second string STRING_B, that is, if the first
string is lexically less than another string if the first string precedes the
second string alphabetically.

LLT F90 |Test the supplied strings to see if the first string STRING_A is lexically
less than the second string, that is, if the first string is lexically less
than another string if the first string precedes the second string
alphabetically.

LOC F77 |Return the 32-bit address of a data item.

LOG F77 |Afunction that returns the natural logarithm.

LOG10 F77 | Afunction that returns the common logarithm.

LOGICAL F90 |Convert a logical value to the specified logical kind.

LSHIFT F77 ext |Perform a logical shift to the left.

Chapter 6. Fortran Intrinsics

Intrinsic Description

MATMUL F90 |Perform a matrix multiply of numeric or logical matrices.

MAX F77 |Return the maximum value of the supplied arguments.

MAXEXPONENT F90 Returns the value of the maximum exponent for the type and the kind
supplied.

MAXLOC F90 |Determine the first position in the specified array that has the maximum
value of the values in the array. The test elements may be limited by a
dimension argument or by a logical mask argument.

MAXVAL F90 |Return the maximum value of the elements of the argument array. The
test elements may be limited by a dimension argument or by a logical
mask argument.

MERGE F90 |A function that merges two arguments based on the value of a logical
mask.

MIN F77 |Return the minimum value of the supplied arguments.

MINEXPONENT F90 |Returns the value of the minimum exponent for the type and the kind
supplied.

MINLOC F90 |Return the position of the element with the minimum value of the
elements of the argument array. The test elements may be limited by a
dimension argument or by a logical mask argument.

MINVAL F90 |Return the minimum value of the elements of the argument array. The
test elements may be limited by a dimension argument or by a logical
mask argument.

MOD F77 |ind the remainder.

MODULO FO0 |Return the modulo value of the arguments.

MVBITS F90 |Copies a bit sequence from a source data object to a destination data
object.

NEAREST FO0 |Returns the nearest different machine representable number in a given
direction.

NEQV F77 ext | Performs a logical exclusive OR on the arguments.

NINT F77 |Returns the nearest integer to the real argument.

NOT F77 |Perform a bit-by-bit logical complement on the argument.

NULL F95 |Gives the disassociated status to pointer entities.

OR F77 ext | Performs a logical OR on each bit of the arguments.

PACK F90 |Pack an array of any number of dimensions into an array of rank one.

PRECISION F90 |Return the decimal precision of the real or complex argument.

PRESENT F90 Determine if an optional argument is present.

PRODUCT FO0 |Returns the product of the elements of the supplied array.

165

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

166

Intrinsic Description

RADIX F90 |Return the base of the model representing numbers of the type and kind
of the argument.

RANDOM_NUMBER |F90 |Returns one pseudorandom number or an array of pseudo-random
numbers from the uniform distribution over the range 0 x < 1.

RANDOM_SEED F90 Restarts or queries the pseudorandom number generator for
RANDOM_NUMBER.

RANGE F90 |Return the decimal exponent range for the type of number supplied as
an argument.

REAL F77 |Convert the argument to real.

REPEAT F90 Concatenate copies of a string.

RESHAPE FO0 |Reconstructs an array with the specified shape using the elements of the
source array.

RRSPACING F90 |Return the reciprocal of the relative spacing of model numbers near the
argument value.

RSHIFT F77 ext |Perform a logical shift to the right.

SCALE F90 |Return the value X * bi where b is the base of the number system in use
for X.

SCAN FO0 |Search the supplied string for a character in a set of characters.

SELECTED_INT_KINI}

)FO0

Returns a value that is the kind type parameter that will represent a
number in the specified range, where the range is determined by the
formula -10R < n < 10R, where n is an integer and R is the argument.

SELECTED_REAL_KIN

100

Returns a value that is the kind type parameter that will represent a
number in the specified range, where the range is determined with
decimal precision P and a decimal exponent range of at least R.

SET_EXPONENT F90 |Returns the model number whose fractional part is the fractional part of
the model representation of X and whose exponent part is 1.

SHAPE FO0 |Returns the shape of the supplied argument.

SHIFT F77 ext |Perform a logical shift.

SIGN F77 |Return the absolute value of A times the sign of B.

SIN FO0 |Return the value of the sine of the argument.

SIND F77 |Return the value in degrees of the sine of the argument.

SINH F77 |Return the hyperbolic sine of the argument.

SIZE F90 |Returns either the total number of elements in the array or the number
of elements along a specified dimension.

SPACING F90 |Returns the spacing of model numbers near the argument.

SPREAD F90 |Replicates an array by adding a new dimension.

SQRT F77 |Return the square root of the argument.

Chapter 6. Fortran Intrinsics

Intrinsic Description

SUM F90 |Returns the sum of the elements of the supplied array.

SYSTEM_CLOCK F90 |Returns information about the real time clock.

TAN F77 |Return the tangent of the specified value.

TAND F77 |Return the tangent of the specified value.

TANH F77 |eturn the hyperbolic tangent of the specified value.

TINY FO0 |Return the smallest positive number representable in the kind of the
supplied argument.

TRANSFER F90 Return a value that has the same bit representation as the source but
with a different type.

TRANSPOSE F90 |Transpose an array of rank two.

TRIM F90 |Remove the trailing blanks from a string.

UBOUND F90 |Returns the upper bounds of an array or the upper bound for the
specified dimension.

UNPACK F90 |Unpack an array of rank one dimension into an array of any number of
dimensions.

VERIFY F90 |Verify that a character string contains all characters from a set of
characters.

XOR F77 ext |Performs a logical exclusive OR on each bit of the arguments.

ZEXT F77 ext |Zero-extend the argument.

ABS

Determine the absolute value of the supplied argument.

Synopsis

ABS(A)

Argument

The argument A must be of type integer, real, or complex.

Return Value

The return type for integer is integer, for real is real, and for complex is real.

ACHAR

Return the character in the ASCII collating position specified by the argument.

167

ACOS

F90

Synopsis
ACHAR(1)

Argument

The argument I must be of type integer.

Return Value

A single character.

ACOS

Return the arccosine of the specified value.

F77

Synopsis

ACOS(X)

Arguments

The argument X must be a real value.

Return Value

The real value representing the arccosine in radians.

ACOSD

Return the arccosine (in degrees) of the specified value.

F77

Synopsis
ACOSD(X)
Arguments

The argument X must be a real value.

Return Value

The real value representing the arccosine in degrees.

168

Chapter 6. Fortran Intrinsics

ADJUSTL

Adjust string to the left, removing all leading blanks and inserting trailing blanks.
F90

Synopsis

ADJUSTL(STR)
Arguments

The argument STR is the string to be adjusted.

Return Value

String of same length and kind as the argument with leading blanks removed and the same number of trailing
blanks added.

ADJUSTR

Adjust string to the right, removing all trailing blanks and inserting leading blanks.
F90

Synopsis

ADJUSTR(STR)
Arguments

The argument STR is the string to be adjusted.

Return Value

String of same length and kind as the argument with trailing blanks removed and the same number of leading
blanks added.

AIMAG

Determine the value of the imaginary part of a complex number.

F77

Synopsis
Al MAG(2)
Arguments

The argument Z must be complex.

169

AINT

Return Value

A real value representing the imaginary part of the supplied argument.

AINT

Truncate the supplied value to a whole number.
F77
Synopsis

AINT(A [, KIND])

Arguments

The argument A is of type real. The optional KIND argument is an integer kind.

Return Value

A real value that is equal to the largest integer that is not greater than the supplied argument. If the KIND
argument is present, the result is of that kind.

ALL

Determine if all the values in the supplied argument are logical true.
F90
Synopsis

ALL(MASK [, DI M)

Arguments

The argument MASK is an array of type LOGICAL. The optional argument DIM specifies the dimension of the
array MASK to check.

Return Value

If no DIM argument is present, the return value is a logical scalar that is true only if all values of MASK are
true.

If the DIM argument is present and if MASK has rank one, then the return value is the same as ALL(MASK).

If the DIM argument is present and MASK has rank greater than one, then the return value is an array that has
rank n-1, where n is the rank of MASK. The return value is defined recursively as the value of ALL for each
extent of the dimension DIM (refer to the Fortran 95 Handbook for a more detailed explanation).

ALLOCATED

Determine if the supplied allocatable array is currently allocated.

170

Chapter 6. Fortran Intrinsics

F90
Synopsis

ALLOCATED(ARRAY)
Argument

The argument ARRAY is an allocatable array.

Return Value

Returns a logical scalar indicating whether the array is allocated.

AND

Performs a logical AND on corresponding bits of the arguments.
F77 extension
Synopsis

AND(M N)
Arguments

The arguments M and N may be of any type except for character and complex.

Return Value

The return value is typeless.

ANINT

Return the nearest whole number to the supplied argument.
F77
Synopsis

ANINT(A [, KIND])
Arguments

The argument A is a real number. The optional argument KIND is a kind parameter.

Return Value
The result is a real. The value is AINT (A+0.5) if A is > 0 and AINT(A-0.5) if Ais < 0.

If KIND is present, the result is of type KIND.

171

ANY

ANY
Determine if any value in the supplied argument MASK is true.
F90
Synopsis
ANY(MASK [, DIM)
Arguments

The argument MASK is an array of type LOGICAL. The optional argument DIM specifies the dimension of the
array MASK to check.

Return Value

If no DIM argument is present, the return value is a logical scalar that is true if any element of MASK is true.
If the DIM argument is present and if MASK has rank one, then the return value is the same as ANY (MASK).

If the DIM argument is present and MASK has rank greater than one, then the return value is an array that has
rank n-1, where n is the rank of MASK. The return value is defined recursively as the value of ANY for each
extent of the dimension DIM (refer to The Fortran 95 Handbook for a more detailed explanation)

ASIN

Return the arcsine of the specified value.

F77

Synopsis
ASI N(X)

Argument

The argument X must be of type real and have absolute value <= 1.

Return Value

The real value representing the arcsine in radians.

ASIND

Return the arcsine (in degrees) of the specified value.
F77

Synopsis
ASI ND(X)

172

Chapter 6. Fortran Intrinsics

Argument
The argument X must be of type real and have absolute value <= 1.

Return Value

The real value representing the arcsine in degrees.

ASSOCIATED

Determines the association status of the supplied argument or determines if the supplied pointer is associated
with the supplied target.

F90
Synopsis

ASSOCI ATED(POl NTER [, TARGET])

Arguments

The POINTER argument is a pointer of any type. The optional argument TARGET is a pointer or a target. If it is
a pointer it must not be undefined.

Return Value

If TARGET is not supplied the function returns logical true if POINTER is associated with a target and false
otherwise.

If TARGET is present and is a target, then the function returns true if POINTER is associated with TARGET and
false otherwise.

If TARGET is present and is a pointer, then the function returns true if POINTER and TARGET are associated
with the same target and false otherwise.

ATAN

Return the arctangent of the specified value.

F77

Synopsis

ATAN(X)
Argument

The argument X must be of type real.
Return Value

The real value representing the arctangent in radians.

173

ATAN2

ATAN2

Return the arctangent of the specified value.
F77

Synopsis
ATAN2(Y, X)
Arguments

The arguments X and Y must be of type real.

Return Value

A real number that is the arctangent for pairs of reals, X and Y, expressed in radians. The result is the principal
value of the nonzero complex number (XY).

ATAN2D

Return the arctangent (in degrees) of the specified value.
F77

Synopsis
ATAN2D(Y, X)
Arguments

The arguments X and Y must be of type real.

Return Value

A real number that is the arctangent for pairs of reals, X and Y, expressed in degrees. The result is the principal
value of the nonzero complex number (X)Y).

ATAND

Return the arctangent (in degrees) of the specified value.

F77

Synopsis
ATAND(X)
Argument

The argument X must be of type real.

174

Chapter 6. Fortran Intrinsics

Return Value

The real value representing the arctangent in degrees.

BIT_SIZE

Return the number of bits (the precision) of the integer argument. This function uses the standard Fortran
90/95 bit model defined in The Fortran 95 Handbook.

F90
Synopsis

BI T_SI ZE(1)
Argument

The argument I must be of type integer.

Return Value

Returns an integer.

BTEST

Tests the binary value of a bit in a specified position of an integer argument. This function uses the standard
Fortran 90/95 bit model defined in The Fortran 95 Handbook.

F77

Synopsis

BTEST(I, POS)

Arguments

The argument I must be of type integer. The argument POS must be an integer with a value less than or equal to
the value BIT_SIZE(I).

Return Value

Returns a logical value representing whether the bit in position POS is true (0) or false (1).

CEILING

Return the least integer greater than or equal to the supplied real argument.

F90
Synopsis

CEI LING(A [, KIND])

175

CHAR

Argument

The argument A is a real value. The optional argument KIND is a kind parameter and was added to CEILING in
Fortran 95.

Return Value
An integer.

If KIND is present, the result is of type KIND.

CHAR

Returns the character in the specified collating sequence.
F77

Synopsis
CHAR(! [, KIND])
Arguments

The argument I is of type integer, specifying the character position to return. The argument KIND is optional.

Return Value

A character.

CMPLX

Convert the supplied argument or arguments to complex type.
F77

Synopsis
CVMPLX(X [, Y] [, KIND])

Arguments

The argument X is of type integer, real, or complex. The optional argument Y is of type integer or real. If X is
complex, Y must not be present. The optional argument KIND is the kind for the return value.

Return Value
A complex number with the value specified by the arguments converted to a real part and a complex part.

If the KIND parameter is not supplied, the KIND is the same as the KIND for the default complex.

176

COMPL

Performs a logical complement on the argument.
F77 extension

Synopsis

COWPL(M

Arguments

The argument M may be of any type except for character and complex.

Return Value

The return value is typeless.

CONJG

Return the conjugate of the supplied complex number.
F77
Synopsis

CONIG(2)
Argument

The argument Z is a complex number.

Return Value

A value of the same type and kind as the argument.
COS

Return the cosine of the specified value.
F77
Synopsis

COs(X)

Argument

The argument X must be of type real or complex.

Chapter 6. Fortran Intrinsics

177

COSD

Return Value

A real value of the same kind as the argument. The return value for a real argument is in radians, or if
complex, the real part is a value in radians.

COSD

Return the cosine (in degrees) of the specified value.

F77

Synopsis
cosD(X)

Argument

The argument X must be of type real or complex.

Return Value

A real value of the same kind as the argument. The return value for a real argument is in degrees, or if
complex, the real part is a value in degrees.

COSH

Return the hyperbolic cosine of the specified value.

F77

Synopsis

COSH(X)
Argument

The argument X must be of type real.

Return Value

A real value.

COUNT

Return the number of true elements in the supplied logical argument (array), along the specified dimension if
the optional argument is present.

F90
Synopsis

COUNT(MASK [, DIM)

178

Chapter 6. Fortran Intrinsics

Arguments

The argument MASK is an array of type LOGICAL. The optional argument DIM specifies the dimension of the
array MASK to count.

Return Value
If no DIM argument is present, the return value is an integer that is the count of true values in MASK.
If the DIM argument is present and if MASK has rank one, then the return value is the same as COUNT (MASK).

If the DIM argument is present and MASK has rank greater than one, then the return value is an array that has
rank n-1, where n is the rank of MASK. The return value is defined recursively as the value of COUNT for each
extent of the dimension DIM (refer to The Fortran 95 Handbook for a more detailed explanation).

CPU_TIME

A non-elemental intrinsic subroutine that returns the processor time. For a more detailed explanation, refer to
Fortran 95 Explained.

F95
Synopsis

call cpu_tinme (TIM)
Arguments

The argument TIME is a scalar real that is assigned a processor-dependent approximation of processor time.

Return Value

The returned value in seconds, or a processor-dependent value if there is no clock.

CSHIFT

Perform a circular shift on the specified array.
F0

Synopsis
CSHI FT(ARRAY, SHIFT [,DIM)

Arguments

The argument ARRAY is the array to shift. It may be an array of any type. The argument SHIFT is an integer
or an array of integers with rank n-1 where n is the rank of ARRAY. The optional argument DIM is an integer
representing the dimension to shift.

179

DATE_AND_TIME

Return Value

The shifted array with the same size and shape as the argument ARRAY.

DATE_AND_TIME

A subroutine that returns the date and time.

F90

Synopsis

DATE_AND_TI ME([DATE] [, TIME] [,ZONE] [, VALUES])

Arguments

All of the arguments are optional. The DATE argument is of type default character. It must be at least 8
characters long. The argument returns the value CCYYMMDD where CC is the century, YY is the year, MM is the
month, and DD is the day.

The argument TIME is of type default character. It must be at least 10 characters long. It has the form
hhmmss.sss, where hh is the hour, mm is the minute, and ss.sss is the seconds and milliseconds.

The argument ZONE is of type default character. It must be at least 5 characters long. It has the form +— hhmm
where hh and mm are the hours and minutes that the local time zone differs from universal time (UTC).

The argument VALUES must be an array of type default integer. It has the following eight values:

VALUES(1) hol ds the year
VALUES(2) hol ds the nonth
VALUES(3) holds the day of the nonth
VALUES(4) holds the tine difference with respect to UTC
VALUES(5) holds the hour of the day
VALUES(6) holds the m nutes of the hour
VALUES(7) holds the seconds of the mnute
VALUES(8) holds the m|liseconds of the second,
in the range 0 to 999

Return Value

As this is a subroutine, the values are returned in the arguments.

DBLE

Convert to double precision real.

F77
Synopsis
DBLE(A)

180

Chapter 6. Fortran Intrinsics

Argument

The argument A must be of type integer, real, or complex.

Return Value
If A is of type integer or real, the return value is the value converted to a double precision real.

If A is of type complex, the return value is the double precision value of the real part of the complex argument.

DCMPLX

Convert the supplied argument or arguments to double complex type.
F77

Synopsis

DCVPLX(X [, Y])

Arguments

The argument X is of type integer, real, or complex. The optional argument Y is of type integer or real. If X is
complex, Y must not be present.

Return Value

Returns a double complex number with the value specified by the arguments converted to a real part and a
complex part.

DIGITS

Returns the number of significant digits in the model representing the argument.

F90

Synopsis

Dl G TS(X)
Argument

The argument X is of type integer or real.
Return Value

An integer value representing the number of digits in the model representing the specified kind.

DIM

Returns the difference X-Y if the value is positive, otherwise it returns 0.

181

DOT_PRODUCT

F77

Synopsis
DIMX, Y)

Arguments

X must be of type integer or real. Y must be of the same type and kind as X.

Return Value

The result is the same type and kind as X with the value X-Y if X>Y, otherwise zero.

DOT_PRODUCT

Perform a dot product on two vectors (arrays).
F90

Synopsis
DOT_PRODUCT(VECTOR A, VECTOR B)
Arguments

VECTOR_A must be an array of rank one of type numeric (integer, real, complex) or logical. VECTOR_B must
be numeric if VECTOR_A is numeric, or logical if VECTOR_A is logical. It must have the same rank and size as
ARRAY_A.

Return Value
The dot product.
* For VECTOR_A of integer or real, the value is SUM(VECTOR_A * VECTOR_B).

e For complex, the value is SUM(CONJG(VECTOR_A) * VECTOR_B).
e For logical, the value is ANY(VECTOR_A .AND. VECTOR_B).

DPROD

Double precision real product.
F90

Synopsis
DPROD(X, Y)
182

Chapter 6. Fortran Intrinsics

Arguments

Both arguments X and Y must be of type default real.

Return Value

A double precision real that is the product of X and Y.

EOSHIFT

Perform an end-off shift on the specified array.
F90

Synopsis
EOSHI FT(ARRAY, SHI FT [, BOUNDARY] [,DIM)
Arguments

The argument ARRAY is the array to shift. It may be an array of any type. The argument SHIFT is an integer or
an array of integers with rank n-1 where n is the rank of ARRAY. The optional argument BOUNDARY is of the
same type as the array, it may be scalar or of rank n-1 where n is the rank of ARRAY. The optional argument
BOUNDARY is the value to fill in the shifted out positions. By default it has the following values for integer 0, for
real 0.0, for complex (0.0,0.0), for logical false, for character the default is blank characters.

The optional argument DIM represents the dimension of ARRAY to shift.

Return Value

The shifted array with the same size and shape as the argument ARRAY.

EPSILON

Return the smallest number representable in the kind of the supplied argument.
F0
Synopsis
EPSI LON(X)
Argument
The argument X must be of type real.
Return Value
A very small number in the specified real kind.

183

EQV

EQV
Performs a logical exclusive NOR on the arguments.
F77 extension
Synopsis
COVPL(M N
Arguments

The arguments M and N may be of any type except for character and complex.

Return Value

The return value is typeless.

EXP

Exponential function.
F77
Synopsis

EXP(X)
Argument

The argument X must be of type real or complex.

Return Value

A value of the same type as the argument. It has the value ex .

EXPONENT

Return the exponent part of a real number.
F0
Synopsis

EXPONENT(X)
Argument

The argument X is a real number.

184

Chapter 6. Fortran Intrinsics

Return Value

An integer which has the value of the exponent part of the value of X.

» If the exponent is zero, the function returns zero.

* If the exponent is too large to be defined as an integer, the result is undefined.

FLOOR

Return the greatest integer less than or equal to the supplied real argument.

F90

Synopsis

FLOOR(A [, KI ND])

Argument

The argument A is a real value. The optional argument KIND is a kind parameter and was added to FLOOR in
Fortran 95.

Return Value
An integer.

If KIND is present, the result is of type KIND.

FRACTION

Return the fractional part of a real number.

F90

Synopsis

FRACTI ON(X)

Argument

The argument X is a real number.

Return Value

The return value is an integer which has the value of the fractional part of the value of X. If the fraction value is
zero, the function returns zero.

HUGE

Return the largest number representable in the kind of the supplied argument.

185

IACHAR

F90

Synopsis
HUGE(X)

Argument

The argument X must be of type integer or real.

Return Value

A value of the same type as the argument with the maximum value possible.

IACHAR

Returns the position of the character in the ASCII collating sequence.

F90
Synopsis

| ACHAR(C)
Argument

The argument C must be of type character.

Return Value

An integer representing the character position.

IAND

Perform a bit-by-bit logical AND on the arguments.

F77
Synopsis
I AND(I, J)
Arguments
The arguments I and J must be of type integer of the same kind.
Return Value
An integer value representing a bit-by-bit logical AND of the bits in the two integer arguments.

186

Chapter 6. Fortran Intrinsics

IBCLR

Clears one bit to zero.
Fr7
Synopsis

| BCLR(I, POS)
Arguments

Lis an integer. POS is a nonnegative integer less than BIT_SIZE(I).

Return Value

A value of the same type as I and with a value that is the same as I except that the bit in position POS is set to 0.

IBITS

Extracts a sequence of bits.

F77
Synopsis
IBI TS(l, POS, LEN)

Arguments

Lis an integer. POS is a nonnegative integer and POS + LEN must be less than or equal to BIT_SIZE(I). LEN is
of type integer and is nonnegative.

Return Value

A value that is the same type as I, with a value that is the sequence of LEN bits in I beginning at position POS,
right-adjusted and with all other bits set to zero.

IBSET

Set one bit to one.
F77

Synopsis
| BSET(I, POS)
Arguments

Lis an integer. POS is a2 nonnegative integer less than BIT_SIZE(I).

187

ICHAR

Return Value

A value of the same type as I, with a value that is the same as I except that the bit in position POS is set to 1.

ICHAR

Returns the position of a character in the character set's collating sequence.
F90
Synopsis

| CHAR(©)
Argument

The argument C must be of type character and length one.

Return Value

An integer representing the character position.

IEOR

Perform a bit-by-bit logical exclusive OR on the arguments.
F77
Synopsis

| EOR(I, J)
Argument

The arguments I and J must be of type integer of the same kind.

Return Value

An integer value representing a bit-by-bit logical Exclusive OR of the bits in the two integer arguments.
[INT
Converts a value to a short integer type.

F77 extension

Synopsis
11 NT(A)

188

Chapter 6. Fortran Intrinsics

Arguments

The argument A is of type integer, real, or complex.

Return Value

The return value is the short integer value of the supplied argument. For a real number, if the absolute value of
the real is less than 1, the return value is 0. If the absolute value is greater than 1, the result is the largest short
integer that does not exceed the real value. If argument is a complex number, the return value is the result of
applying the real conversion to the real part of the complex number.

INDEX

Returns the starting position of a substring within a string.
F90

Synopsis
| NDEX(STRI NG, SUBSTRI NG [, BACK])

Arguments

The argument STRING must be of type character string. The argument SUBSTRING must be of type character
string with the same kind as STRING. The optional argument BACK must be of type logical.

Return Value
The function returns an integer.

If BACK is absent or false, the result is the starting point of the first matching SUBSTRING within STRING. Zero
is returned if no match is found. 1 is returned if the SUBSTRING has zero length.

If BACK is present with the value true, the result is the last matching substring in string, or zero if no match is
found.

ININT

Returns the nearest short integer to the real argument.
F77 extension
Synopsis

I NI NT(A)

Arguments

The argument A must be a real.

189

INT

Return Value

A short integer with value (A + .5 * SIGN(A)).

INT

Converts a value to integer type.
Fr77
Synopsis

I NT(A [, KIND])

Arguments

The argument A is of type integer, real, or complex. The optional argument KIND must be a scalar integer that
is a valid kind for the specified type. The KIND argument is not allowed by pgf77.

Return Value
The integer value of the supplied argument.

e For a real number, if the absolute value of the real is less than 1, the return value is 0.
o If the absolute value is greater than 1, the result is the largest integer that does not exceed the real value.

e If the argument is a complex number, the return value is the result of applying the real conversion to the
real part of the complex number.

INT8

Converts a real value to a long integer type.
F77 extension

Synopsis
| NT8(A)
Arguments

The argument A is of type real.

Return Value

The long integer value of the supplied argument.

IOR

Perform a bit-by-bit logical OR on the arguments.

190

Chapter 6. Fortran Intrinsics

F77

Synopsis
IOR(I, J)

Argument

The arguments I and J must be of type integer of the same kind.

Return Value

An integer value representing a bit-by-bit logical OR of the bits in the two integer arguments.

ISHFT

Perform a logical shift.
F77

Synopsis
| SHFT(I, SHIFT)

Arguments

I and SHIFT are integer values. The absolute value of SHIFT must be less than or equal to BIT_SIZE(I).

Return Value

A value of the same type and kind as the argument I, the value of the argument I logically shifted by SHIFT bits.
If SHIFT is positive, the shift is to the left. If SHIFT is negative, the shift is to the right. Zeroes are shifted in at
the ends and the bits shifted out are lost.

ISHFTC

Perform a circular shift of the rightmost bits.
F77

Synopsis
I SHLFTC(1, SHIFT [, Sl ZE])

Arguments

I and SHIFT are integer values. The absolute value of SHIFT must be less than or equal to the optional
argument SIZE. If present, SIZE must not exceed the value BIT_SIZE(I); if SIZE is not present, the function acts
as if it were present with the value BIT_SIZE(T).

191

IZEXT

Return Value

The value of the sub-group of SIZE bits shifted by SHIFT positions within the sub-group, with all other bits
remaining the same and in the same position.

e If the SIZE argument is not present, the circular shift is over the complete group of bits and all of the bits
are shifted by SHIFT positions.

e If SHIFT is positive, the shift is to the left. If SHIFT is negative, the shift is to the right.

IZEXT

Zero-extend the argument.
F77 extension

Synopsis

| ZEXT(A)
Arguments

The argument A is of type logical or integer.

Return Value

A zero-extended short integer of the argument.

JINT

Converts a value to an integer type.
F77 extension

Synopsis

JINT(A)

Arguments

The argument A is of type integer, real, or complex.

Return Value
The integer value of the supplied argument.
e For a real number, if the absolute value of the real is less than 1, the return value is 0.

e If the absolute value is greater than 1, the result is the largest integer that does not exceed the real value.

e If argument is a complex number, the return value is the result of applying the real conversion to the real
part of the complex number.

192

Chapter 6. Fortran Intrinsics

JNINT

Returns the nearest integer to the real argument.
F77 extension
Synopsis

JNI NT(A)
Arguments

The argument A must be a real.

Return Value

An integer with value (A + .5 * SIGN(A)).

KIND

Returns the kind of the supplied argument.
F90
Synopsis

KI ND(X)
Argument

The argument X is of any intrinsic type.

Return Value

An integer representing the kind type parameter of X.

KNINT

Returns the nearest integer to the real argument.
F77 extension
Synopsis

KNI NT(A)

Arguments

The argument A must be a real.

193

LBOUND

Return Value

A long integer with value (A + .5 * SIGN(A)).

LBOUND

Returns the lower bounds of an array, or the lower bound for the specified dimension.
F90

Synopsis

LBOUND(ARRAY [, DI M)

Arguments

The argument ARRAY is an array of any type. The optional argument DIM is a scalar that has the value of a valid
dimension of the array (valid dimensions are between the values 1 and n where n is the rank of the array).

Return Value
An integer, or an array of rank one and size n, where n is the rank of the argument ARRAY.

e For the function with a DIM argument, the return value is the value of the lower bound in the specified
dimension.

e For the function with no DIM supplied, the return value is an array with all the lower bounds of ARRAY.

LEN

Returns the length of the supplied string.
F90
Synopsis

LEN(STRI NG)
Argument

The argument STRING is a character string or an array.

Return Value

An integer that represents the length of the scalar string supplied, or the length of an element of STRING if
STRING is an array.

LEN_TRIM

Returns the length of the supplied string minus the number of trailing blanks.

194

Chapter 6. Fortran Intrinsics

F90
Synopsis

LEN_TRI M STRI NG)
Arguments
The argument STRING is a character string.

Return Value

An integer that represents the length of the scalar string minus the number of trailing blanks, if any.

LGE

Test the supplied strings to determine if the first string STRING_A is lexically greater than or equal to the
second string STRING_B. A string is lexically greater than another string if the first string follows the second
string alphabetically.

F90
Synopsis

LGE(STRING A, STRI NG B)
Argument

The arguments STRING_A and STRING_B are of type default character.

Return Value

A logical value. If the strings are not of the same length, the shorter string is padded with blanks on the right.

LGT

Test the supplied strings to see if the first string STRING_A is lexically greater than the second string
STRING_B. A string is lexically greater than another string if the first string follows the second string
alphabetically.

F90
Synopsis

LGT(STRING A, STRI NG B)
Argument

The arguments STRING_A and STRING_B are of type default character.
Return Value

A logical value. If the strings are not of the same length, the shorter string is padded with blanks on the right.

195

LLE

LLE

Test the supplied strings to see if the first string STRING_A is lexically less than or equal to the second
string STRING_B. A string is lexically less than another string if the first string precedes the second string
alphabetically.

F90
Synopsis

LLE(STRING A, STRI NG _B)
Argument

The arguments STRING_A and STRING_B are of type default character.

Return Value

A logical value. If the strings are not of the same length, the shorter string is padded with blanks on the right.

LLT

Test the supplied strings to see if the first string STRING_A is lexically less than the second string, STRING_B. A
string is lexically less than another string if the first string precedes the second string alphabetically.

F90
Synopsis

LLT(STRING A, STRI NG B)
Argument

The arguments STRING_A and STRING_B are of type default character.

Return Value

A logical value. If the strings are not of the same length, the shorter string is padded with blanks on the right.

LOC

Return the 32-bit address of a data item.

F77

Synopsis
LOC(X)

Argument

The argument X is of type integer, real or complex.

196

Chapter 6. Fortran Intrinsics

Return Value

An integer representing the address of the argument.

LOG

A function that returns the natural logarithm.
F77
Synopsis

LOG(X)

Argument

The argument X is of type real or complex. If X is real, it must be greater than 0. If X is complex, it must not be
equal to zero.

Return Value

The natural log (base e) of X.

LOG10

A function that returns the common logarithm.
F77

Synopsis

LOGLO(X)

nctions:LOG;Argument

The argument X is of type real and must be greater than 0.

Return Value

The common log (base 10) of X.

LOGICAL

Convert a logical value to the specified logical kind.
F90

Synopsis

LOG CAL(L [, KIND])

197

LSHIFT

Arguments

The argument L is the logical value to convert. The optional argument KIND must be a scalar integer that is a
valid kind for the specified type.

Return Value
A logical value equal to the logical value L.

If KIND is specified, the kind type parameter of the return value is that of KIND, otherwise it is default logical.

LSHIFT

Perform a logical shift to the left.
F77 extension

Synopsis

LSHI FT(1, SHIFT)
Arguments

I and SHIFT are integer values.

Return Value

A value of the same type and kind as the argument L. It is the value of the argument I logically shifted left by
SHIFT bits.

MATMUL

Perform a matrix multiply of numeric or logical matrices.
F90

Synopsis
MATMUL(MATRI X_A, MATRI X_B)
Arguments

The argument MATRIX_A must be numeric (integer, real, or complex) or logical, and have a rank of one

or two. The argument MATRIX_B must be numeric (integer, real, or complex) or logical, and have a rank

of one or two. If MATRIX_A has rank one, then MATRIX_B must have rank 2. If MATRIX_B has rank one,
then MATRIX_A must have rank 2. The size of the first dimension of MATRIX_B must equal the size of the last
dimension of MATRIX_A.

Return Value

A matrix representing the value of the matrix multiplied arguments. There are three possible result shapes:

198

Chapter 6. Fortran Intrinsics

e MATRIX_A(n,m) and MATRIX_B(m,k) gives a result (n,k) matrix.
e MATRIX_A(m) and MATRIX_B(m,k) gives a result (k).
e MATRIX_A(n,m) and MATRIX_B(m) gives a result(n).

MAX

Return the maximum value of the supplied arguments.
F77

Synopsis

MAX(AL, A2 [,A3,...])

Arguments

Any arguments after the first two are optional. The arguments must all have the same kind and they must be
integer or real.

Return Value

A value the same as the type and kind of the arguments, having the value of the largest argument.

MAXEXPONENT

Returns the value of the maximum exponent for the type and the kind supplied.
F90
Synopsis

MAXEXPONENT(X)
Argument

The argument X must be a scalar or an array of type real.

Return Value

An integerr whose value is that of the largest exponent in the specified kind.

MAXLOC

Determine the first position in the specified array that has the maximum value of the values in the array. The
test elements may be limited by a dimension argument or by a logical mask argument.

F90
Synopsis

MAXLOC(ARRAY [, DIM [, MASK])

199

MAXVAL

Arguments

The argument ARRAY must be an array of type integer or real. The optional argument DIM, added in Fortran
95, is of type integer. The optional argument MASK must be of type logical and must have the same shape

as ARRAY. If only two arguments are supplied, the type of the second argument is used to determine if it
represents DIM or MASK.

Return Value

An integer array of rank 1 with size equal to the number of dimensions in ARRAY.

e The return values represent the positions of the first element in each dimension that is the maximum value
of that dimension.

o If the MASK parameter is present, the return value is the position of the first value that has the maximum
value of values in ARRAY, and that also has a true value in the corresponding MASK array.

¢ When the DIM argument is supplied, the return value is an array that has a value of MAXLOC applied
recursively along the DIM dimensions of the array.

MAXVAL

Return the maximum value of the elements of the argument array. The test elements may be limited by a
dimension argument or by a logical mask argument.

F90

Synopsis

MAXVAL(ARRAY [, DIM [, MASK])

Arguments

The argument ARRAY must be an array of type integer or real. The optional argument DIM is a scalar that has
the value of a valid dimension of the array (valid dimensions are between the values 1 and n where n is the
rank of the array). The optional argument MASK must be of type logical and must have the same shape as
ARRAY. Fortran 95 has extended MAXVAL such that if only two arguments are supplied, the type of the second
argument is used to determine if it represents DIM or MASK.

Return Value

Varies, based on the arguments supplied:

e The return value is a scalar if no DIM argument is present, or has a rank of n-1 and a shape specified by all
of the dimensions except the DIM argument dimension.

e The return value is the value of the largest element of the array if no optional parameters are supplied.

e If only the MASK parameter is supplied with the array, then the return value is the value that is the maximum
of the true elements of MASK.

200

Chapter 6. Fortran Intrinsics

e When the DIM argument is supplied, the return value is an array that has a value of MAXVAL applied
recursively along the DIM dimensions of the array.

MERGE

A function that merges two arguments based on the value of a logical mask.

F90
Synopsis

MERGE(TSOURCE, FSOURCE, MASK)

Arguments

TSOURCE is the source that is merged if the mask is true. FSOURCE is the source that is merged if the mask is
false. TSOURCE and FSOURCE must be of the same type and must have the same type parameters (if they are
arrays they must be conformable). MASK must be of type logical.

Return Value

A value with the same type and type parameters as the source arrays.

MIN

Return the minimum value of the supplied arguments.

F77
Synopsis
M N(AL, A2 [,A3,...])

Arguments

Any arguments after the first two are optional. The arguments must all have the same kind and they must be
integer or real.

Return Value

The same as the type and kind of the arguments, with the value of the smallest argument.

MINEXPONENT

Returns the value of the minimum exponent for the type and the kind supplied.

F90
Synopsis

M NEXPONENT(X)

201

MINLOC

Argument

The argument X has type real and may be a scalar or an array.

Return Value

An integer that has the value of the smallest exponent in the specified kind.

MINLOC

Return the position of the element with the minimum value of the elements of the argument array. The test
elements may be limited by a dimension argument or by a logical mask argument.

F90
Synopsis

M NLOC(ARRAY [, DIM [, MASK])

Arguments

The argument ARRAY must be an array of type integer or real. The optional argument DIM, added in Fortran
95, is of type integer. The optional argument MASK must be of type logical and must have the same shape

as ARRAY. If only two arguments are supplied, the type of the second argument is used to determine if it
represents DIM or MASK.

Return Value

An integer array of rank 1 with a size equal to the number of dimensions in ARRAY. The value is the position of
the first element that is the minimum value of the array.

e If the MASK parameter is present, the return value is the position of the first value that has the minimum
value of values in ARRAY, and that also has a true value in the corresponding MASK array.

e When the DIM argument is supplied, the return value is an array that has a value of MINLOC applied
recursively along the DIM dimensions of the array.

MINVAL

Return the minimum value of the elements of the argument array. The test elements may be limited by a
dimension argument or by a logical mask argument.

F90
Synopsis

M NVAL(ARRAY [, DIM [, MASK])

Arguments

The argument ARRAY must be an array of type integer or real. The optional argument DIM is a scalar that has
the value of a valid dimension of the array (valid dimensions are between the values 1 and n where n is the

202

Chapter 6. Fortran Intrinsics

rank of the array). The optional argument MASK must be of type logical and must have the same shape as
ARRAY. Fortran 95 has extended MINVAL such that if only two arguments are supplied, the type of the second
argument is used to determine if it represents DIM or MASK.

Return Value

Varies depending on the arguments upplied:

e A scalar if no DIM argument is present, or a value witth a rank of n-1 and a shape specified by all of the
dimensions except the DIM argument dimension.

e The return value is the value of the largest element of the array if no optional parameters are supplied.

e If only the MASK parameter is supplied with the array, then the return value is the value that is the minimum
of the true elements of MASK.

e When the DIM argument is supplied, the return value is an array that has a value of MINVAL applied
recursively along the DIM dimensions of the array.

MOD

Find the remainder.
F77
Synopsis

MOD(A, P)
Arguments

The argument A must be an integer or a real. The argument P must be of the same type and kind as A.

Return Value

A value of the same type as the argument A and value (A - INT(A/P) * P).

MODULO

Return the modulo value of the arguments.
F90
Synopsis
MODULO(A, P)
Arguments
The argument A must be an integer or a real. The argument P must be of the same type and kind as A.

203

MVBITS

Return Value

The return value is the same type as the argument A.

e If A and P are of type real, the result is (A — FLOOR(A/P) * P).

e If A and P are of type integer, the result is (A — FLOOR(A+P) * P) where + represents ordinary
mathematical division.

MVBITS

Copies a bit sequence from a source data object to a destination data object.
F90
Synopsis

MBI TS(FROM FROWPCS, LEN, TO, TOPOS)

Arguments

All arguments have type integer. The arguments FROMPOS, LEN , and TOPOS must be nonnegative. The TO
argument must be a variable of type integer and have the same kind type parameter as the FROM argument.

Return Value

MVBITS is a subroutine and has no return value; instead, the TO argument is modified. LEN bits starting at
FROMPOS in FROM are copied to TO at TOPOS. All other bits of TO remain unchanged.

NEAREST

Returns the nearest different machine representable number in a given direction.

F90
Synopsis

NEAREST(X, S)
Arguments

The argument X is a real number. The argument § is a real number and not equal to zero.

Return Value

A value of the same type as X that contains the value that is the closest possible different machine representable
number from X in the direction given by the sign of S.

NEQV

Performs a logical exclusive OR on the arguments.

204

Chapter 6. Fortran Intrinsics

F77 extension

Synopsis
COWPL(M N)

Arguments

The arguments M and N may be of any type except for character and complex.

Return Value

The return value is typeless.

NINT

Returns the nearest integer to the real argument.

F77

Synopsis

NI NT(A [, KI ND])
Arguments

The argument A must be a real. The optional argument KIND specifies the kind of the result integer.
Return Value

An integer.

e IfA > 0, NINT(A) has the value is INT(A+0.5).
e If Ais less than or equal to 0, NINT(A) has the value INT(A-0.5).

NOT

Perform a bit-by-bit logical complement on the argument.
F77

Synopsis

NOT(1)
Argument

The argument I must be of type integer.

Return Value

An integer value representing a bit-by-bit logical complement of the bits in the argument.

205

NULL

NULL

Gives the disassociated status to pointer entities. Fortran 95 added this transformational function. For a2 more
detailed explanation, refer to Fortran 95 Explained.

F95
Synopsis

NULL([PTR])
Arguments

The optional argument PTR is a pointer of any type and may have any association status including undefined.

Return Value

A disassociated pointer.

OR

Performs a logical OR on each bit of the arguments.
F77 extension

Synopsis
OR(M N

Arguments

The arguments M and N may be of any type except for character and complex.

Return Value

The return value is typeless.

PACK

Pack an array of any number of dimensions into an array of rank one.
F90
Synopsis

PACK(ARRAY, MASK [, VECTOR])
Arguments

The ARRAY argument is the array to be packed and may be of any type. The MASK argument is of type logical
and must be conformable with ARRAY. The optional argument VECTOR is of the same type as ARRAY and has
rank one.

206

Chapter 6. Fortran Intrinsics

Return Value

A packed array limited by the logical values in the array MASK. If VECTOR is present its values are part of the

result array only for those elements that have an element order greater than the number of true elements in

MASK. For further details, refer to the Fortran 95 Handbook.

PRECISION

Return the decimal precision of the real or complex argument.
F90

Synopsis
PRECI SI ON(X)

Argument

The argument X must be a real or complex number.

Return Value

An integer representing the decimal precision of the argument.

PRESENT

Determine if an optional argument is present.
F90

Synopsis

PRESENT(A)

Argument

The argument A must be an optional argument in the procedure in which the intrinsic is called.

Return Value

A logical scalar. True if A is present and false otherwise.

PRODUCT

Returns the product of the elements of the supplied array.

F90

Synopsis

PRODUCT(ARRAY [, DIM [, MASK])

207

RADIX

Arguments

The ARRAY argument is an array of integer, real or complex type. The optional DIM argument is a valid
dimension (valid dimensions are between the values 1 and n where n is the rank of the array). The optional
MASK argument is of type logical and conformable with the supplied array. Fortran 95 has extended PRODUCT
such that if only two arguments are supplied, the type of the second argument is used to determine if it
represents DIM or MASK.

Return Value

The product of the elements of ARRAY.

e If the optional DIM argument is present, the product is for the specified dimension.

e If the optional MASK argument is present, the result is subject to the logical mask supplied.

RADIX

Return the base of the model representing numbers of the type and kind of the argument.
F90

Synopsis
RADI X(X)
Argument

The argument X is of type integer or real.

Return Value

An integer with the value of the radix (base) of the number system model of the argument.

RANDOM_NUMBER

Returns one pseudorandom number or an array of pseudo-random numbers from the uniform distribution
over the range 0 x < 1.

F90

Synopsis
RANDOM NUVBER(HARVEST)
Argument

The argument HARVEST must of type real. It is set to contain the resulting pseudorandom number or array of
pseudorandom numbers from the uniform distribution.

208

Chapter 6. Fortran Intrinsics

Return Value

RANDOM_NUMBER is a subroutine.

Description

The random number intrinsic generates a 46 bit lagged fibonacci pseudo-random sequence with a short lag
of 5 and a long lag of 17. For a given seed, including the default seed, the sequence generated is independent
of the platform and number of processors. Due to limitations of some platforms' default integer type, the
seed vector is of size 34. Only the least significant 23 bits of each element of the seed array are used, thus a
seed array returned or used is portable between platforms. For non-degenerate seed arrays, the period of this
generator is (2'7-1) * 2 1f all the odd elements of the seed array are even, the period will be shorter.

For the PGHPF compiler, the best performance on distributed arrays is for block distributions. The higher the
order of the first distributed dimension, the better the performance will be.

RANDOM_SEED

Restarts or queries the pseudorandom number generator for RANDOM_NUMBER.
F90
Synopsis

RANDOM SEED([SI ZE] [, PUT] [, GET])

Arguments

The arguments SIZE, PUT and GET are optional. There must be one or no arguments. Multiple arguments are
not allowed. SIZE is an integer value representing the number of integers that the processor uses to hold the
value of the seed. PUT is an integer array of rank one and is used to set the seed. GET is an integer array of
rank one and is used to get the value of the seed.

Return Value

RANDOM_SEED is a subroutine.

RANGE

Return the decimal exponent range for the type of number supplied as an argument.
F90

Synopsis
RANGE(X)
Argument

The argument X must be of type integer, real, or complex.

209

REAL

Return Value

An integer.

REAL

Convert the argument to real.
F77

Synopsis

REAL(A [, KI ND])

Arguments

The argument A must be of type integer, real, or complex. The optional argument KIND specifies the kind type
of the result.

Return Value

A real number. For a complex argument, the imaginary part is ignored.

REPEAT

Concatenate copies of a string.
F90

Synopsis

REPEAT(STRI NG NCOPI ES)

Arguments

The argument STRING must be a scalar of type character. The argument NCOPIES is an integer.

Return Value

A character string that is NCOPIES times as long as STRING. It is the concatenation of STRING NCOPIES times.

RESHAPE

Reconstructs an array with the specified shape using the elements of the source array.

F90

Synopsis

RESHAPE(SOURCE, SHAPE [, PAD] [, ORDER])

210

Chapter 6. Fortran Intrinsics

Arguments

The argument SOURCE is an array of any type. The argument SHAPE is of type integer and has rank one. It must
not have more than 7 elements and no values can be negative. The optional argument PAD must be the same
size and type as SOURCE. The optional argument ORDER must be of type integer and must have the same shape
as SHAPE.

Return Value

An array of shape SHAPE, with the same type as SOURCE. Array elements are filled into the new array in array
element order.

RRSPACING

Return the reciprocal of the relative spacing of model numbers near the argument value.
F90
Synopsis

RRSPACI NG(X)
Argument

The argument X is of type real.

Return Value

A value of the same type as X.

RSHIFT

Perform a logical shift to the right.
F77 extension

Synopsis

RSHI FT(I, SHI FT)
Arguments

I and SHIFT are integer values.

Return Value

A value of the same type and kind as the argument I. It is the value of the argument I logically shifted right by
SHIFT bits.

SCALE

Return the value X * bi where b is the base of the number system in use for X.

211

SCAN

F90
Synopsis
SCALE(X, 1)

Arguments

The argument X is of type real. The argument I is an integer.

Return Value

A real value of the same type as the argument X.

SCAN

Search the supplied string for a character in a set of characters.
F90

Synopsis
SCAN(STRI NG, SET [, BACK])
Arguments

The argument STRING is of type character and is the string to search. The argument SET is of type character
and has the same kind type parameter as STRING. The optional argument BACK is of type logical.

Return Value

An integer specifying the position in STRING of a character from SET. If the optional parameter BACK is not
present, or is present and false, the result is the position of the first character found. If BACK is present and
true, the return value is that of the last character in STRING matching one in SET.

SELECTED_INT_KIND

Returns a value that is the kind type parameter that will represent a number in the specified range, where the
range is determined by the formula -10R < n < 10R, where n is an integer and R is the argument.

F90
Synopsis
SELECTED_| NT_KI ND(R)

Argument

The argument R must be of type integer.

212

Chapter 6. Fortran Intrinsics

Return Value

An integer. If the value R is invalid, the return value is -1.

SELECTED_REAL_KIND

Returns a value that is the kind type parameter that will represent 2 number in the specified range, where the
range is determined with decimal precision P and a decimal exponent range of at least R.

F90
Synopsis

SELECTED REAL_KINX([P] [,R])

Arguments

The arguments are both optional, but at least one of the optional arguments must be present. The argument P
must be of type integer and specifies a precision. The argument R must be of type integer and specifies a range.

Return Value

An integer.

SET_EXPONENT

Returns the model number whose fractional part is the fractional part of the model representation of X and
whose exponent part is 1.

F90
Synopsis

SET_EXPONENT(X, 1)
Arguments

The argument X is of type real. The argument I is of type integer.

Return Value

A value of the type of the argument X.

SHAPE

Returns the shape of the supplied argument.
F90
Synopsis

SHAPE(SOURCE)

213

SHIFT

Arguments

The argument SOURCE is a scalar or an array of any type.

Return Value

An array whose size is equal to the rank of SOURCE and whose values represent the shape of SOURCE.

SHIFT

Perform a logical shift.
F77 extension

Synopsis

RSHI FT(1, SH FT)
Arguments

The argument I may be of any type except character or complex. The argument SHIFT is of type integer.

Return Value

The return value is typeless. If SHIFT is positive, the result is I logically shifted left by SHIFT bits. If SHIFT is
negative, the result is I logically shifted right by SHIFT bits.

SIGN

Return the absolute value of A times the sign of B.

F77

Synopsis
SIGN(A, B)
Arguments

The argument A is an integer or real number. The argument B must be of the same type as A.

Return Value

The value of the absolute value of A times the sign of B, with the same type as A. If B is zero, its sign is taken as
positive.

Note

Fortran 95 allows for a distinction to be made between positive and negative real zeroes. In this case,
if B is a real zero, its sign is positive if it is a positive real zero or if the processor cannot distinguish
between positive and negative real zeroes.

214

SIN

Return the value of the sine of the argument.
F90
Synopsis

SIN(X)

Argument

The argument X must be of type real or complex.

Return Value

A value that has the same type as X and is expressed in radians.

SIND

Return the value in degrees of the sine of the argument.
F77
Synopsis

SI ND(X)
Argument

The argument X must be of type real or complex.

Return Value

A value that has the same type as X and is expressed in degrees.

SINH

Return the hyperbolic sine of the argument.
F77
Synopsis

SI NH(X)

Argument

The argument X must be of type real.

Chapter 6. Fortran Intrinsics

215

SIZE

Return Value

A value that has the same type as X.

SIZE

Returns either the total number of elements in the array or the number of elements along a specified
dimension.

F90
Synopsis

SI ZE(ARRAY [, DIM)

Arguments

The argument ARRAY is an array of any type. The optional DIM argument must be a valid dimension (valid
dimensions are between the values 1 and n where n is the rank of the array).

Return Value

The result value is an integer. If DIM is absent, the function returns the total number of elements in the array. If
DIM is present, the function returns the extent of the array in the specified dimension.

SPACING

Returns the spacing of model numbers near the argument.
F90

Synopsis

SPACI N&(X)
Arguments

The argument X is of type real.
Return Value

A value that has the same type and kind as X.

SPREAD

Replicates an array by adding a new dimension.
F90
Synopsis

SPREAD(SQURCE, DI M NCOCPI ES)

216

Chapter 6. Fortran Intrinsics

Arguments

The argument SOURCE may be of any type with rank less than 7. The DIM argument is a scalar integer
representing a valid dimension (valid dimensions are between the values 1 and n where n is the rank of the
array). The argument NCOPIES must be scalar and of type integer.

Return Value

An array of the same type as the SOURCE, with rank n+1 where n is the rank of SOURCE.

SQRT

Return the square root of the argument.

F77
Synopsis
SQRT(X)

Arguments

The argument X must be a real or complex number.

Return Value

The value of the same type as the argument.

SUM

Returns the sum of the elements of the supplied array.
F90

Synopsis
SUM ARRAY [,DIM [, MASK])
Arguments

The ARRAY argument is an array of integer, real or complex type. The optional DIM argument is a valid
dimension (valid dimensions are between the values 1 and n where n is the rank of the array). The optional
MASK argument is of type logical and conformable with the supplied array. Fortran 95 has extended SUM such
that if only two arguments are supplied, the type of the second argument is used to determine if it represents
DIM or MASK.

Return Value

The sum of the elements of the argument ARRAY.

217

SYSTEM_CLOCK

e If the optional DIM argument is present, the sum is for the specified dimension.

e If the optional MASK argument is present, the result is subject to the logical mask supplied.

SYSTEM_CLOCK

Returns information about the real time clock.
F90

Synopsis
SYSTEM CLOCK([COUNT] [, COUNT_RATE] [, COUNT_MNAX])

Arguments

The optional argument COUNT is a scalar integer that provides the current count of the system clock when
the subroutine is called. The optional argument COUNT_RATE is a scalar integer that provides the number of
clock ticks per second. The optional argument COUNT_MAX is a scalar integer that provides the value of the
maximum count possible.

The number of tics per second is always 1000. This routine is implemented on most systems using
gettimeofday(2); some implementations use dclock(3).

Return Value

The arguments of this subroutine are modified during the call; there is no return value.

TAN

Return the tangent of the specified value.
F77
Synopsis

TAN(X)
Argument

The argument X must be of type real and have absolute value <= 1.

Return Value

A real value of the same KIND as the argument.

TAND

Return the tangent of the specified value.

218

Chapter 6. Fortran Intrinsics

F77

Synopsis
TAND(X)

Argument

The argument X must be of type real and have absolute value <= 1.

Return Value

A real value of the same KIND as the argument.

TANH

Return the hyperbolic tangent of the specified value.
F77

Synopsis

TANH(X)
Argument

The argument X must be of type real and have absolute value <= 1.

Return Value

A real value of the same KIND as the argument.

TINY

Return the smallest positive number representable in the kind of the supplied argument.
F90
Synopsis

TI NY(X)
Argument

The argument X must be of type real.

Return Value

The smallest positive number in the number system. The value has the same type as the argument X.

TRANSFER

Return a value that has the same bit representation as the source but with a different type.

219

TRANSPOSE

F90
Synopsis

TRANSFER(SOURCE, MOLD [, SI ZE])

Arguments

The arguments SOURCE and MOLD may be scalars or arrays of any type. The optional argument SIZE must be a
scalar and of type integer.

Return Value
A value that has the type of the MOLD argument.

e If SIZE is present, the result is a rank-one array of size SIZE.

e If SIZE is not present, the result is a scalar if MOLD is a scalar and a rank-one array if MOLD is an array.

Refer to The Fortran 95 Handbook for more details on the TRANSFER intrinsic.

TRANSPOSE

Transpose an array of rank two.
F90
Synopsis

TRANSPOSE(MATRI X)
Arguments

The argument MATRIX is a two-dimensional array of any type.

Return Value

A transformed matrix with the same type as MATRIX and dimensions (m,n) where matrix MATRIX has
dimensions (n,m).

TRIM

Remove the trailing blanks from a string.
F90

Synopsis
TRl M STRI NG

Arguments
The argument STRING is the string to be adjusted and must be a scalar.

220

Chapter 6. Fortran Intrinsics

Return Value

The same as the argument but with the trailing blanks removed. The size of the returned string is the size of the
argument STRING minus the number of trailing blanks in STRING.

UBOUND

Returns the upper bounds of an array or the upper bound for the specified dimension.

F90
Synopsis

UBOUND(ARRAY [, DI M)

Arguments

The argument ARRAY is an array of any type. The optional argument DIM is a scalar that has the value of a valid
dimension of the array (valid dimensions are between the values 1 and n where n is the rank of the array).

Return Value
An integer or an array of rank one and size n, where n is the rank of the argument ARRAY.

e If DIM is not supplied, the return value is an array with all the upper bounds for ARRAY.

e If DIM is provided, the return value is the value of the upper bound in the specified dimension.

UNPACK

Unpack an array of rank one dimension into an array of any number of dimensions.

F90
Synopsis

UNPACK(VECTOR, MASK, FI ELD)

Arguments

The VECTOR argument is an array of any type and of rank one. It must have as many elements as there are true
elements in MASK. The MASK argument is of type logical array. The FIELD argument must be the same type as
VECTOR and must be conformable with MASK.

Return Value

An array that has the same type as VECTOR and the shape of MASK. For further details and information on the
FIELD argument, refer to The Fortran 95 Handbook.

VERIFY

Verify that a character string contains all characters from a set of characters.

221

XOR

F90
Synopsis

VERI FY(STRING, SET [, BACK])

Arguments

The arguments STRING and SET are of type character. The optional argument BACK is of type logical. BACK is a
logical that determines if the first or last character position is returned.

Return Value
An integer. The function returns the position of the first (or last) character that is not in the set.

e If BACK is present and true, the position of the right-most character is returned.

* If BACK is not present or present and false, the position of the left-most character is returned.

XOR

Performs a logical exclusive OR on each bit of the arguments.
F77 extension

Synopsis
XOR(M N

Arguments
The arguments M and N must be of integer type.
Return Value

An integer.

ZEXT

Zero-extend the argument.
F77 extension

Synopsis

ZEXT(A)
Arguments

The argument A is of type logical or integer.
Return Value

An integer.

222

Chapter 6. Fortran Intrinsics

Supported HPF Intrinsics

The following table lists the HPF intrinsics and Library procedures supported by the PGHPF compiler. Refer to
the man pages supplied with the PGHPF software for further details on these intrinsics and procedures. Refer
to Chapter 9, “HPF Directives ”, for the HPF_LIBRARY_LOCAL routines.

Table 6.19. HPF Intrinsics and Library Procedures

Intrinsic Class

ALL_PREFIX Transformational function
ALL_SCATTER Transformational function
ALL_SUFFIX Transformational function
ANY_PREFIX Transformational function
ANY_SCATTER Transformational function
ANY_SUFFIX Transformational function
COPY_PREFIX Transformational function
COPY_SCATTER Transformational function
COPY_SUFFIX Transformational function
COUNT_PREFIX Transformational function
COUNT_SCATTER Transformational function
COUNT_SUFFIX Transformational function
GRADE_DOWN Transformational function
GRADE_UP Transformational function

HPF_ALIGNMENT

Mapping inquiry subroutine

HPF_DISTRIBUTION

Mapping inquiry subroutine

HPF_TEMPILATE

Mapping inquiry subroutine

IALL Transformational function
IALL_PREFIX Transformational function
TALL_SCATTER Transformational function
IALL_SUFFIX Transformational function
TANY Transformational function
TANY_ PREFIX Transformational function
TANY_SCATTER Transformational function
IANY_SUFFIX Transformational function
ILEN Elemental Intrinsic

IPARITY Transformational function
IPARITY_PREFIX Transformational function

223

CM Fortran Intrinsics

Intrinsic Class

IPARITY_SCATTER Transformational function
IPARITY_SUFFIX Transformational function

LEADZ Elemental function

MAXLOC Transformational function Intrinsic
MAXVAL_PREFIX Transformational function
MAXVAL_SCATTER Transformational function
MAXVAL_ SUFFIX Transformational function

MINLOC Transformational function Intrinsic
MINVAL_PREFIX Transformational function
MINVAL_SCATTER Transformational function
MINVAL_SUFFIX Transformational function

NUMBER_OF_PROCESSORS

System Inquiry function Intrinsic

PARITY Transformational function
PARITY_PREFIX Transformational function
PARITY_SCATTER Transformational function
PARITY_SUFFIX Transformational function
POPCNT Elemental function
POPPAR Elemental function

PROCESSORS_SHAPE

System Inquiry function Intrinsic

PRODUCT_PREFIX

Transformational function

PRODUCT_SCATTER

Transformational function

PRODUCT_SUFFIX

Transformational function

SUM_ PREFIX Transformational function
SUM_SCATTER Transformational function
SUM_ SUFFIX Transformational function

CM Fortran Intrinsics

This section provides information on CM Fortran intrinsics. The PGHPF compiler option —Mcmf provides
limited support for CM Fortran compatibility (Thinking Machines Corporation version of Fortran). This
includes support for the intrinsics DOTPRODUCT, DLBOUND, DUBOUND, and DSHAPE which have calling
sequences identical to their Fortran 90/95 counterparts. It also includes support for the CM Fortran method of
using square brackets in the definition of array constructors and the use of the ARRAY keyword in place of the
Fortran 90/95 standard DIMENSION keyword.

There are three CM Fortran intrinsics which have names identical to their Fortran 90/95 counterparts but
whose calling sequences differ. These are CSHIFT, EOSHIFT, and RESHAPE; their descriptions follow.

224

Chapter 6. Fortran Intrinsics

If PGHPF is invoked with the compiler switch -Mcmf these three intrinsics will be interpreted using the CM
Fortran convention rather than the standard Fortran 90/95 convention. There are 6 additional non-standard
intrinsics in CM Fortran: PROJECT, LASTLOC, FIRSTLOC, RANK, DIAGONAL, and REPLICATE. These non-
standard intrinsics are not supported by PGHPE. Other features of CM Fortran that are not supported are the
layout directives and the utility routines.

CSHIFT

Perform a circular shift on the specified array.
CMF

Synopsis
CSHI FT(ARRAY, DIM SHI FT)

Arguments

The argument ARRAY is the array to shift. It may be an array of any type. The argument DIM is an integer
representing the dimension to shift. The argument SHIFT is an integer or an array of integers with rank n-1
where n is the rank of ARRAY.

Return Value

The shifted array with the same size and shape as the argument ARRAY.

EOSHIFT

Perform an end-off shift on the specified array.
CMF

Synopsis
CSHI FT(ARRAY, DIM SH FT, BOUNDARY)
Arguments

The argument ARRAY is the array to shift. It may be an array of any type. The argument DIM is an integer
representing the dimension to shift. The argument SHIFT is an integer or an array of integers with rank n-1
where n is the rank of ARRAY. The optional argument BOUNDARY is of the same type as the array, it may be
scalar or of rank n-1 where n is the rank of ARRAY. BOUNDARY is the value to fill in the shifted out positions.
By default it has the following values for integer, 0, for real, 0.0, for complex, (0.0,0.0), for logical false, for
character the default is blank characters.

Return Value
The shifted array with the same size and shape as the argument ARRAY.

225

RESHAPE

RESHAPE

Reconstructs an array with the specified shape using the elements of the source array.
CMF

Synopsis
RESHAPE(SHAPE, SOURCE [, PAD] [, ORDER])
Arguments

The argument SHAPE is of type integer, rank one. It must not have more than 7 elements and no values can
be negative. The argument SOURCE is an array of any type. The optional argument PAD must be the same size
and type as SOURCE. The optional argument ORDER must be of type integer and must have the same shape as
SHAPE.

Return Value

The return value is an array of shape SHAPE, with the same type as SOURCE. Array elements are filled into the
new array in array element order.

226

Chapter 7. 3F Functions and VAX
Subroutines

The PGI Fortran compilers support FORTRAN 77 3F functions and VAX/VMS system subroutines and built-in
functions.

3F Routines

This section describes the functions and subroutines in the Fortran run-time library which are known as 3F
routines on many systems. These routines provide an interface from Fortran programs to the system in the
same manner as the C library does for C programs. These functions and subroutines are automatically loaded
from PGI's Fortran run-time library if referenced by a Fortran program.

The implementation of many of the routines uses functions which reside in the C library. If a C library does
not contain the necessary functions, undefined symbol errors will occur at link-time. For example, if PGI’s C
library is the C library available on the system, the following 3F routines exist in the Fortran run-time library,
but use of these routines will result in errors at link-time:

besj0 besj1 besjn besy0 besyl besyn
dbesjo dbesj1 dbesjn dbesy0 dbesyl dbesyn
derf derfc erf erfc getlog hostnm
Istat putenv symlnk ttynam

The routines mclock and times depend on the existence of the C function times().

The routines dtime and etime are only available in a SYSVR4 environment. These routines are not available
in all environments simply because there is no standard mechanism to resolve the resolution of the value
returned by the times() function.

There are several 3F routines , such as fputc and fgetc, that perform I/0 on a logical unit. These routines
bypass normal Fortran 1/0. If normal Fortran 1/0 is also performed on a logical unit which appears in any of
these routines, the results are unpredictable.

227

abort

abort

Terminate abruptly and write memory image to core file.

Synopsis

subrouti ne abort ()

Description

The abor t function cleans up the I/0 buffers and then aborts, producing a core file in the current directory.

abort

Terminate abruptly and write memory image to core file.

Synopsis

subrouti ne abort ()

Description

The abor t function cleans up the I/0 buffers and then aborts, producing a core file in the current directory.

access

Determine access mode or existence of a file.

Synopsis

i nteger function access(fil, node)
character*(*) fil
character*(*) node

Description
The access function tests the file, whose name is fil, for accessibility or existence as determined by mode.

The mode argument may include, in any order and in any combination, one or more of:

r
test for read permission

W
test for write permission

test for execute permission

(blank)
test for existence

An error code is returned if either the mode argument is illegal or if the file cannot be accessed in all of the
specified modes. Zero is returned if the specified access is successful.

228

alarm

Execute a subroutine after a specified time.

Synopsis

i nteger function alarn(tinme, proc)

integer tinme
external pro

Description

c

Chapter 7. 3F Functions and VAX Subroutines

This routine establishes subroutine proc to be called after time seconds. If time is 0, the alarm is turned off
and no routine will be called. The return value of alarm is the time remaining on the last alarm.

Bessel functions

These functions calculate Bessel functions of the first and second kinds for real and double precision
arguments and integer orders.

besj 0
besj 1
besj n
besy0
besy1l
besyn
dbesj 0
dbesj 1
dbesj n
dbesy0
dbesy1l
dbesyn

Synopsis

real functio
real x
real functio
real x

real functio
i nteger n
real x

real functio
real x

real functio
real x

real functio
i nteger n
real x
doubl e preci
doubl e preci
doubl e preci
doubl e preci
doubl e preci
i nteger n
doubl e preci
doubl e preci

n

n

n

n

n

n

s
S
S
S
S

S
S

besj 0(x)

besj 1(x)

besj n(n, x)

besy0(x)
besy1(x)

besyn(n, x)

on function
on x
on function
on x
on function

on x
on function

dbesj O(x)
dbesj 1(x)

dbesj n(n,

dbesyO(x)

X)

229

chdir

doubl e precision x

doubl e precision function dbesyl(x)
doubl e precision x

doubl e precision function dbesyn(n, x)
i nteger n

doubl e precision x

chdir

Change default directory.

Synopsis

i nteger function chdir(path)
character*(*) path

Description

Change the default directory for creating and locating files to path. Zero is returned if successful; otherwise, an
error code is returned.

chmod
Change mode of a file.

Synopsis

i nteger function chnod(nam node)
character*(*) nam
i nt eger node

Description

Change the file system mode of file nam. If successful, a value of 0 is returned; otherwise, an error code is
returned.

ctime
Return the system time.

Synopsis

character*(*) function ctine(stine)
i nteger stine

Description

ctime converts a system time in stime to its ASCII form and returns the converted form. Neither newline nor
NULL is included.

date
Return the date.

230

Chapter 7. 3F Functions and VAX Subroutines

Synopsis
character*(*) function date(buf)

Description

Returns the ASCII representation of the current date. The form returned is dd-mmm-yy.

error functions

The functions erf and derf return the error function of x. erfc and derfc return 1.0-erf(x) and 1.0-derf(x),
respectively.

Synopsis

real function erf(x)

real x

real function erfc(x)

real x

doubl e precision function derf(x)
doubl e precision x

doubl e precision function derfc(x)
doubl e precision x

etime, dtime
Get the elapsed time.

Synopsis

real function etine(tarray)
real function dtine(tarray)
real tarray(2)

Description
etime returns the total processor run-time in seconds for the calling process.

dtime (delta time) returns the processor time since the previous call to dtime. The first time it is called, it
returns the processor time since the start of execution.

Both functions place values in the argument tarray: user time in the first element and system time in the second
element. The return value is the sum of these two times.

exit
Terminate program with status.

Synopsis

subroutine exit(s)
i nteger s
Description

exit flushes and closes all of the program's files, and returns the value of s to the parent process.

231

fdate

fdate

Return date and time in ASCII form.

Synopsis

character*(*) function fdate()

Description

fdate returns the current date and time as a character string. Neither newline nor NULL will be included.

fgetc
Get character from a logical unit.

Synopsis

i nteger function fgetc(lu, ch)
integer lu
character*(*) ch

Description

Returns the next character in ch from the file connected to the logical unit lu, bypassing normal Fortran I/0
statements. If successful, the return value is zero; -1 indicates that an end-of-file was detected. Any other value
is an error code.

flush

Flush a logical unit.
Synopsis

subroutine flush(lu)

i nteger lu
Description

flush flushes the contents of the buffer associated with logical unit lu.

fork

Fork a process.

Synopsis

i nteger function fork()

Description

fork creates a copy of the calling process. The value returned to the parent process will be the process id of
the copy. The value returned to the child process (the copy) will be zero. If the returned value is negative, an
error occurred and the value is the negation of the system error code.

232

Chapter 7. 3F Functions and VAX Subroutines

fputc
Write a character to a logical unit.

Synopsis

i nteger function fputc(lu, ch)
integer lu
character*(*) ch

Description

A character ch is written to the file connected to logical unit lu bypassing normal Fortran 1/0. If successful, a
value of zero is returned; otherwise, an error code is returned.

free
Free memory.

Synopsis

subroutine free(p)
int p

Description

Free a pointer to a block of memory located by malloc; the value of the argument, p, is the pointer to the block
of memory.

fseek
Position file at offset.

Synopsis

i nteger function fseek(lu, offset, from
i nteger lu

i nteger offset

i nteger from

Description

fseek repositions a file connected to logical unit lu. offset is an offset in bytes relative to the position specified
by from :

0
beginning of the file

current position

end of the file

233

ftell

If successful, the value returned by fseek will be zero; otherwise, it's a system error code.

ftell

Determine file position.

Synopsis
i nteger function ftell (I u)
integer lu

Description

ftell returns the current position of the file connected to the logical unit lu. The value returned is an offset, in
units of bytes, from the beginning of the file. If the value returned is negative, it is the negation of the system
error code.

gerror

Return system error message.
Synopsis

character*(*) function gerror()

Description

Return the system error message of the last detected system error.

getarg
Get the nth command line argument.

Synopsis

subroutine getarg(n, arg)
i nteger n
character*(*) arg

Description

Return the nth command line argument in arg, where the Oth argument is the command name.
jargc

Index of the last command line argument.
Synopsis

i nteger function iargc()

234

Chapter 7. 3F Functions and VAX Subroutines

Description

Return the index of the last command line argument, which is also the number of arguments after the
command name.

getc
Get character from unit 5.

Synopsis

i nteger function getc(ch)
character*(*) ch

Description

Returns the next character in ch from the file connected to the logical unit 5, bypassing normal Fortran 1/0
statements. If successful, the return value is zero; -1 indicates that an end-of-file was detected. Any other value
is an error code.

getcwd
Get pathname of current working directory.

Synopsis

i nteger function getcwd(dir)
character*(*) dir

Description

The pathname of the current working directory is returned in dir. If successful, the return value is zero;
otherwise, an error code is returned.

getenv
Get value of environment variable.

Synopsis

subroutine getenv(en, ev)
character*(*) en
character*(*) ev

Description

getenv checks for the existence of the environment variable en. If it does not exist or if its value is not present,
ev is filled with blanks. Otherwise, the string value of en is returned in ev.

getgid
Get group id.

235

getlog

Synopsis

i nteger function getgid()
Description

Return the group id of the user of the process.

getiog

Get user's login name.

Synopsis

character*(*) function getlog()

Description

getlog returns the user's login name or blanks if the process is running detached from a terminal.

getpid
Get process id.

Synopsis

i nteger function getpid()

Description

Return the process id of the current process.

getuid
Get user id.

Synopsis

i nteger function getuid()

Description

Return the user id of the user of the process.

gmtime
Return system time.

Synopsis

subroutine gntinme(stinme, tarray)
i nteger stime
i nteger tarray(9)

236

Chapter 7. 3F Functions and VAX Subroutines

Description

Dissect the UNIX time, stime , into month, day, etc., for GMT and return in tarray.

hostnm
Get name of current host.

Synopsis

i nteger function hostnm(nm
character*(*) nm

Description

hostnm returns the name of the current host in nm. If successful, a value of zero is returned; otherwise an
error occurred.

idate

Return date in numerical form.

Synopsis
subroutine idate(im id, iy)
integer im id, iy

Description

Returns the current date in the variables im, id, and iy, which indicate the month, day, and year, respectively.
The month is in the range 1-12; only the last 2 digits of the year are returned.

ierrno

Get error number.

Synopsis

i nteger function ierrno()
Description

Return the number of the last detected system error.
joinit

Initialize 1/0

Synopsis

subroutine ioinit(cctl, bzro, apnd, prefix, vrbose)
i nteger cctl
i nteger bzro
i nt eger apnd

237

isatty

character*(*) prefix
i nteger vrbose

Description

Currently, no action is performed.

isatty
Is logical unit a tty.

Synopsis
| ogi cal function isatty(lu)
i nteger lu

Description

Returns .7RUE. if logical unit lu is connected to a terminal; otherwise, .FALSE. is returned.
itime
Return time in numerical form.

Synopsis

subroutine itine(iarray)

i nteger iarray(3)
Description

Return current time in the array iarray. The order is hour, minute, and second.
kill

Send signal to a process.

Synopsis
i nteger function kill (pid, sig)
i nteger pid
i nteger sig

Description

Send signal number sig to the process whose process id is pid. If successful, the value zero is returned,
otherwise, an error code is returned.

link
Make link

Synopsis

i nteger function link(nl, n2)

238

Chapter 7. 3F Functions and VAX Subroutines

character*(*) nl
character*(*) n2

Description

Create a link n2 to an existing file n1. If successful, zero is returned; otherwise, an error code is returned.

Inbink

Return index of last non-blank.

Synopsis

i nteger function |nblnk(al)
character*(*) al

Description

Return the index of the last non-blank character in string al.

loc

Address of an object.

Synopsis

i nteger function |oc(a)
i nteger a

Description

Return the value which is the address of a.

Itime

Return system time.

Synopsis

subroutine Itine(stine, tarray)
i nteger stine
integer tarray(9)

Description

Dissect the UNIX time, stime , into month, day, etc., for the local time zone and return in tarray.

malloc

Allocate memory.

Synopsis

i nteger function mall oc(n)

239

mclock

i nteger n

Description

Allocate a block of n bytes of memory and return the pointer to the block of memory.

mclock

Get elapsed time.
Synopsis

i nteger function nclock()
Description

mclock returns the sum of the user's cpu time and the user and system times of all child processes. The return
value is in units of clock ticks per second.

mvbits
Move bits.

Synopsis

subroutine nmvbits(src, pos, |en, dest, posd)
i nteger src

i nt eger pos

i nteger |en

i nt eger dest

i nt eger posd

Description

len bits are moved beginning at position pos of argument src to position posd of argument dest.

outstr
Print a character string.

Synopsis

i nteger function outstr(ch)
character*(*) ch

Description

Output the character string to logical unit 6 bypassing normal Fortran I/0. If successful, a value of zero is
returned; otherwise, an error occurred.

perror

Print error message.

240

Chapter 7. 3F Functions and VAX Subroutines

Synopsis

subroutine perror(str)
character*(*) str

Description

Write the message indicated by str to logical unit 0 and the message for the last detected system error.

putc

Write a character to logical unit 6.

Synopsis

i nteger function putc(ch)
character*(*) ch

Description

A character ch is written to the file connected to logical unit 6 bypassing normal Fortran /0. If successful, a
value of zero is returned; otherwise, an error code is returned.

putenv

Change or add environment variable.

Synopsis

i nteger function putenv(str)
character*(*) str

Description

str contains a character string of the form name=value. This function makes the value of the environment
variable name equal to value. If successful, zero is returned.

gsort

Quick sort.

Synopsis

subroutine gsort(array, len, isize, conpar)
di mensi on array(*)

i nteger |en

i nteger isize

ext ernal conpar

i nt eger conpar

Description

gsort sorts the elements of the one dimensional array, array. len is the number of elements in the array and
isize is the size of an element. compar is the name of an integer function that determines the sorting order. This
function is called with 2 arguments (argl and arg2) which are elements of array. The function returns:

241

rand, irand, srand

negative
if argl is considered to precede arg?2

zero
if argl is equivalent to arg2

positive

if argl is considered to follow arg2

rand, irand, srand

Random number generator.

Synopsis

doubl e precision function rand()
i nteger function irand()
subrouti ne srand(i seed)

i nteger iseed

Description

The functions rand and irand generates successive pseudo-random integers or double precision numbers.
srand uses its argument, iseed, to re-initialize the seed for successive invocations of rand and irand.

irand
returns a positive integer in the range 0 through 2147483647.
rand

returns a value in the range 0 through 1.0.

random, irandm, drandm

Return the next random number value. If the argument, flag , is nonzero, the random number generator is
restarted before the next random number is generated. Integer values will range from 0 thru 2147483647,
floating point values will range from 0.0 thru 1.0.

Synopsis
real function randon(fl ag)
i nteger flag
i nteger function irandn(fl ag)
i nteger flag

doubl e precision function drandn(fl ag)
i nteger flag

range

Range functions.

Synopsis

real function flmn()

242

Chapter 7. 3F Functions and VAX Subroutines

real function flmax()

real function ffrac()

doubl e precision function dfl m n()
doubl e precision function dfl max()
doubl e precision function dffrac()
i nteger function inmax()

Description
fimin
minimum single precision value

flmax
maximum single precision value

ffrac
smallest positive single precision value

dflmin
minimum double precision value

dflmax
maximum double precision value

dffrac
smallest positive double precision value

inmax
maximum integer

rename
Rename a file.

Synopsis

i nteger function renane(from to)
character*(*) from
character*(*) to

Description

Rename the existing file from where the new name is to. If successful, zero is returned; otherwise, the return
value is an error code.

rindex
Return index of substring.

Synopsis

i nteger function rindex(al, a2)
character*(*) al

243

secnds, dsecnds

character*(*) a2

Description

Return the index of the last occurrence of string a2 in string al.

secnds, dsecnds

Return elapsed time.

Synopsis

real function secnds(Xx)

real x

doubl e precision function dsecnds(x)
doubl e precision x

Description

Returns the elapsed time, in seconds, since midnight, minus the value of x.

setvbuf

Change 1/0 buffering behavior.

Synopsis

interface

function setvbuf (lu, typ, size, buf)
i nteger setvbuf, lu, typ, size
character* (*) buf

end function

end interface

Description

244

Fortran 1/0 supports 3 types of buffering:

e Fully buffered: on output, data is written once the buffer is full. On input, the buffer is filled when an input
operation is requested and the buffer is empty.

e Line buffered: on output, data is written when a newline character is inserted in the buffer or when the
buffer is full. On input, if an input operation is encountered and the buffer is empty, the buffer is filled until
a newline character is encountered.

e Unbuffered: No buffer is used. Each 1/0 operation is completed as sopon as possible. In this case, the typ
and size arguments are ignored.

Logical units 5 (stdin) and 6 (stdout) are line buffered. Logical unit 0 (stderr) is unbuffered. Disk files are
fully buffered. These defaults generally give the expected behavior. You can use setvbuf3f to change a unit's
buffering type and size of the buffer.

Chapter 7. 3F Functions and VAX Subroutines

Note

The underlying stdio implementation may silently restrict your choice of buffer size.
This function must be called after the unit is opened and before any 1/0 is done on the unit.

The typ parameter can have the following values, 0 specifies full buffering, 1 specifies line buffering,
and 2 specifies unbuffered. The size parameter specifies the size of the buffer. Note, the underlying stdio
implementation may silently restrict your choice of buffer size.

The buf parameter is the address of the new buffer.

Note

The buffer specified by the buf and size parameters must remain available to the Fortran runtim until
after the logical unit is closed.

This function returns zero on success and non-zero on failure.

An example of a program in which this function might be useful is a long-running program that periodically
writes a small amount of data to a log file. If the log file is line buffered, you could check the log file for
progress. If the log file is fully buffered (the default), the data may not be written to disk until the program
terminates.

setvbuf3f

Change 1/0 buffering behavior.

Synopsis

interface

function setvbuf3f(lu, typ, size)
i nteger setvbuf3f, lu, typ, size
end function

end interface

Description

Fortran I/0 supports 3 types of buffering., described in detail in the description of “setvbuf,” on page 244
Logical units 5 (stdin) and 6 (stdout) are line buffered. Logical unit 0 (stderr) is unbuffered. Disk files are
fully buffered. These defaults generally give the expected behavior. You can use setvbuf3f to change a unit's
buffering type and size of the buffer.

Note

The underlying stdio implementation may silently restrict your choice of buffer size.
This function must be called after the unit is opened and before any 1/0 is done on the unit.

The typ parameter can have the following values, 0 specifies full buffering, 1 specifies line buffering, and 2
specifies unbuffered. The size parameter specifies the size of the buffer.

245

signal

This function returns zero on success and non-zero on failure.

An example of a program in which this function might be useful is a long-running program that periodically
writes a small amount of data to a log file. If the log file is line buffered, you could check the log file for
progress. If the log file is fully buffered (the default), the data may not be written to disk until the program
terminates.

signal

Signal facility.

Synopsis

i nteger function signal (signum proc, flag)
i nt eger signum

ext ernal proc

i nteger flag

Description

slee

signal allows the calling process to choose how the receipt of a specific signal is handled; signum is the signal
and proc is the choice. If flag is negative, proc is a Fortran subprogram and is established as the signal handler
for the signal. Otherwise, proc is ignored and the value of flag is passed to the system as the signal action
definition. In particular, this is how previously saved signal actions can be restored. There are two special
cases of flag: 0 means use the default action and 1 means ignore this signal.

The return value is the previous action. If this is a value greater than one, then it is the address of a routine
that was to have been called. The return value can be used in subsequent calls to signal to restore a previous
action. A negative return value indicates a system error.

Y

Suspend execution for a period of time.

Synopsis

subroutine sleep(itine)
integer itinme

Description

stat,

Suspends the process for t seconds.

Istat, fstat, fstat64

Get file status.

Synopsis

246

i nteger function stat(nm statb)
character*(*) nm
i nteger statb(*)

Chapter 7. 3F Functions and VAX Subroutines

i nteger function |stat(nm statb)
character*(*) nm

i nteger statb(*)

i nteger function fstat(lu, statb)
integer lu

i nteger statb(*)

i nteger function fstat64(lu, stath)
i nteger lu

i nteger*8 statb(*)

Description

Return the file status of the file in the array statb. If successful, zero is returned; otherwise, the value of -1 is
returned. stat obtains information about the file whose name is nm; if the file is a symbolic link, information is
obtained about the file the link references. Istat is similar to stat except Istat returns information about the link.
fstat obtains information about the file which is connected to logical unit lu.

stime
Set time.

Synopsis

i nteger function stine(tp)
i nteger tp

Description

Set the system time and date. tp is the value of the time measured in seconds from 00:00:00 GMT January 1,
1970.

symink
Make symbolic link.

Synopsis

i nteger function sym nk(nl, n2)
character*(*) nl
character*(*) n2

Description

Create a symbolic link n2 to an existing file n1. If successful, zero is returned; otherwise, an error code is
returned.

system

Issue a shell command.

Synopsis

i nteger function systen(str)
character*(*) str

247

time

Description

system causes the string, str, to be given to the shell as input. The current process waits until the shell has
completed and returns the exit status of the shell.

time
Return system time.

Synopsis

i nteger function tine()

Description

Return the time since 00:00:00 GMT, January 1, 1970, measured in seconds.

times

Get process and child process time

Synopsis
i nteger function times(buff)
i nteger buff(*)

Description

Returns the time-accounting information for the current process and for any terminated child processes of the
current process in the array buff. If successful, zero is returned; otherwise, the negation of the error code is
returned.

ttynam

Get name of a terminal

Synopsis
character*(*) ttynan(l u)
i nteger lu

Description

Returns a blank padded path name of the terminal device connected to the logical unit lu. The lu is not
connected to a terminal, blanks are returned.

unlink

Remove a file.

Synopsis

i nteger function unlink(fil)
character*(*) fil

248

Chapter 7. 3F Functions and VAX Subroutines

Description

Removes the file specified by the pathname fil. If successful, zero is returned; otherwise, an error code is
returned.

wait
Wait for process to terminate.

Synopsis

i nteger function wait(st)
i nteger st

Description

wait causes its caller to be suspended until a signal is received or one of its child processes terminates. If
any child has terminated since the last wait, return is immediate. If there are no child processes, return is
immediate with an error code.

If the return value is positive, it is the process id of the child and st is its termination status. If the return value
is negative, it is the negation of an error code.

VAX System Subroutines

The PGI FORTRAN77 compiler, pgf77, supports a variety of VAX/VMS system subroutines and built-in functions.

Built-In Functions

The built-in functions perform inter-language utilities for argument passing and location calculations. The
following built-in functions are available:

%LOC(arg)

Compute the address of the argument arg.
%REF(a)

Pass the argument a by reference.
%VAL(a)

Pass the argument as a 32-bit immediate value (64-bit if a is double precision.) A value of 64-bits is also
possible if supported for integer and logical values.

VAXIVMS System Subroutines

DATE

The DATE subroutine returns a nine-byte string containing the ASCII representation of the current date. It has
the form:

249

VAX System Subroutines

EXIT

CALL DATE(buf)

where buf is a nine-byte variable, array, array element, or character substring. The date is returned as a nine-
byte ASCII character string of the form:

dd- mm yy
Where:
dd
is the two-digit day of the month

mmm
is the three-character abbreviation of the month

Yy
is the last two digits of the year

The EXIT subroutine causes program termination, closes all open files, and returns control to the operating
system. It has the form:

CALL EXI T[(exit_status)]

where:

exit_status
is an optional integer argument used to specify the image exit value

GETARG

The GETARG subroutine returns the Nth command line argument in character variable ARG. For N equal to
zero, the name of the program is returned.
SUBROUTI NE GETARG(N, ARG

| NTEGER*4 N
CHARACTER* (*) ARG

IARGC

The TARGC subroutine returns the number of command line arguments following the program name.

| NTECER*4 FUNCTI ON | ARGC()

IDATE

250

The IDATE subroutine returns three integer values representing the current month, day, and year. It has the
form:

CALL | DATE(I MONTH, | DAY, | YEAR)

If the current date were October 9, 2004, the values of the integer variables upon return would be:

| MONTH = 10
| DAY = 9

Chapter 7. 3F Functions and VAX Subroutines

| YEAR = 04

MVBITS

The MVBITS subroutine transfers a bit field from one storage location (source) to a field in a second storage
location (destination). MVBITS transfers a3 bits from positions a2 through (a2 + a3 - 1) of the source, src,
to positions a5 through (a5 + a3 - 1) of the destination, dest. Other bits of the destination location remain
unchanged. The values of (a2 + a3) and (a5 + a3) must be less than or equal to 32 (less than or equal to 64
if the source or destination is INTEGER*8). It has the form:

CALL WVBI TS(src, a2, a3, dest, ab)

Where:

src
is an integer variable or array element that represents the source location.

a2
is an integer expression that identifies the first position in the field transferred from src.

a3
is an integer expression that identifies the length of the field transferred from src.

dest
is an integer variable or array element that represents the destination location.

a5
is an integer expression that identifies the starting position within a4, for the bits being transferred.

RAN

The RAN subroutine returns the next number from a sequence of pseudo-random numbers of uniform
distribution over the range 0 to 1. The result is a floating point number that is uniformly distributed in the
range between 0.0 and 1.0 exclusive. It has the form:

y = RAN(i)

where y is set equal to the value associated by the function with the seed argument i. The argument i must be
an INTEGER*4 variable or INTEGER*4 array element.

The argument i should initially be set to a large, odd integer value. The RAN function stores a value in the
argument that it later uses to calculate the next random number.

There are no restrictions on the seed, although it should be initialized with different values on separate runs
in order to obtain different random numbers. The seed is updated automatically, and RAN uses the following
algorithm to update the seed passed as the parameter:

SEED = 6969 * SEED + 1 ! MOD
2**32

The value of SEED is a 32-bit number whose high-order 24 bits are converted to floating point and returned as
the result.

If the command-line option to treat all REAL declarations as DOUBLE PRECISION declarations is in effect, RAN
returns 2 DOUBLE PRECISION value.

251

VAX System Subroutines

SECNDS

TIME

252

The SECNDS subroutine provides system time of day, or elapsed time, as a floating point value in seconds. It
has the form:

y = SECNDS(X)

where (REAL or DOUBLE PRECISION) y is set equal to the time in seconds since midnight, minus the user
supplied value of the (REAL or DOUBLE PRECISION) x. Elapsed time computations can be performed with the
following sequence of calls.

X = SECNDS(0. 0)
. ! Code to be tined
DELTA = SECNDS(X)

The accuracy of this call is the same as the resolution of the system clock.

The TIME subroutine returns the current system time as an ASCII string. It has the form:

CALL TI ME(buf)

where buf is an eight-byte variable, array, array element, or character substring. The TIME call returns the time
as an eight-byte ASCII character string of the form:

hh: nm ss

For example:

16: 45: 23

Note that a 24-hour clock is used.

Chapter 8. OpenMP Directives for
Fortran

The PGF77 and PGF95 Fortran compilers support the OpenMP Fortran Application Program Interface. The
OpenMP shared-memory parallel programming model is defined by a collection of compiler directives,
library routines, and environment variables that can be used to specify shared-memory parallelism in Fortran
programs.

The directives include a parallel region construct for writing coarse grain SPMD programs, work-sharing
constructs which specify that DO loop iterations should be split among the available threads of execution,
and synchronization constructs. The data environment is controlled using clauses on the directives or with
additional directives. Run-time library routines are provided to query the parallel runtime environment,
for example to determine how many threads are participating in execution of a parallel region. Finally,
environment variables are provided to control the execution behavior of parallel programs. For more
information on OpenMP, see

http://www.openmp.org

For an introduction to how to execute programs that use multiple processors along with some pointers to
example code, see “Parallel Programming Using PGI Compilers” in the PGI User’s Guide.

OpenMP Overview

Let’s look at the OpenMP shared-memory parallel programming model and some common OpenMP
terminology.

OpenMP Shared-Memory Parallel Programming Model

The OpenMP shared-memory programming model is a collection of compiler directives, library routines,
and environment variables that can be used to specify shared-memory parallelism in Fortran, C and C++
programs.

Fortran directives
Allow users to place hints in the source code to help the compiler generate more efficient code. You
typically use directives to control the actions of the compiler in a particular portion of a program without

253

OpenMP Overview

affecting the program as a whole. You place them in your source code where you want them to take effect;
and they usually stay in effect from the point where included until the end of the compilation unit or until
another directive or pragma changes its status.

Fortran directives and C/C++ pragmas include a parallel region construct for writing coarse grain SPMD
programs, work-sharing constructs which specify that DO loop iterations should be split among the
available threads of execution, and synchronization constructs.

Note

The data environment is controlled either by using clauses on the directives or with additional
directives.

Run-time library routines

Are available to query the parallel run-time environment, for example to determine how many threads are
participating in execution of a parallel region.

Environment variables

Are available to control the execution behavior of parallel programs. For more information on OpenMP,
see www.openmp.org.

Terminology

For OpenMP 3.0 there are a number of terms for which it is useful to have common definitions.

Thread
An execution entity with a stack and associated static memory, called threadprivate memory.

* An OpenMP thread is a thread that is managed by the OpenMP runtime system.

* A thread-safe routine is a routine that performs the intended function even when executed concurrently,
that is, by more than one thread.

Region
All code encountered during a specific instance of the execution of a given construct or of an OpenMP
library routine. A region includes any code in called routines as well as any implicit code introduced by
the OpenMP implementation.

Regions are nested if one region is (dynamically) enclosed by another region, that is, a region is
encountered during the execution of another region. PGI currently does not support nested parallel
regions.

Parallel region

In OpenMP 3.0 there is a distinction between a parallel region and an active parallel region. A parallel
region can be either inactive or active.

* An inactive parallel region is executed by a single thread.

* An active parallel region is a parallel region that is executed by a team consisting of more than one
thread.

254

Task

Chapter 8. OpenMP Directives for Fortran

Note

The definition of an active parallel region changed between OpenMP 2.5 and OpenMP 3.0. In
OpenMP 2.5, the definition was a parallel region whose IF clause evaluates to true. To examine

the significance of this change, look at the following example:

program t est
| ogi cal onp_in_parallel

I $onp paral | el
print *, onp_in_parallel()
I $onp end parall el

st op
end

Suppose we run this program with OMP_NUM_THREADS set to one. In OpenMP 2.5, this
program yields T while in OpenMP 3.0, the program yields E In OpenMP 3.0, execution is not
occurring by more than one thread. Therefore, change in this definition may mean previous

programs require modification.

PGI currently does not support nested parallel regions so currently has only one level of active parallel

regions.

A specific instance of executable code and its data environment, generated when a thread encounters a
task construct or a parallel construct.

OpenMP Example

Look at the following simple OpenMP example involving loops.

I $OWP

I $OWP

I $OWP
I $OWP

I $OWP

Example 8.1. OpenMP Loop Example

PROGRAM MAI N
INTEGER |, N, OVP_GET_THREAD NUM
REAL*8 V(1000), GSUM LSUM

GSUM = 0. 0D0
N = 1000

DOl =1, N
V(1) = DBLE()
ENDDO

PARALLEL PRI VATE(I, LSUM SHARED(V, GSUM N)
LSUM = 0. 0DO0
DO
DOl =1, N
LSUM = LSUM + V(1)
ENDDO
END DO
CRI Tl CAL
print *, "Thread ", OW_CET_THREAD NUM)," |ocal sum
GSUM = GSUM + LSuM
END CRI Tl CAL

", LSuM

255

Task Overview

| $OVP END PARALLEL
PRINT *, "G obal Sum ", GSUM

STOP
END

If you execute this example with the environment variable OMP_NUM_THREADS set to 4, then the output looks
similar to this:

Thr ead 0 local sum 31375. 00000000000
Thr ead 1 local sum 93875. 00000000000
Thr ead 2 local sum 156375. 0000000000
Thr ead 3 local sum 218875. 0000000000
d obal Sum 500500. 0000000000
FORTRAN STOP

Task Overview

Every part of an OpenMP program is part of a task. A task, whose execution can be performed immediately or
delayed, has these characteristics:

¢ Code to execute
¢ A data environment - that is, it owns its data

* An assigned thread that executes the code and uses the data.
There are two activities associated with tasks: packaging and execution.

* Packaging: Each encountering thread packages a new instance of a task - code and data.

¢ Execution: Some thread in the team executes the task at some later time.
In the following sections, we use this terminology:

Task
The package of code and instructions for allocating data created when a thread encounters a task
construct. A task can be implicit or explicit.

* An explicit task is a task generated when a task construct is encountered during execution.

* An implicit task is a task generated by the implicit parallel region or generated when a parallel
construct is encountered during execution.

Task construct
A task directive plus a structured block

Task region
The dynamic sequence of instructions produced by the execution of a task by a thread.

Tasks

Every part of an OpenMP program is part of a task. “Task Overview,” on page 256 provides a general
overview of tasks and general terminology associated with tasks. This section provides more detailed
information about tasks, including tasks scheduling points and the task construct.

256

Chapter 8. OpenMP Directives for Fortran

Task Characteristics and Activities

A task, whose execution can be performed immediately or delayed, has these characteristics:

¢ Code to execute
e A data environment - that is, it owns its data

* An assigned thread that executes the code and uses the data.
There are two activities associated with tasks: packaging and execution.

e Packaging: Each encountering thread packages a new instance of a task - code and data.

¢ Execution: Some thread in the team executes the task at some later time.

Task Scheduling Points

PGI currently supports four task scheduling points: at the beginning of a task, at the end of a task, a taskwait,
and at a barrier.

* Beginning of a task.

At the beginning of a task, the task can be executed immediately or registered for later execution. A
programmer-specified "if" clause that is FALSE forces immediate execution of the task. The implementation
can also force immediate execution; for example, a task within a task is never registered for later execution,
it executes immediately.

e End of a task

At the end of a task, the behavior of the scheduling point depends on how the task was executed. If the task
was immediately executed, execution continues to the next statement. If it was previously registered and is
being executed "out of sequence”, control returns to where the task was executed - a taskwait.

o Taskwait

A taskwait executes all registered tasks at the time it is called. In addition to executing all tasks registered
by the calling thread, it also executes tasks previously registered by other threads. Let’s take a quick look at
this process.

Suppose thread 0 called taskwait and is executing tasks and that thread 1 is registering tasks. Depending on
the timing between thread 0 and thread 1, thread 0 may execute none of the tasks, all of the tasks, or some
of tasks.

Note

Taskwait waits only for immediate children tasks, not for descendant tasks. You can achieve waiting
on descendants but ensuring that each child also waits on its children.

e Barrier
A barrier can be explicit or implicit. An example of an implicit barrier is the end of a parallel region.

257

Tasks

The barrier effectively contains taskwaits. All threads must arrive at the barrier for the barrier to complete.
This rule guarantees that all tasks have been executed at the completion of the barrier.

Task Construct

A task construct is a task directive plus a structured block, with the following syntax:

#pragma onp task [clause[[,]clause] ...]
st ruct ur ed- bl ock

where clause can be one of the following:

i f (expression)

unti ed

shared (list)

private (list)
firstprivate (list)
default (shared | none)

Consider the following simple example of a program using tasks. This example illustrates the difference
between registering tasks and executing tasks, a concept that is fundamental to understanding tasks.

This program contains a parallel region that contains a single region. The single region contains a loop that
registers 10 tasks. Before reading the explanation that follows the example, consider what happens if you use
four threads with this example.

Example 8.2. OpenMP Task C Example

i nt
mai n(int argc, char *argv[])
{
int i;
#pragma onmp paral lel private(i)
{

#pragma onp singl e

for(i=0;i<10;i++) {
sl eep(i %) ;
printf("task %2d registered by thread %\ n", i,
onp_get _thread_num());
#pragma onp task firstprivate(i)

sl eep(i 9%B) ;
printf("task %d executed by thread %\ n",i,
onp_get _thread_num());
} /* end task */
} /* end for */

} /* end single */
} /* end parallel */
} /* end nmain */

Example 8.3. OpenMP Task Fortran Example
PROGRAM MAI N

| NTEGER |
I NTEGER onp_get _thread_num

258

I $OMP PARALLEL PRI VATE(I)
I $OMP SI NGLE
DO1 =1, 10
CALL SLEEP(MOX(1,2))

Chapter 8. OpenMP Directives for Fortran

PRINT *,"TASK ",1," REG STERED BY THREAD ", onp_get _t hread_nunt)

I $OMP TASK FI RSTPRI VATE(1)
CALL SLEEP(MOX 1, 5))

PRINT *,"TASK ", I," EXECUTED BY THREAD

I $OVP END TASK
ENDDO

I $OVP END S| NGLE

| $OVP END PARALLEL
END

", onp_get _t hread_num()

If you run this program with four threads, 0 through 3, one thread is in the single region registering tasks. The
other three threads are in the implied barrier at the end of the single region executing tasks. Further, when the
thread executing the single region completes registering the tasks, it joins the other threads and executes tasks.

The program includes calls to sl eep to slow the program and allow all threads to participate.

The output for the Fortran example is similar to the following. In this output, thread 1 was registering tasks
while the other three threads - 0,2, and 3 - were executing tasks When all 10 tasks were registered, thread 1

began executing tasks as well.

TASK 1 REG STERED BY THREAD 1
TASK 2 REG STERED BY THREAD 1
TASK 1 EXECUTED BY THREAD 0O
TASK 3 REG STERED BY THREAD 1
TASK 4 REG STERED BY THREAD 1
TASK 2 EXECUTED BY THREAD 3
TASK 5 REG STERED BY THREAD 1
TASK 6 REG STERED BY THREAD 1
TASK 6 EXECUTED BY THREAD 3
TASK 5 EXECUTED BY THREAD 3
TASK 7 REG STERED BY THREAD 1
TASK 8 REG STERED BY THREAD 1
TASK 3 EXECUTED BY THREAD 0O
TASK 9 REG STERED BY THREAD 1
TASK 10 REG STERED BY THREAD 1
TASK 10 EXECUTED BY THREAD 1
TASK 4 EXECUTED BY THREAD 2
TASK 7 EXECUTED BY THREAD O
TASK 8 EXECUTED BY THREAD 3
TASK 9 EXECUTED BY THREAD 1

Parallelization Directives

Parallelization directives are comments in a program that are interpreted by the PGI Fortran compilers when
the option —np is specified on the command line. The form of a parallelization directive is:

sentinel directive_nane [cl auses]

With the exception of the SGI-compatible DOACROSS directive, the sentinel must comply with these rules:

* Be one of these: !$OMP, CSOMP, or *$OMP.

e Must start in column 1 (one).

259

Directive Recognition

e Must appear as a single word without embedded white space.

o The sentinel marking a DOACROSS directive is C$.
In addition to the sentinel rules, the directive must also comply with these rules:

e Standard Fortran syntax restrictions, such as line length, case insensitivity, and so on, apply to the directive
line.

e Initial directive lines must have a space or zero in column six.

e Continuation directive lines must have a character other than a space or a zero in column six. Continuation
lines for CSDOACROSS directives are specified using the C$& sentinel.

e Directives which are presented in pairs must be used in pairs.
Valid clauses depend on the directive. Clauses associated with directives have these characteristics:

e The order in which clauses appear in the parallelization directives is not significant.

e Commas separate clauses within the directives, but commas are not allowed between the directive name and
the first clause.

e Clauses on directives may be repeated as needed, subject to the restrictions listed in the description of each
clause.

Directive Recognition

The compiler option —np enables recognition of the parallelization directives. The use of this option also
implies:

—M eent r ant
Local variables are placed on the stack and optimizations, such as - Mhof r ane, that may result in non-
reentrant code are disabled.

—M onut ex
Critical sections are generated around Fortran I/0 statements.

Many of the directives are presented in pairs and must be used in pairs. In the examples given with each
section, the routines omp_get_num_threads() and omp_get_thread_num() are used; refer to Run-time
Library Routines for more information. These routines return the number of threads currently in the team
executing the parallel region and the thread number within the team, respectively.

Directive Clauses

Some directives and pragmas accept clauses that further allow a user to control the scope attributes of
variables for the duration of the directive or pragma. Not all clauses are allowed on all directives, so the
clauses that are valid are included with the description of the directive and pragma.

The following table provides a brief summary of the clauses associated with OpenMP directives that PGI
supports. Following the table is more detailed information about these clauses. For complete information on

260

Chapter 8. OpenMP Directives for Fortran

OpenMP and use of these clauses, refer to the PGI User’s Guide and to the OpenMP documentation available

on the WorldWide Web.
Table 8.1. Directive Clauses Summary Table
Clause Applies to Description
COLLAPSE(n) DO...END DO Specifies how many loops are associated with
PARALLEL DO the loop construct.
PARALLEL WORKSHARE
COPYIN(list) PARALLEL Allows threads to access the master thread's
PARALLEL DO value, for a threadprivate variable. You assign
PARALLEL SECTIONS the same value to threadprivate variables for
PARALLEL WORKSHARE each thread in the team executing the parallel
region. Then, for each variable specified, the
value of the variable in the master thread of the
team is copied to the threadprivate copies at
the beginning of the parallel region.
COPYPRIVATE END SINGLE Specifies that one or more variables should
be shared among all threads. This clause
provides a mechanism to use a private variable
to broadcast a value from one member of a
team to the other members.
DEFAULT PARALLEL Specifies the behavior of unscoped variables
PARALLEL DO in a parallel region, such as the data-sharing
PARALLEL SECTIONS attributes of variables.
PARALLEL WORKSHARE
FIRSTPRIVATE DO Specifies that each thread should have its own
PARALLEL instance of a variable, and that each variable
PARALLEL DO in the list should be initialized with the value of
PARALLEL SECTIONS the original variable, because it exists before
PARALLEL WORKSHARE the parallel construct.
SECTIONS
SINGLE
IF PARALLEL ... END PARALLEL |Specifies whether a loop should be executed in
PARALLEL DO ... parallel or in serial.
END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL SECTIONS
PARALLEL WORKSHARE
LASTPRIVATE DO Specifies that the enclosing context's version of
PARALLEL DO the variable is set equal to the private version
PARALLEL SECTIONS of whichever thread executes the final iteration
SECTIONS of a for-loop construct.

261

Directive Clauses

Clause Applies to Description
NOWAIT DO ... END DO Overrides the barrier implicit in a directive.
SECTIONS
SINGLE
WORKSHARE ...
END WORKSHARE
NUM_THREADS PARALLEL Sets the number of threads in a thread team.
PARALLEL DO
PARALLEL SECTIONS
PARALLEL WORKSHARE
ORDERED DO...END DO Required on a parallel FOR statement if an
PARALLEL DO... ordered directive is used in the loop.
END PARALLEL DO
PRIVATE DO Specifies that each thread should have its own
PARALLEL instance of a variable.
PARALLEL DO
PARALLEL SECTIONS
PARALLEL WORKSHARE
SECTIONS
SINGLE
REDUCTION ({operator | |DO Specifies that one or more variables that are
intrinsic } : list) PARALLEL private to each thread are the subject of a
PARALLEL DO reduction operation at the end of the parallel
PARALLEL SECTIONS region.
PARALLEL WORKSHARE
SECTIONS
SCHEDULE (type DO ... END DO Applies to the FOR directive, allowing the
[,chunk]) PARALLEL DO... user to specify the chunking method for
END PARALLEL DO parallelization. Work is assigned to threads in
different manners depending on the scheduling
type or chunk size used.
SHARED PARALLEL Specifies that one or more variables should be
PARALLEL DO shared among all threads. All threads within a
PARALLEL SECTIONS team access the same storage area for shared
PARALLEL WORKSHARE variables
UNTIED TASK Specifies that any thread in the team can
TASKWAIT resume the task region after a suspension.
COLLAPSE (n)

262

The COLLAPSE (n) clause specifies how many loops are associated with the loop construct.

Chapter 8. OpenMP Directives for Fortran

The parameter of the collapse clause must be a constant positive integer expression. If no COLLAPSE clause
is present, the only loop that is associated with the loop construct is the one that immediately follows the
construct.

If more than one loop is associated with the loop construct, then the iterations of all associated loops are
collapsed into one larger iteration space, which is then divided according to the schedule clause. The
sequential execution of the iterations in all associated loops determines the order of the iterations in the
collapsed iteration space.

If the loop directive contains a COLLAPSE clause then there may be more than one associated loop.

COPYIN (list)

The COPYIN(list) clause allows threads to access the master thread's value, for a threadprivate variable. You
assign the same value to threadprivate variables for each thread in the team executing the parallel region;
that is, for each variable specified, the value of the variable in the master thread of the team is copied to the
threadprivate copies at the beginning of the parallel region.

The COPYIN clause applies only to THREADPRIVATE common blocks. If you specify a COPYIN clause, here are
a few tips:

¢ You cannot specify the same entity name more than once in the list.
* You cannot specify the same entity name in separate COPYIN clauses of the same directive.

* You cannot specify both a common block name and any variable within that same named common block in
the list.

* You cannot specify both a common block name and any variable within that same named common block in
separate COPYIN clauses of the same directive.

COPYPRIVATE(list)

The COPYPRIVATE(list) clause specifies that one or more variables should be shared among all threads. This
clause provides a2 mechanism to use a private variable to broadcast a value from one member of a team to the
other members.

You use a COPYPRIVATE (list) clause on an END SINGLE directive to cause the variables in the list to be copied
from the private copies in the single thread that executes the SINGLE region to the other copies in all other
threads of the team at the end of the SINGLE region.

Note

The COPYPRIVATE clause must not appear on the same END SINGLE directive as a NOWAIT clause.

The compiler evaluates a COPYPRIVATE clause before any threads have passed the implied BARRIER
directive at the end of that construct.

DEFAULT

The DEFAULT clause specifies the behavior of unscoped variables in a parallel region, such as the data-sharing
attributes of variables. The DEFAULT clause lets you specify the default attribute for variables in the lexical

263

Directive Clauses

extent of the parallel region. Individual clauses specifying PRIVATE, SHARED, and so on, override the declared
DEFAULT.

Specifying DEFAULT (NONE) declares that there is no implicit default. With this declaration, each variable in the
parallel region must be explicitly listed with an attribute of PRIVATE, SHARED, FIRSTPRIVATE, LASTPRIVATE, or
REDUCTION.

FIRSTPRIVATE(list)

The FIRSTPRIVATE (list) clause specifies that each thread should have its own instance of a variable, and that
each variable in the list should be initialized with the value of the original variable, because it exists before the
parallel construct.

Variables that appear in the list of a FIRSTPRIVATE clause are subject to the same semantics as PRIVATE
variables; however, these variables are initialized from the original object that exists prior to entering the
parallel region.

If a directive construct contains a FIRSTPRIVATE argument to a Message Passing Interface (MPI) routine
performing non-blocking communication, the MPI communication must complete before the end of the
construct.

The IF() clause specifies whether a loop should be executed in parallel or in serial.

In the presence of an IF clause, the parallel region is executed in parallel only if the corresponding
scal ar _I ogi cal _expr essi on evaluates to .TRUE.. Otherwise, the code within the region is executed by
a single processor, regardless of the value of the environment variable OVP_NUM_THREADS.

LASTPRIVATE(list)

The LASTPRIVATE(list) clause specifies that the enclosing context's version of the variable is set equal to the
private version of whichever thread executes the final iteration (for-loop construct).

NOWAIT

The NOWAIT clause overrides the barrier implicit in a directive. When you specify NOWAIT, it removes the
implicit barrier synchronization at the end of a for or sections construct.

NUM_THREADS

The NUM_THREADS clause sets the number of threads in a thread team. The num_threads clause allows a
user to request a specific number of threads for a parallel construct. If the num_threads clause is present,
then

ORDERED

The ORDERED clause specifies that a loop is executed in the order of the loop iterations. This clause is
required on a parallel FOR statement when an ordered directive is used in the loop.

264

Chapter 8. OpenMP Directives for Fortran

You use this clause in conjunction with 2 DO or SECTIONS construct to impose a serial order on the execution
of a section of code. If ORDERED constructs are contained in the dynamic extent of the DO construct, the
ordered clause must be present on the DO directive.

PRIVATE

The PRIVATE clause specifies that each thread should have its own instance of a variable. Therefore, variables
specified in a PRIVATE list are private to each thread in a team. In effect, the compiler creates a separate copy
of each of these variables for each thread in the team. When an assignment to a private variable occurs, each
thread assigns to its local copy of the variable. When operations involving a private variable occur, each thread
performs the operations using its local copy of the variable.

Tips about private variables:

e Variables declared private in a parallel region are undefined upon entry to the parallel region. If the first
use of a private variable within the parallel region is in a right-hand-side expression, the results of the
expression will be undefined, indicating the probability of a coding error.

e Variables declared private in a parallel region are undefined when serial execution resumes at the end of
the parallel region.

REDUCTION

The REDUCTION clause specifies that one or more variables that are private to each thread are the subject of

a reduction operation at the end of the parallel region. updates named variables declared on the clause within
the directive construct.

Intermediate values of REDUCTION variables are not used within the parallel construct, other than in the
updates themselves.Variables that appear in the list of a REDUCTION clause must be SHARED. A private copy of
each variable in | i st is created for each thread as if the PRIVATE clause had been specified. Each private copy
is initialized according to the operator as specified in the Table 8.2:

Table 8.2. Initialization of REDUCTION Variables

Operator / Initialization Operator / Initialization

Intrinsic Intrinsic

+ 0 NEQV. FALSE.

* 1 MAX Smallest representable number
- 0 MIN Largest representable number
AND. TRUE. IAND All bits on

.OR. .FALSE. IOR 0

EQV. TRUE. IEOR 0

At the end of the parallel region, a reduction is performed on the instances of variables appearing in | i st
using operator or intrinsic as specified in the REDUCTION clause. The initial value of each REDUCTION
variable is included in the reduction operation. If the { operat or | intrinsic}: portion of the
REDUCTION clause is omitted, the default reduction operator is "+" (addition).

265

Directive Summary Table

SCHEDULE

The SCHEDULE clause specifies how iterations of the DO loop are divided up between processors. Given a
SCHEDULE (type [, chunk]) clause, the type can be STATIC, DYNAMIC, GUIDED, or RUNTIME, defined in the
following list.

e When SCHEDULE (STATIC, chunk) is specified, iterations are allocated in contiguous blocks of size chunk.
The blocks of iterations are statically assigned to threads in a round-robin fashion in order of the thread ID
numbers. The chunk must be a scalar integer expression. If chunk is not specified, a default chunk size is
chosen equal to:

(nunber _of _iterations + onp_numthreads() - 1) / onp_numthreads()

e When SCHEDULE (DYNAMIC, chunk) is specified, iterations are allocated in contiguous blocks of size
chunk. As each thread finishes a piece of the iteration space, it dynamically obtains the next set of iterations.
The chunk must be a scalar integer expression. If no chunk is specified, a default chunk size is chosen
equal to 1.

e When SCHEDULE (GUIDED, chunk) is specified, the chunk size is reduced in an exponentially decreasing
manner with each dispatched piece of the iteration space. Chunk specifies the minimum number of
iterations to dispatch each time, except when there are less than chunk iterations remaining to be
processed, at which point all remaining iterations are assigned. If no chunk is specified, a default chunk
size is chosen equal to 1.

e When SCHEDULE (RUNTIME) is specified, the decision regarding iteration scheduling is deferred until
runtime. The schedule type and chunk size can be chosen at runtime by setting the OMP_SCHEDULE
environment variable. If this environment variable is not set, the resulting schedule is equivalent to
SCHEDULE (STATIC).

SHARED

The SHARED clause specifies variables that must be available to all threads. If you specify a variable as
SHARED, you are stating that all threads can safely share a single copy of the variable. When one or more
variables are shared among all threads, all threads access the same storage area for the shared variables.

UNTIED

The UNTIED clause specifies that any thread in the team can resume the task region after a suspension.

Note

The thread number may change at any time during the execution of an untied task. Therefore, the
value returned by onp_get _t hr ead_numis generally not useful during execution of such a task
region.

Directive Summary Table

Table 8.3 provides a brief summary of the directives and pragmas that PGI supports.

266

Chapter 8. OpenMP Directives for Fortran

Table 8.3. Directive Summary Table

Directive Description

ATOMIC Semantically equivalent to enclosing a single statement in the
CRITCIAL...END CRITICAL directive. Note: Only certain statements
are allowed.

BARRIER Synchronizes all threads at a specific point in a program so that all

threads complete work to that point before any thread continues.

CRITICAL ... END CRITICAL

Defines a subsection of code within a parallel region, a critical
section, which is executed one thread at a time.

C$DOACROSS Provides 2 mechanism for distribution of loop iterations across the
available threads in a parallel region.

DO...END DO Specifies that the compiler should parallelize the loop to which it
applies, even though that loop is not contained within a parallel
region.

FLUSH When this appears, all processor-visible data items, or, when a

list is present (FLUSH [list]), only those specified in the list, are
written to memory, thus ensuring that all the threads in a team have
a consistent view of certain objects in memory.

MASTER ... END MASTER

Designates code that executes on the master thread and that is
skipped by the other threads.

ORDERED

Defines a code block that is executed by only one thread at a time,
and in the order of the loop iterations; this makes the ordered code
block sequential, while allowing parallel execution of statements
outside the code block.

PARALLEL ... END PARALLEL

Supports a fork/join execution model in which a single thread
executes all statements until a parallel region is encountered.

PARALLEL DO Enables you to specify which loops the compiler should parallelize.

PARALLEL SECTIONS Defines a non-iterative work-sharing construct without the need to
define an enclosing parallel region.

PARALLEL WORKSHARE Provides a short form method for including a WORKSHARE directive

inside a PARALLEL construct.

SECTIONS ... END SECTIONS

Defines a non-iterative work-sharing construct within a parallel
region.

SINGLE ... END SINGLE

Designates code that executes on a single thread and that is skipped
by the other threads.

TASK

Defines an explicit task.

TASKWAIT

Specifies a wait on the completion of child tasks generated since the
beginning of the current task.

267

ATOMIC

Directive Description

THREADPRIVATE When a common block or variable that is initialized appears in this
directive, each thread’s copy is initialized once prior to its first use.

WORKSHARE ... END Provides a mechanism to effect parallel execution of non-iterative

WORKSHARE but implicitly data parallel constructs.

ATOMIC

The OpenMP ATOMIC directive is semantically equivalent to a single statement in a CRITICAL...END CRITICAL

directive.

Syntax:

I $OVMP ATOM C

Usage:

The ATOMIC directive is semantically equivalent to enclosing the following single statement in a CRITICAL /
END CRITICAL directive pair.

The statements must be one of the following forms:

X X operator expr X intrinsic (x, expr)

X expr operator x X intrinsic (expr, x)

where x is a scalar variable of intrinsic type, expr is a scalar expression that does not reference x, intrinsic
is one of MAX, MIN, IAND, IOR, or IEOR, operator is one of +, *, -, /, .AND., .OR., .EQV., or .NEQV., and
<binary_operator> is not overloaded and is one of +, *, -, /, & ", |, << or >>.

BARRIER

The OpenMP BARRIER directive defines a point in a program where each thread waits for all other threads to
arrive before continuing with program execution.

Syntax:
! $OMP BARRI ER
Usage:

There may be occasions in a parallel region when it is necessary that all threads complete work to that point
before any thread is allowed to continue. The BARRIER directive synchronizes all threads at such a point in a
program. Multiple barrier points are allowed within a parallel region. The BARRIER directive must either be
executed by all threads executing the parallel region or by none of them.

CRITICAL ... END CRITICAL

The CRITICAL...END CRITICAL directive require a thread to wait until no other thread is executing within a
critical section.

268

Chapter 8. OpenMP Directives for Fortran

Syntax:
1$OWP CRITI CAL [(nane)]
< Fortran code executed in body of critical section >
I $OVP END CRI TI CAL [(nane)]

Usage:

Within a parallel region, there may exist subregions of code that will not execute properly when executed by
multiple threads simultaneously. This issue is often due to a shared variable that is written and then read again.

The CRITICAL... END CRITICAL directive pair define a subsection of code within a parallel region, referred to
as a critical section, which is executed one thread at a time.

The first thread to arrive at a critical section is the first to execute the code within the section. The second
thread to arrive does not begin execution of statements in the critical section until the first thread exits the
critical section. Likewise, each of the remaining threads wait its turn to execute the statements in the critical
section.

You can use the optional name argument to identify the critical region. Names that identify critical regions have
external linkage and are in a name space separate from the name spaces used by labels, tags, members, and
ordinary identifiers. If a name argument appears on a CRITICAL directive, the same name must appear on the
END CRITICAL directive.

Note

Critical sections cannot be nested, and any such specifications are ignored. Branching into or out of a
critical section is illegal.

Fortran Example of Critical...End Critical directive:

PROGRAM CRI Tl CAL_USE
REAL A(100, 100), MX, LMX

INTEGER |, J
M =-1.0
LM = -1.0

CALL RANDOM SEED()

CALL RANDOM NUMBER(A)

| $OVP PARALLEL PRI VATE(1), FI RSTPRI VATE(LNX)
I $OWP DO

DO J=1, 100

DO I =1, 100

LMK = MAX(A(I, J), LMX)

ENDDO

ENDDO

I $OVP CRI Tl CAL

MX = MAX(MX, LMX)

I $OVP END CRI TI CAL

I $OVP END PARALLEL

PRINT *,"MAX VALUE OF A IS ", MX
END

This program could also be implemented without the critical region by declaring MX as a reduction
variable and performing the MAX calculation in the loop using MX directly rather than using LMX. Refer to

269

C$DOACROSS

“PARALLEL ... END PARALLEL ” and “DO...END DO ” for more information on how to use the REDUCTION
clause on a parallel DO loop.

C$DOACROSS

DO.

270

The C$DOACROSS directive, while not part of the OpenMP standard, is supported for compatibility with
programs parallelized using legacy SGI-style directives.

Syntax:

C$DOACRCSS [Ol auses]
< Fortran DO | oop to be executed in parallel >

Clauses:
{PRIVATE | LOCAL} (list) CHUNK=<integer_expression>
{SHARED | SHARE} (list) IF (logical_expression)

MP_SCHEDTYPE={SIMPLE | INTERLEAVE}

Usage:

The C$DOACROSS directive has the effect of a combined parallel region and parallel DO loop applied to the
loop immediately following the directive. It is very similar to the OpenMP PARALLEL DO directive, but provides
for backward compatibility with codes parallelized for SGI systems prior to the OpenMP standardization effort.

The C$DOACROSS directive must not appear within a parallel region. It is a shorthand notation that tells the
compiler to parallelize the loop to which it applies, even though that loop is not contained within a parallel
region. While this syntax is more convenient, it should be noted that if multiple successive DO loops are to be
parallelized it is more efficient to define a single enclosing parallel region and parallelize each loop using the
OpenMP DO directive.

A variable declared PRIVATE or LOCAL to a CSDOACROSS loop is treated the same as a private variable in a
parallel region or DO. A variable declared SHARED or SHARE to a CSDOACROSS loop is shared among the
threads, meaning that only 1 copy of the variable exists to be used and/or modified by all of the threads. This
is equivalent to the default status of a variable that is not listed as PRIVATE in a parallel region or DO. This
same default status is used in CSDOACROSS loops as well. For more information on clauses, refer to “Directive
Clauses,” on page 260.

..END DO

The OpenMP DO...END DO directive support parallel execution and the distribution of loop iterations across
available threads in a parallel region.

Syntax:
1 $OWP DO [d auses]

< Fortran DO | oop to be executed in parallel>
| $OVP END DO [NOWAI T]

Clauses:

Chapter 8. OpenMP Directives for Fortran

PRIVATE (list) SCHEDULE (type [, chunk])
FIRSTPRIVATE (list) COLLAPSE (n)
LASTPRIVATE (list) ORDERED

REDUCTION ({operator | intrinsic} : list)

Usage:

The real purpose of supporting parallel execution is the distribution of work across the available threads. The
DO... END DO directive pair provide a convenient mechanism for the distribution of loop iterations across the
available threads in a parallel region.

While you can explicitly manage work distribution with constructs such as the following one, these constructs
are not in the form of directives.

Examples:

| F (onp_get _thread_nun{) .EQ 0)
THEN

ELSE | F (onp_get _thread_num() .EQ 1)
THEN

ENDI F
Tips
Remember these items about clauses in the DO...END DO directives:

e Variables declared in a PRIVATE list are treated as private to each thread participating in parallel execution
of the loop, meaning that a separate copy of the variable exists with each thread.

e Variables declared in a FIRSTPRIVATE list are PRIVATE, and are initialized from the original object existing
before the construct.

e Variables declared in a LASTPRIVATE list are PRIVATE, and the thread that executes the sequentially last
iteration updates the version of the object that existed before the construct.

e The REDUCTION clause for the directive is described in “Directive Clauses,” on page 260 .

 The SCHEDULE clause specifies how iterations of the DO loop are divided up between threads. For more
information on this clause, refer to “Directive Clauses,” on page 260.

e If ORDERED code blocks are contained in the dynamic extent of the DO directive, the ORDERED clause
must be present. For more information on ORDERED code blocks, refer to “ORDERED ”.

e The DO... END DO directive pair directs the compiler to distribute the iterative DO loop immediately
following the !$OMP DO directive across the threads available to the program. The DO loop is executed in
parallel by the team that was started by an enclosing parallel region. If the !$OMP END DO directive is not
specified, the !$OMP DO is assumed to end with the enclosed DO loop. DO... END DO directive pairs may
not be nested. Branching into or out of a !$OMP DO loop is not supported.

e By default, there is an implicit barrier after the end of the parallel loop; the first thread to complete its
portion of the work waits until the other threads have finished their portion of work. If NOWAIT is specified,
the threads will not synchronize at the end of the parallel loop.

271

FLUSH

In addition to the preceding items, remember these items about !$OMP DO loops :

e The DO loop index variable is always private.
* 1$OMP DO loops must be executed by all threads participating in the parallel region or none at all.

 The END DO directive is optional, but if it is present it must appear immediately after the end of the
enclosed DO loop.

e Values of the loop control expressions and the chunk expressions must be the same for all threads
executing the loop.
Example:

PROGRAM DO_USE
REAL A(1000), B(1000)

DO | =1, 1000
B(1) = FLOAT(I)
ENDDO
I $OMP PARALLEL
I $OMP DO
DO | =1, 1000
A(l) = SQRT(B(1));
ENDDO

1 $OMP END PARALLEL

END

FLUSH

The OpenMP FLUSH directive ensures that processor-visible data item are written back to memory at the point
at which the directive appears.

Syntax:
' $OMP FLUSH [(list)]
Usage:

The OpenMP FLUSH directive ensures that all processor-visible data items, or only those specified in | i st ,
when it is present, are written back to memory at the point at which the directive appears.

MASTER ... END MASTER

272

The MASTER...END MASTER directive allows the user to designate code that must execute on a master thread
and that is skipped by other threads in the team of threads.

Syntax:
! $OVP MASTER

< Fortran code executed in body of MASTER section >
1 $OVP END MASTER

Usage:

Chapter 8. OpenMP Directives for Fortran

A master thread is a single thread of control that begins an OpenMP program and which is present for the
duration of the program. In a parallel region of code, there may be a sub-region of code that should execute
only on the master thread. Instead of ending the parallel region before this subregion and then starting it up
again after this subregion, the MASTER... END MASTER directive pair allows the user to conveniently designate
code that executes on the master thread and is skipped by the other threads.

e There is no implied barrier on entry to or exit from a master section of code.
* Nested master sections are ignored. F

* Branching into or out of 2 master section is not supported.

Examples:

Example of Fortran MASTER...END MASTER directive

PROGRAM MASTER USE
| NTEGER A(O0: 1)
| NTEGER onp_get _t hr ead_num
A=-1
1 $OVP PARALLEL
A(onp_get _thread_nun()) = onp_get _thread_num()
| $OVP MASTER
PRI NT *, "YOU SHOULD ONLY
SEE THI S ONCE"
1 $OVP END MASTER
| $OVP END PARALLEL
PRINT *, "A(0)=",
A(0), " A(D=", AL
END

ORDERED

The OpenMP ORDERED directive allows the user to identify a portion of code within an ordered code block

that must be executed in the original, sequential order, while allowing parallel execution of statements outside
the code block.

Syntax:
! $OVP ORDERED

< Fortran code bl ock executed by processor >
1 $OVP END ORDERED

Usage:

The ORDERED directive can appear only in the dynamic extent of 2 DO or PARALLEL DO directive that includes
the ORDERED clause. The structured code block between the ORDERED / END ORDERED directives is
executed by only one thread at a time, and in the order of the loop iterations. This sequentializes the ordered
code block while allowing parallel execution of statements outside the code block. The following additional
restrictions apply to the ORDERED directive:

¢ The ordered code block must be a structured block.

e Itis illegal to branch into or out of the block.

273

PARALLEL ... END PARALLEL

* A given iteration of a loop with a DO directive cannot execute the same ORDERED directive more than once,
and cannot execute more than one ORDERED directive.

PARALLEL ... END PARALLEL

274

The OpenMP PARALLEL...END PARALLEL directive supports a fork/join execution model in which a single
thread executes all statements until a parallel region is encountered.

Syntax:
1 $OWP PARALLEL [auses]
< Fortran code executed in body of parallel region >
| $OMP END PARALLEL
Clauses:
PRIVATE (list) REDUCTION([{operator | intrinsic}:] list)
SHARED (list) COPYIN((list)
DEFAULT (PRIVATE | SHARED | NONE) IF(scalar_logical_expression)
FIRSTPRIVATE (list) NUM_THREADS (scalar_integer_expression)
Usage:

This directive pair declares a region of parallel execution. It directs the compiler to create an executable in
which the statements within the structured block, such as between PARALLEL and PARALLEL END for directives,
are executed by multiple lightweight threads. The code that lies within this structured block is called a parallel
region.

The OpenMP parallelization directives support a fork/join execution model in which a single thread executes
all statements until a parallel region is encountered. At the entrance to the parallel region, a system-dependent
number of symmetric parallel threads begin executing all statements in the parallel region redundantly. These
threads share work by means of work-sharing constructs such as parallel DO loops or FOR loops.

¢ The number of threads in the team is controlled by the OVP_NUM_THREADS environment variable. If
OVP_NUM THREADS is not defined, the program executes parallel regions using only one processor.

* Branching into or out of a parallel region is not supported.

e All other shared-memory parallelization directives must occur within the scope of a parallel region. Nested
PARALLEL... END PARALLEL directive pairs are not supported and are ignored.

e There is an implicit barrier at the end of the parallel region, which, in the directive, is denoted by the END
PARALLEL directive. When all threads have completed execution of the parallel region, a single thread
resumes execution of the statements that follow.

Note

By default, there is no work distribution in a parallel region. Each active thread executes the
entire region redundantly until it encounters a directive that specifies work distribution. For work
distribution, see the DO, PARALLEL DO, or DOACROSS directives.

Example:

Chapter 8. OpenMP Directives for Fortran

PROGRAM WHI CH_PROCESSCOR_AM |

| NTEGER A(O: 1)

I NTEGER onp_get _t hread_num

A(0) = -1

A(l) = -1
I $OVP PARALLEL

A(onp_get _thread_num()) = onp_get_thread_num()
1 $OVMP END PARALLEL

PRINT *, "A(0)=",A(0)," A(1)=",A(1)

END

Clause Usage:

COPYIN: The COPYIN clause applies only to THREADPRIVATE common blocks. In the presence of the COPYIN
clause, data from the master thread’s copy of the common block is copied to the THREADPRIVATE copies upon
entry to the parallel region.

IF: In the presence of an IF clause, the parallel region is executed in parallel only if the corresponding
scal ar _| ogi cal _expr essi on evaluates to .TRUE.. Otherwise, the code within the region is executed by
a single processor, regardless of the value of the environment variable OVP_NUM THREADS.

NUM_THREADS: If the NUM_THREADS clause is present, the corresponding

scal ar _i nt eger _expr essi on must evaluate to a positive integer value. This value sets the maximum
number of threads used during execution of the parallel region. A NUM_THREADS clause overrides either
a previous call to the library routine omp_set_num_threads() or the setting of the OMP_NUM_THREADS
environment variable.

PARALLEL DO

The OpenMP PARALLEL DO directive is a shortcut for a PARALLEL region that contains a single DO directive.

Note

The OpenMP PARALLEL DO or DO directive must be immediately followed by a DO statement (DO-
stmt as defined by R818 of the ANSI Fortran standard). If you place another statement or an OpenMP
directive between the PARALLEL DO or DO directive and the DO statement, the compiler issues a
syntax error.

Syntax:
! $OVP PARALLEL DO [CLAUSES]

< Fortran DO | oop to be executed in parallel >
['$OVP END PARALLEL DQ

Clauses:
PRIVATE (list) COPYIN(list)
SHARED (list) IF(scalar_logical_expression)
DEFAULT (PRIVATE | SHARED | NONE) NUM_THREADS (scalar_integer_expression)
FIRSTPRIVATE (list) SCHEDULE (type [, chunk])
LASTPRIVATE (list) COLLAPSE (n)
REDUCTION([{operator | intrinsic}:] list) ORDERED

275

PARALLEL SECTIONS

Usage:

The semantics of the PARALLEL DO directive are identical to those of a parallel region containing only a single
parallel DO loop and directive. Note that the END PARALLEL DO directive is optional. The available clauses are
the same as those defined in “PARALLEL ... END PARALLEL ,” on page 274 and “DO...END DO ".

PARALLEL SECTIONS

The OpenMP PARALLEL SECTIONS / END SECTIONS directive pair define tasks to be executed in parallel; that
is, they define a non-iterative work-sharing construct without the need to define an enclosing parallel region.

Syntax:

| $OVP PARALLEL SECTI ONS [CLAUSES]

['$OWP SECTI ON|

< Fortran code bl ock executed by processor i >
[$OWP SECTI ON|

< Fortran code bl ock executed by processor | >

I $OVP END SECTI ONS [NOWAI T]

Clauses:
PRIVATE (list) REDUCTION ({operator | intrinsic} : list)
SHARED (list) COPYIN (list)
DEFAULT (PRIVATE | SHARED | NONE) IF(scalar_logical_expression)
FIRSTPRIVATE (list) NUM_THREADS (scalar_integer_expression)
LASTPRIVATE (list)

Usage:

The PARALLEL SECTIONS / END SECTIONS directive pair define a non-iterative work-sharing construct without
the need to define an enclosing parallel region. Each section is executed by a single processor. If there are
more processors than sections, some processors will have no work and will jump to the implied barrier at the
end of the construct. If there are more sections than processors, one or more processors will execute more
than one section.

A SECTION directive may only appear within the lexical extent of the enclosing PARALLEL SECTIONS / END
SECTIONS directives. In addition, the code within the PARALLEL SECTIONS / END SECTIONS directives must be
a structured block, and the code in each SECTION must be a structured block.

Semantics are identical to a parallel region containing only an omp sections pragma and the associated
structured block. The available clauses are as defined in “PARALLEL ... END PARALLEL ,” on page 274 and
“DO...END DO .

PARALLEL WORKSHARE

The OpenMP PARALLEL WORKSHARE directive provides a short form method of including 2 WORKSHARE
directive inside a PARALLEL construct.

Syntax:

276

Chapter 8. OpenMP Directives for Fortran

1 $OVP PARALLEL WORKSHARE [CLAUSES]
< Fortran structured block to be executed in parallel >
['$OVP END PARALLEL WORKSHARE]

| $OMP PARALLEL DO [CLAUSES]
< Fortran DO | oop to be executed in parallel >
[! $OMP END PARALLEL DO

Clauses:
PRIVATE(list) COPYIN (list)
SHARED (list) IF(scalar_logical_expression)
DEFAULT (PRIVATE | SHARED | NONE) NUM_THREADS (scalar_integer_expression)
FIRSTPRIVATE (list) SCHEDULE (type [, chunk])
LASTPRIVATE (list) COLLAPSE (n)
REDUCTION ({operator | intrinsic} : list) ORDERED
Usage:

The OpenMP PARALLEL WORKSHARE directive provides a short form method of including 2 WORKSHARE
directive inside a PARALLEL construct. The semantics of the PARALLEL WORKSHARE directive are identical to
those of a parallel region containing a single WORKSHARE construct.

The END PARALLEL WORKSHARE directive is optional, and NOWAIT may not be specified on an END PARALLEL
WORKSHARE directive. The available clauses are as defined in “PARALLEL ... END PARALLEL ,” on page 274.

SECTIONS ... END SECTIONS

The OpenMP SECTIONS / END SECTIONS directive pair define a non-iterative work-sharing construct within a
parallel region in which each section is executed by a single processor.

Syntax:

1 $OVP SECTIONS [O auses]

[!$OWP SECTI ON|

< Fortran code bl ock executed by processor i >
[!$OWP SECTI ON|

< Fortran code bl ock executed by processor j >

1 $OVP END SECTI ONS [NOWAI T]

Clauses:

PRIVATE (list) LASTPRIVATE (list)

FIRSTPRIVATE (list) REDUCTION ({operator | intrinsic} : list)
Usage:

The SECTIONS / END SECTIONS directive pair defines a non-iterative work-sharing construct within a parallel
region. Each section is executed by a single processor. If there are more processors than sections, some
processors have no work and thus jump to the implied barrier at the end of the construct. If there are more
sections than processors, one or more processors must execute more than one section.

277

SINGLE ... END SINGLE

A SECTION directive may only appear within the lexical extent of the enclosing SECTIONS / END SECTIONS
directives. In addition, the code within the SECTIONS / END SECTIONS directives must be a structured block.

The available clauses are as defined in “PARALLEL ... END PARALLEL ,” on page 274 and “DO...END DO .

SINGLE ... END SINGLE

The SINGLE...END SINGLE directive designates code that executes on a single thread and that is skipped by the
other threads.

Syntax:

1 $OVP SI NGLE [d auses]
< Fortran code executed in body of SINGE processor section >
1 $OVP END S| NGLE [NOMAI T]

Clauses:

PRIVATE (list)
FIRSTPRIVATE (list)
COPYPRIVATE (list)

Usage:

In a parallel region of code, there may be a sub-region of code that only executes correctly on a single thread.
Instead of ending the parallel region before this subregion and then starting it up again after this subregion,
the SINGLE...END SINGLE directive pair lets you conveniently designate code that executes on a single thread
and is skipped by the other threads. There is an implied barrier on exit from a SINGLE...END SINGLE section of
code unless the optional NOWAIT clause is specified.

Nested single process sections are ignored. Branching into or out of a single process section is not supported.

Examples:

PROGRAM S| NGLE_USE

| NTEGER A(O: 1)

I NTEGER onp_get _t hread_nun()
1 $OVP PARALLEL

A(onmp_get _thread_nunm()) = onp_get_thread_nun{()
I $OWP SI NGLE

PRINT *, "YOU SHOULD ONLY SEE TH S ONCE"
1 $OVP END S| NGLE
1 $OVP END PARALLEL

PRINT *, "A(0)=",A(0), " A(1)=", A(1)
END

TASK

The OpenMP TASK directive define an explicit task.
Syntax:
1 $OWP TASK [O auses]

< Fortran code executed as task>
1 $OVP END TASK

Chapter 8. OpenMP Directives for Fortran

Clauses:
IF(scalar_logical_expression) PRIVATE (list)
UNTIED FIRSTPRIVATE (list)

DEFAULT (private | firstprivate | shared | none) SHARED (list)

Usage:
The TASK / END TASK directive pair defines an explicit task.

When a thread encounters a task construct, a task is generated from the code for the associated structured
block. The data environment of the task is created according to the data-sharing attribute clauses on the task
construct and any defaults that apply. The encountering thread may immediately execute the task, or delay its
execution. If the task execution is delayed, then any thread in the team may be assigned the task. Completion of
the task can be guaranteed using task synchronization constructs.

A task construct may be nested inside an outer task, but the task region of the inner task is not a part of the
task region of the outer task.

When an if clause is present on a task construct and the if clause expression evaluates to false, the
encountering thread must suspend the current task region and begin execution of the generated task
immediately, and the suspended task region may not be resumed until the generated task is completed.
The task still behaves as a distinct task region with respect to data environment, lock ownership, and
synchronization constructs.

Note

Use of a variable in an if clause expression of a task construct causes an implicit reference to the
variable in all enclosing constructs.

A thread that encounters a task scheduling point within the task region may temporarily suspend the task
region. By default, a task is tied and its suspended task region can only be resumed by the thread that started
its execution. If the untied clause is present on a task construct, any thread in the team can resume the task
region after a suspension.

The task construct includes a task scheduling point in the task region of its generating task, immediately
following the generation of the explicit task. Each explicit task region includes a task scheduling point at its
point of completion. An implementation may add task scheduling points anywhere in untied task regions.

Note

When storage is shared by an explicit task region, it is the programmer's responsibility to ensure,
by adding proper synchronization, that the storage does not reach the end of its lifetime before the
explicit task region completes its execution.

Restrictions:
The following restrictions apply to the TASK directive:

e A program that branches into or out of a task region is non-conforming.

279

TASKWAIT

e A program must not depend on any ordering of the evaluations of the clauses of the taskdirective, or on any
side effects of the evaluations of the clauses.

* At most one if clause can appear on the directive.

e Unsynchronized use of Fortran I/0 statements by multiple tasks on the same unit has unspecified behavior.

TASKWAIT

The OpenMP TASKWAIT directive specifies a wait on the completion of child tasks generated since the
beginning of the current task.

Syntax:

I $OVP TASKWAI T

Clauses:
IF(scalar_logical_expression) PRIVATE (list)
UNTIED FIRSTPRIVATE (list)

DEFAULT (private | firstprivate | shared | none) SHARED (list)

Usage:

The OpenMP TASKWAIT directive specifies a wait on the completion of child tasks generated since the
beginning of the current task.

Restrictions:

The following restrictions apply to the TASKWAIT directive:

* The TASKWAIT directive and the omp taskwait pragma may be placed only at a point where a base language
statement is allowed.

e The taskwait directive may not be used in place of the statement following an éf; while,do, switch, or label.

THREADPRIVATE

280

The OpenMP THREADPRIVATE directive identifies a Fortran common block as being private to each thread.
Syntax:

I $OMP THREADPRI VATE (i st)

Usage:

Where | i st is a comma-separated list of named variables to be made private to each thread or named
common blocks to be made private to each thread but global within the thread. Common block names must
appear between slashes, such as / common_bl ock_name/ . This directive must appear in the declarations
section of a program unit after the declaration of any common blocks or variables listed. On entry to a parallel
region, data in a THREADPRIVATE common block or variable is undefined unless COPYIN is specified on the
PARALLEL directive. When a common block or variable that is initialized using DATA statements appears in a
THREADPRIVATE directive, each thread’s copy is initialized once prior to its first use.

Chapter 8. OpenMP Directives for Fortran

Restrictions:

The following restrictions apply to the THREADPRIVATE directive:

» The THREADPRIVATE directive must appear after every declaration of a thread private common block.
 Only named common blocks can be made thread private.

e TItis illegal for a THREADPRIVATE common block or its constituent variables to appear in any clause other
than a COPYIN clause.

e Avariable can appear in a THREADRIVATE directive only in the scope in which it is declared. It must not be
an element of 2 common block or be declared in an EQUIVALENCE statement.

e Avariable that appears in a THREADPRIVATE directive and is not declared in the scope of a module must
have the SAVE attribute.

WORKSHARE ... END WORKSHARE

The OpenMP WORKSHARE ... END WORKSHARE directive pair provides a mechanism to effect parallel
execution of non-iterative but implicitly data parallel constructs.

Syntax:
! $OMP WWORKSHARE

< Fortran structured bl ock to be executed in parallel >
1 $OVP END WORKSHARE [NOWAI T]

Usage:

The Fortran structured block enclosed by the WORKSHARE ... END WORKSHARE directive pair can consist
only of the following types of statements and constructs:

¢ Array assignments

e Scalar assignments

FORALL statements or constructs

WHERE statements or constructs

OpenMP ATOMIC, CRITICAL or PARALLEL constructs

The work implied by these statements and constructs is split up between the threads executing the
WORKSHARE construct in a way that is guaranteed to maintain standard Fortran semantics. The goal of

the WORKSHARE construct is to effect parallel execution of non-iterative but implicitly data parallel array
assignments, FORALL, and WHERE statements and constructs intrinsic to the Fortran language beginning with
Fortran 90. The Fortran structured block contained within a WORKSHARE construct must not contain any user-
defined function calls unless the function is ELEMENTAL.

Run-time Library Routines

User-callable functions are available to the programmer to query and alter the parallel execution environment.

281

Run-time Library Routines

282

Note

Unlimited OpenMP thread counts are available in all PGI configurations. The number of threads is
unlicensed in the OpenMP run-time libraries - up to the hard limit of 64 threads.

The following table summarizes the run-time library calls, providing an example for each.

Table 8.4. Run-time Library Routines Summary

Run-time Library Routines with Examples

omp_get_num_threads

Returns the number of threads in the team executing the parallel region from which it is called. When
called from a serial region, this function returns 1. A nested parallel region is the same as a single
parallel region.

By default, the value returned by this function is equal to the value of the environment variable
OMP_NUM_THREADS or to the value set by the last previous call to omp_set_num_threads().

i nteger onp_get_numt hreads();

omp_set_num_threads

Sets the number of threads to use for the next parallel region.

This subroutine can only be called from a serial region of code. If it is called from within a parallel
region, or from within a subroutine that is called from within a parallel region, the results are

undefined. Further, this subroutine has precedence over the OvVP_NUM_THREADS environment
variable.

subroutine onp_set_num t hreads(scal ar _i nt eger _exp);

omp_get_thread_num

Returns the thread number within the team. The thread number lies between 0 and
omp_get_num_threads()-1. When called from a serial region, this function returns 0. A nested
parallel region is the same as a single parallel region.

i nteger onp_get _thread_nun();

omp_get_ancestor_thread_num
Returns, for a given nested level of the current thread, the thread number of the ancestor.

i nteger onp_get _ancestor_thread_nun(int |evel);
i nteger |evel

omp_get_active_level

Returns the number of enclosing active parallel regions enclosing the task that contains the call. PGI
currently supports only one level of active parallel regions, so the return value currently is 1.

i nteger function onp_get _active_level ();

omp_get_level
Returns the number of parallel regions enclosing the task that contains the call.

i nteger function onp_get_|evel ();

Chapter 8. OpenMP Directives for Fortran

Run-time Library Routines with Examples

omp_get_max_threads
Returns the maximum value that can be returned by calls to omp_get_num_threads().
If omp_set_num_threads() is used to change the number of processors, subsequent calls to

omp_get_max_threads() return the new value. Further, this function returns the maximum value
whether executing from a parallel or serial region of code.

i nteger function onp_get_max_t hreads();

omp_get_num_procs
Returns the number of processors that are available to the program.

i nteger function onp_get_num procs();

omp_get_stack_size

Returns the value of the OpenMP internal control variable that specifies the size that is used to create a
stack for a newly created thread.

This value may not be the size of the stack of the current thread.

lonp_get _stack_size interface
function onp_get _stack_size ()

use onp_li b_ki nds

i nteger (ki nd=OWP_STACK_SI ZE_KI ND)
;. onp_get_stack_size

end function onp_get_stack_si ze

end interface

omp_set_stack_size

Changes the value of the OpenMP internal control variable that specifies the size to be used to create a
stack for a newly created thread.

The integer argument specifies the stack size in kilobytes. The size of the stack of the current thread
cannot be changed. In the PGI implementation, all OpenMP or auto-parallelization threads are created
just prior to the first parallel region; therefore, only calls to onp_set _st ack_si ze() that occur
prior to the first region have an effect.

subroutine onp_set_stack_si ze(integer (Kl ND=OW_STACK_SI ZE KI ND)) ;

omp_get_team_size

Returns, for a given nested level of the current thread, the size of the thread team to which the ancestor
belongs.

i nteger function onp_get teamsize (level)
i nteger |evel

end function onp_get_team si ze
end interface

283

Run-time Library Routines

284

Run-time Library Routines with Examples

omp_in_parallel
Returns whether or not the call is within a parallel region.
Returns . TRUE. if called from within a parallel region and . FALSE. if called outside of a parallel

region. When called from within a parallel region that is serialized, for example in the presence of an
IF clause evaluating . FALSE. , the function returns . FALSE. .

I ogi cal function onp_in_parallel();

omp_set_dynamic

Allows automatic dynamic adjustment of the number of threads used for execution of parallel regions.

This function is recognized, but currently has no effect.

subroutine onp_set_dynam c(scal ar_| ogi cal _exp);

omp_get_dynamic

Allows the user to query whether automatic dynamic adjustment of the number of threads used for
execution of parallel regions is enabled.

This function is recognized, but currently always returns . FALSE. .

| ogi cal function onp_get_dynam c();

omp_set_nested

Allows enabling/disabling of nested parallel regions.

This function is recognized, but currently has no effect.

subroutine onp_set nested(scal ar_| ogi cal _exp);

omp_get_nested

Allows the user to query whether dynamic adjustment of the number of threads available for execution
of parallel regions is enabled.

This function is recognized, but currently always returns . FALSE. .

| ogi cal function onp_get _nested();

omp_set_schedule
Retrieve the value of the run_sched_var.

doubl e precision function onp_set_schedul e();

omp_get_schedule
Retrieve the value of the run_sched_var.

doubl e precision function onp_get_schedul e();

Chapter 8. OpenMP Directives for Fortran

Run-time Library Routines with Examples

omp_get_wtime
Returns the elapsed wall clock time, in seconds, as a DOUBLE PRECISION value.

Times returned are per-thread times, and are not necessarily globally consistent across all threads.

doubl e precision function onp_get_wtine();

omp_get_wtick
Returns the resolution of omp_get_wtime(), in seconds, as a DOUBLE PRECISION value.

doubl e precision function onp_get_wtick();

omp_init_lock

Initializes a lock associated with the variable lock for use in subsequent calls to lock routines.

The initial state of the lock is unlocked. If the variable is already associated with a lock; it is illegal to
make a call to this routine.

subroutine onp_init_|lock(integer_var);

omp_destroy_lock
Disassociates a lock associated with the variable.

subroutine onp_destroy_ | ock(integer_var);

omp_set_lock

Causes the calling thread to wait until the specified lock is available.

The thread gains ownership of the lock when it is available. If the variable is not already associated with
alock, it is illegal to make a call to this routine.

subroutine onp_set | ock(i nteger_var);

omp_unset_lock

Causes the calling thread to release ownership of the lock associated with i nt eger _var.

If the variable is not already associated with a lock, it is illegal to make a call to this routine.

subroutine onp_unset _| ock(integer_var);

omp_test_lock

Causes the calling thread to try to gain ownership of the lock associated with the variable.

The function returns . TRUE. if the thread gains ownership of the lock; otherwise it returns . FALSE. .
If the variable is not already associated with a lock, it is illegal to make a call to this routine.

| ogi cal function onp_test | ock(integer_var);

OpenMP Environment Variables

OpenMP environment variables allow you to control the behavior of OpenMP programs. These environment
variables allow you to set and pass information that can alter the behavior of directives.

285

OpenMP Environment Variables

Table 8.5, “OpenMP-related Environment Variable Summary Table,” on page 286 provides a brief summary
of these variables. After the table this section contains more information about each of them. For complete
information and more details related to these environment variables, refer to the OpenMP documentation
available on the WorldWide Web.

Table 8.5. OpenMP-related Environment Variable Summary Table

Environment Variable Default Description

OMP_DYNAMIC FALSE Currently has no effect. Typically enables (TRUE) or
disables (FALSE) the dynamic adjustment of the number of
threads.

OMP_NESTED Currently has no effect. Typically specifies the maximum
number of nested parallel regions.

OMP_MAX_ACTIVE_LEVELS |FALSE Currently has no effect. Typically enables (TRUE) or
disables (FALSE) nested parallelism.

OMP_NUM_THREADS 1 Specifies the number of threads to use during execution of
parallel regions.

OMP_SCHEDULE STATIC with | Specifies the type of iteration scheduling and optionally the

chunk size of |chunk size to use for omp for and omp parallel for loops
1 that include the run-time schedule clause. The supported

schedule types, which can be specified in upper- or lower-
case are static, dynamic, guided, and auto.

OMP_STACKSIZE Overrides the default stack size for a newly created thread.

OMP_THREAD_LIMIT 64 Specifies the absolute maximum number of threads that can
be used in a program.

OMP_WAIT_POLICY ACTIVE Sets the behavior of idle threads, defining whether they spin
or sleep when idle. The values are ACTIVE and PASSIVE.

OMP_DYNAMIC

OVP_DYNAM C currently has no effect. Typically this variable enables (TRUE) or disables (FALSE) the
dynamic adjustment of the number of threads.

OMP_NESTED

OVP_NESTED currently has no effect. Typically this variable enables (TRUE) or disables (FALSE) nested
parallelism.

OMP_MAX_ACTIVE_LEVELS

OVP_NMAX_ACTI VE_LEVELS currently has no effect. Typically this variable specifies the maximum number of
nested parallel regions. PGI ignores this variable value since nested parallelism is not supported.

286

Chapter 8. OpenMP Directives for Fortran

OMP_NUM_THREADS

OVP_NUM_THREADS specifies the number of threads to use during execution of parallel regions. The
default value for this variable is 1. For historical reasons, the environment variable NCPUS is supported with
the same functionality. In the event that both OVP_NUM THREADS and NCPUS are defined, the value of
OVP_NUM THREADS takes precedence.

Note

OVP_NUM_THREADS defines the threads that are used to execute the program, regardless of the
number of physical processors available in the system. As a result, you can run programs using more
threads than physical processors and they execute correctly. However, performance of programs
executed in this manner can be unpredictable, and oftentimes will be inefficient.

OMP_SCHEDULE

OVP_SCHEDULE specifies the type of iteration scheduling to use for DO and PARALLEL DO loop directives that
include the SCHEDULE (RUNTIME) clause, described in “Directive Clauses,” on page 260. The default value
for this variable is STATIC.

If the optional chunk size is not set, a chunk size of 1 is assumed except in the case of a static schedule. For a
static schedule, the default is as defined in “DO...END DO ,” on page 270.

Examples of the use of OVP_SCHEDULE are as follows:

% set env OVP_SCHEDULE " STATI C, 5"
% set env OVP_SCHEDULE " GUI DED, 8"
% set env OVP_SCHEDULE " DYNAM C'

OMP_STACKSIZE

OVP_STACKSI ZE is an OpenMP 3.0 feature that controls the size of the stack for newly-created threads. This
variable overrides the default stack size for a newly created thread. The value is a decimal integer followed by
an optional letter B, K, M, or G, to specify bytes, kilobytes, megabytes, and gigabytes, respectively. If no letter is
used, the default is kilobytes. There is no space between the value and the letter; for example, one megabyte is
specified 1M. The following example specifies a stack size of 8 megabytes.

% set env OMP_STACKSI ZE 8M
The API functions related to OMP_STACKSIZE are onp_set _st ack_si ze and onp_get _st ack_si ze.

The environment variable OVP_STACKSI ZE is read on program start-up. If the program changes its own
environment, the variable is not re-checked.

This environment variable takes precedence over MPSTKZ, described in “OpenMP Environment Variables,” on
page 285. Once a thread is created, its stack size cannot be changed.

In the PGI implementation, threads are created prior to the first parallel region and persist for the life of
the program. The stack size of the main thread (thread 0) is set at program start-up and is not affected by
OVP_STACKSI ZE. For more information on controlling the program stack size in Linux, refer to”Running
Parallel Program on Linux” in Chapter 2 of the PGI User’s Guide.

287

OpenMP Environment Variables

OMP_THREAD_LIMIT

You can use the OVP_THREAD_LI M T environment variable to specify the absolute maximum number of
threads that can be used in a parallel program. Attempts to dynamically set the number of processes or threads
to a higher value, for example using set_omp_num_threads(), cause the number of processes or threads to
be set at the value of OVP_THREAD LI M T rather than the value specified in the function call.

OMP_WAIT_POLICY

288

OVP_WAI T_POLI CY sets the behavior of idle threads - specifically, whether they spin or sleep when idle. The
values are ACTIVE and PASSIVE, with ACTIVE the default. The behavior defined by OVP_WAI T_PQLI CY is also
shared by threads created by auto-parallelization.

e Threads are considered idle when waiting at a barrier, when waiting to enter a critical region, or when
unemployed between parallel regions.

e Threads waiting for critical sections always busy wait (ACTIVE).

e Barriers always busy wait (ACTIVE), with calls to sched_yi el d determined by the environment variable
MP_SPI N, described in “OpenMP Environment Variables,” on page 285.

¢ Unemployed threads during a serial region can either busy wait using the barrier (ACTIVE) or politely wait
using 2 mutex (PASSIVE). This choice is set by OVP_WAI T_POLI CY, so the default is ACTIVE.

When ACTIVE is set, idle threads consume 100% of their CPU allotment spinning in a busy loop waiting to
restart in a parallel region. This mechanism allows for very quick entry into parallel regions, a condition which
is good for programs that enter and leave parallel regions frequently.

When PASSIVE is set, idle threads wait on a mutex in the operating system and consume no CPU time until
being restarted. Passive idle is best when a program has long periods of serial activity or when the program
runs on a2 multi-user machine or otherwise shares CPU resources.

Chapter 9. HPF Directives

HPF directives are Fortran 90/95 comments which convey information to the PGHPF compiler. Directives are
the heart of an HPF program, indicating data parallelism by specifying how data is assigned and allocated
among processors on a parallel system, and the interrelationships between various data elements.

Adding HPF Directives to Programs

Directives in an HPF program may have any of the following forms:

CHPF$ directive
| HPF$ directive
*HPFS$ directive

Since HPF supports two source forms, fixed source form, and free source form, there are a variety of methods
to enter a directive. Section 3.4 of the Fortran 95 Handbook outlines methods for entering code that is valid
for both free and fixed form Fortran. The C, !, or * must be in column 1 for fixed source form directives. In
free source form, Fortran limits the comment character to !. If you use the 'HPF$ form for the directive origin,
and follow the rules outlined in the Fortran 95 Handbook, your code will be universally valid. The body of

the directive may immediately follow the directive origin. Alternatively, using free source form, any number of
blanks may precede the HPF directive. Any names in the body of the directive, including the directive name,
may not contain embedded blanks. Blanks may surround any special characters, such as a comma or an
equals sign.

The directive name, including the directive origin, may contain upper or lower case letters (case is not
significant).

HPF Directive Summary

Table 9.1. HPF Directive Summary
DIRECTIVE FUNCTION

ALIGN Specifies that a data object is mapped in the same fashion as an
associated data object. This is a specification statement. By default,
objects are aligned to themselves.

DIMENSION Specifies the dimensions of a template or processor "array". This is a
specification statement.

289

ALIGN - REALIGN

DIRECTIVE FUNCTION

DISTRIBUTE Specifies the mapping of data objects to processors. This is a
specification statement. By default, objects are not distributed.

DYNAMIC Specifies that an object may be dynamically realigned or redistributed.

INDEPENDENT | Preceding a DO loop or FORALL , this directive specifies that the DO
loop's iterations do not interact in any way and that the FORALL index
computations do not interfere with each other, and thus the FORALL
may be executed in parallel. This is an executable statement. By default,
FORALL and DO loops are not assumed to be independent.

INHERIT Specifies that a subprogram's dummy argument use the template
associated with the actual argument for its alignment. This is a
specification statement.

NOSEQUENCE | Specifies variables that are not sequential. Note that using PGHPE, by
default variables is not sequential. Variables will be sequential if the
compiler option -Msequence is supplied.

PROCESSORS | Specifies the number and rank of a processor arrangement. This is a
specification statement.

REALIGN This is similar to ALIGN, but is executable. An array can be realigned at
any time, if it is declared using the DYNAMIC attribute.

REDISTRIBUTE | This is similar to DISTRIBUTE, but is executable. An array can be
redistributed at any time, if it is declared using the DYNAMIC attribute.

SEQUENCE Specifies that a variable or common block is sequential and requires
linear, standard FORTRAN 77, treatment. This is a specification
statement.

TEMPLATE Defines an entity that may be used as an abstract align-target for a
distribution or a redistribution. This is a specification statement.

ALIGN - REALIGN

The ALIGN directive specifies how data objects are mapped in relation to other data objects. The data objects
that are most often aligned in HPF programs are arrays. Alignment suggests to the compiler that entire objects
or elements of arrays be stored on the same processor. Operations on objects that are aligned should be more
efficient than operations on objects that are not aligned, assuming that objects that are not aligned may reside
on different processors.

REALIGN is similar to ALIGN, but is executable. An array can be realigned at any time, if it is declared using the

DYNAMIC attribute.

Syntax

290

I HPF$ ALI GN al i gnee align-directive-stuff

or

I HPF$ ALICGN align-attribute-stuff ::

al i gnee- i st

Chapter 9. HPF Directives

where:
alignee
is an object-name.

align-directive-stuff
is (align-source-list) align -with-clause

align-attribute-stuff

is [(align-source-list)] align -with-clause

Each align-source has the form:

al i gn- dumy

Each align-with-clause has the form:

WTH align-target [(align-subscript-list)]
An align-subscript has the form:

i nt-exp

al i gn-subscri pt - use
subscript-triplet
*

Type

Specification

Default

The default PGHPF alignment specifies that a data object is replicated across all processor memories. For
example, for an array RAY1 with a single dimension and a template T with matching size and shape, the
following alignment specifies replication when T is distributed in any manner across processors.

I HPF$ ALI GN RAYL(*) W TH T(*)
| HPF$ DI STRI BUTE T(BLOCK)

See Also

For details on the ALIGN syntax specifications, refer to the sections on Align and Realign in either The High
Performance Fortran Handbook or in the HPF Language Specification.

Example

PROGRAM TEST

| NTEGER A(1000)

| HPF$ PROCESSORS PROC(10)

| HPF$ TEMPLATE T(1000)

IHPF$ ALIGN A(:) WTH T(:)

| HPF$ DI STRI BUTE (BLOCK) ONTO PROC:: T

291

DIMENSION

DIMENSION

The DIMENSION attribute specifies the dimensions and extents for each dimension of a TEMPLATE or
PROCESSORS directive.

Syntax

I HPF$ DI MENSI ON (expli cit-shape-spec-1ist)
Type

Specification
Default

The default for a TEMPLATE or PROCESSORS arrangement is a scalar.

See Also
“TEMPLATE ” and “PROCESSORS ” directives

Example

REAL A(100, 100)

| HPF$ PROCESSORS, DI MENSI ON(10, 10):: PROC

| HPF$ TEMPLATE, DI MENSI ON(10,10):: T

IHPF$ ALIGN WTH T:: A

I HPF$ DI STRI BUTE (BLOCK, BLOCK) ONTO PROC:: T

DYNAMIC

The DYNAMIC attribute specifies that an object may be dynamically realigned or redistributed.

Syntax

I HPF$ DYNAM C al i gnee-or-di stri but eee-1i st
Type
Specification

Default

By default an object is not dynamic.

See Also
“ALIGN - REALIGN” and “DISTRIBUTE - REDISTRIBUTE ” directives

Example

REAL A(100, 100)
| HPF$ DYNAM C A

292

Chapter 9. HPF Directives

| HPF$ PROCESSORS, DI MENSI ON(10, 10):: PRCC

| HPF$ TEMPLATE, DI MENSI ON(10,10):: T

IHPF$ ALIGN WTH T:: A

I HPF$ DI STRI BUTE (BLOCK, BLOCK) ONTO PROCC:: T

DISTRIBUTE - REDISTRIBUTE

The DISTRIBUTE directive specifies a mapping of data objects to abstract processors in a processor
arrangement. Distribution partitions an object, in the usual case an array (actually a template), among a set of
processors.

REDISTRIBUTE is similar to DISTRIBUTE, but is executable. An array can be redistributed at any time, if it is
declared using the DYNAMIC attribute

Syntax

Type

| HPF$ DI STRI BUTE di stri butee dist-directive-stuff

or

| HPF$ DI STRI BUTE di st-attribute-stuff :: distributee-list

where dist-directive-stuff is one of:

(dist-format-1list)
(dist-format-list) ONTO processors-nanme

The form of dist-attribute-stuff is one of:
(dist-format-1Iist)

(dist-format-1list) ONTO processors-nanme
ONTO di st -t arget

The dist-format may be one of:

BLOCK [(int-expr)]
CYCLIC [(int-expr)]

Specification

Default

By default, each object is replicated and distributed to every processor.

See Also

For details on the DISTRIBUTE syntax specifications, refer to the sections on DISTRIBUTE and REDICTRIBUTE
in The High Performance Fortran Handbook or in the HPF Language Specification.

Example

REAL A(100, 100)
I HPF$ PROCESSORS PROC(10, 10)
| HPF$ TEMPLATE T(10, 10)

293

INDEPENDENT

IHPF$ ALIGN WTH T:: A
I HPF$ DI STRI BUTE (BLOCK, BLOCK) ONTO PRCC:: T

INDEPENDENT

The INDEPENDENT directive specifies that the iterations of a DO loop, or the computations for the active index
values of a2 FORALL, do not interfere with each other in any way. Refer to the PGHPF Release notes for details on
extensions to the INDEPENDENT directive.

Syntax

| HPF$ | NDEPENDENT [, NEW (vari abl e-Ii st
)]

Type

Executable

Default

By default, DO and FORALL statements are not independent.

See Also

For details on the INDEPENDENT syntax specifications, refer either to Section 6.4 of The High Performance
Fortran Handbook, or Section 4.4 of the HPF Language Specification. Also refer to the PGHPF Release notes for
details on extensions to the INDEPENDENT directive.

Example
I HPF$ | NDEPENDENT
DOI =2, N1
X(1) = Y(1-1) + Y(1) + Y(I+1)
END DO
INHERIT

The INHERIT directive specifies that the template for a dummy argument should be the same as the template
for the corresponding actual argument.

Syntax

I HPF$ | NHERI T durnmy- ar gunent - nane- | i st

Default

If the INHERIT attribute is not used, and ALIGN and DISTRIBUTE are not used for a dummy argument, then the
dummy's template has the same shape as the dummy argument and it is ultimately aligned with itself.

Type
Specification

294

Chapter 9. HPF Directives

See Also

For details on the INHERIT syntax specifications, refer either to Section 5.4 of The High Performance Fortran
Handbook, or Section 3.9 of the HPF Language Specification.

Example

REAL VARIL(100)

I HPF$ DI STRI BUTE VARIL(BLOCK) 10))
CALL SUBL(VARL(10:20:2))
SUBROUTI NE SUB1(PARAML)

REAL PARAML(5)
I HPF$ | NHERI T PARAML

PROCESSORS

The PROCESSORS directive specifies one or more processor arrangements, by name, rank, and size.

Syntax

I HPF$ PROCESSORS processor s-decl -1 st

Default

The default for PROCESSORS is the number of processors on which the program is running, as specified by the
runtime command-line options.

Type

Specification

See Also

For details on the PROCESSOR syntax specifications, refer either to Section 4.8 of The High Performance
Fortran Handbook, or Section 3.7 of the HPF Language Specification

For finding more information on processors while running a program, refer to the NUMBER_OF_PROCESSORS
and PROCESSORS_ SHAPE intrinsics.

Examples

| HPF$ PROCESSORS PROCN(128)
| HPF$ PROCESSORS PROC2(3, 3, 3)
| HPF$ PROCESSORS: : PROC3(- 8: 12, 100: 200)

NO SEQUENCE

In environments where variables are by default sequential, the NO SEQUENCE directive specifies that non-
sequential access should apply to a scoping unit or to variables and common blocks within the scoping unit.

Syntax

I HPF$ NO SEQUENCE

295

SEQUENCE

or
I HPF$ NOSEQUENCE [::] associ ati on-nane-|i st

Type

Specification
See Also

For details on the NO SEQUENCE syntax specifications, refer either to Section 4.10.2 of The High Performance
Fortran Handbook, or Section 7.1.3 of the HPF Language Specification

The SEQUENCE directive.

Example

I NTEGER FLAG |, A(1000)
COMWON / FOO A |, FLAG
I HPF$ NOSEQUENCE FCO

SEQUENCE

The SEQUENCE directive allows a user to declare explicitly that variables or common blocks are to be treated
by the compiler as sequential.

Syntax

I HPF$ SEQUENCE

or
I HPF$ SEQUENCE [::] associ ation-name-|i st

Type
Specification
See Also

For details on the SEQUENCE syntax specifications, refer either to Section 4.10.2 of The High Performance
Fortran Handbook, or Section 7.1.3 of the HPF Language Specification.

The NO SEQUENCE directive.

Example

I NTEGER FLAG |, A(1000)
COMMON / FOO' A, |, FLAG
| HPF$ SEQUENCE FQO

TEMPLATE

The TEMPLATE directive declares one or more templates, specifying for each a name, rank, and size for each
dimension.

296

Chapter 9. HPF Directives

Syntax

| HPF$ TEMPLATE t enpl at e- decl -1 i st

Default

By default for each object, a new template is created and in the absence of an explicit ALIGN directive, the
object is ultimately aligned to itself.

Type
Specification
See Also

For details on the TEMPLATE syntax specifications, refer either to Section 4.9 of The High Performance Fortran
Handbook, or Section 3.8 of the HPF Language Specification.

Examples

I HPF$ TEMPLATE VARL(N)
| HPF$ TEMPLATE VAR2(N, N)
I HPF$ TEMPLATE, DI STRI BUTE(BLOCK, BLOCK) : : BOARD(8, 8)

297

298

Appendix A. HPF_LOCAL

This appendix lists the HPF_LOCAL_LIBRARY procedures. For complete descriptions of the
HPF_LOCAL_LIBRARY routines, and the current standards for HPF_LOCAL extrinsics, refer to Annex A, "Coding

Local Routines in HPF and Fortran 90", in the High Performance Fortran Language Specification. Table A.1,
“HPF_LOCAL_LIBRARY Procedures”, briefly lists the procedures. Refer to the man pages supplied with the

PGHPF software for further details on these procedures. Refer to Chapter 6, “Fortran Intrinsics”, for details

on the intrinsics defined in the Fortran 90/95 Language Specification and for HPF LIBRARY procedures.

For complete descriptions of the HPF_LOCAL_LIBRARY routines, and the current standards for HPF_LOCAL
extrinsics, refer to Annex A, "Coding Local Routines in HPF and Fortran 90", in the High Performance Fortran

Language Specification.

Table A.1. HPF_LOCAL_LIBRARY Procedures

Intrinsic

Description

ABSTRACT_TO_PHYSICAL

Returns processor identification for the
physical processor associated with a
specified abstract processor.

GLOBAL_ALIGNMENT

Returns information about the global HPF
array argument.

GLOBAL_DISTRIBUTION

Returns information about the global HPF
array argument.

GLOBAL_LBOUND

Returns lower bounds of the actual HPF
global array associated with a dummy array.

GLOBAL_SHAPE Returns the shape of the global HPF actual
argument.
GLOBAL_SIZE Returns the global extent of the specified

argument.

GLOBAL_TEMPLATE

Returns template information for the global
HPF array argument.

GLOBAL_TO_LOCAL

Converts a set of global coordinates within a
global HPF actual argument.

299

ABSTRACT_TO_PHYSICAL

Intrinsic

Description

GLOBAL_UBOUND

Returns upper bounds of the actual HPF
global array associated with a dummy array.

LOCAL_BLKCNT Returns the number of blocks of elements in
each dimension on a given processor.
LOCAL_LINDEX Returns the lowest local index of all blocks of

an array dummy.

LOCAL_TO_GLOBAL

Converts a set of local coordinates within a
local dummy array to an equivalent set of
global coordinates.

LOCAL_UINDEX

Returns the highest local index of all blocks
of an array dummy argument.

MY_PROCESSOR

Returns the identifying number of the calling
physical processor.

PHYSICAL_TO_ABSTRACT

Returns coordinates for an abstract
processor, relative to a global actual
argument array.

ABSTRACT_TO_PHYSICAL

Subroutine returns processor identification for the physical processor associated with a specified abstract

processor relative to a global actual argument array.

Synopsis

ABSTRACT_TO_PHYSI CAL(ARRAY,

Arguments

ARRAY may be of any type; it must be a dummy array that is associated with a global HPF array actual
argument. It is an INTENT (IN) argument.

INDEX must be a rank-1 integer array containing the coordinates of an abstract processor in the processors
arrangement onto which the global HPF array is mapped. It is an INTENT(IN) argument. The size of INDEX

| NDEX, PROC)

must equal the rank of the processors arrangement.

PROC must be scalar and of type integer. It is an INTENT(OUT) argument. It receives the identifying value for

the physical processor associated with the abstract processor specified by INDEX.

GLOBAL_ALIGNMENT

This has the same interface and behavior as the HPF inquiry subroutine HPF_ALIGNMENT, but it returns
information about the global HPF array actual argument associated with the local dummy argument ARRAY,

rather than returning information about the local array.

Synopsis

GLOBAL_ALI GNVENT(ARRAY, ...

300

Appendix A. HPF_LOCAL

GLOBAL_DISTRIBUTION

This has the same interface and behavior as the HPF inquiry subroutine HPF_DISTRIBUTION, but it returns
information about the global HPF array actual argument associated with the local dummy argument ARRAY,
rather than returning information about the local array.

Synopsis

GLOBAL_DI STRI BUTI ON(ARRAY, . . .)

GLOBAL_LBOUND

Inquiry function, returns all the lower bounds or a specified lower bound of the actual HPF global array.

Synopsis

GLOBAL_LBOUND(ARRAY, DI M
Arguments

Optional argument. DIM

ARRAY may be of any type. It must not be a scalar. It must be a dummy array argument of an HPF_LOCAL
procedure which is argument associated with a global HPF array actual argument.

DIM (optional) must be scalar and of type integer with a value in the range 1 <= DIM <= n, where n is the
rank of ARRAY. The corresponding actual argument must not be an optional dummy argument.

Return Type

The result is of type default integer. It is scalar if DIM is present; otherwise the result is an array of rank one
and size n, where n is the rank of ARRAY.

Return Value

If the actual argument associated with the actual argument associated with ARRAY is an array section or an
array expression, other than a whole array or an array structure component, GLOBAL_LBOUND (ARRAY, DIM)
has the value 1; otherwise it has a value equal to the lower bound for subscript DIM of the actual argument
associated with the actual argument associated with ARRAY.

GLOBAL_LBOUND (ARRAY) has a value whose i th component is equal to GLOBAL_LBOUND (ARRAY, i), for i =
1,2,...n where n is the rank of ARRAY.

GLOBAL_SHAPE

Returns the shape of the global HPF actual argument associated with an array or scalar dummy argument of an
HPF_LOCAL procedure.

Synopsis

GLOBAL_ SHAPE(SOURCE)

301

GLOBAL_SIZE

Argument

SOURCE may be of any type. It may be array valued or a scalar. It must be a dummy argument of an
HPF_LOCAL procedure which is argument associated with a global HPF actual argument.

Return Type

The result is a default integer array of rank one whose size is equal to the rank of SOURCE.

Return Value

The value of the result is the shape of the global actual argument associated with the actual argument
associated with SOURCE.

GLOBAL_SIZE

Inquiry function returns the extent along a specified dimension of the global HPF actual array argument
associated with a dummy array argument of an HPF_LOCAL procedure.

Synopsis
GLOBAL_SI ZE(ARRAY, DI M
Arguments

ARRAY may be of any type. It must not be a scalar. It must be a dummy argument of an HPF_LOCAL procedure
which is argument associated with a global HPF actual argument.

DIM (optional) must be scalar and of type integer with a value in the range 1<= DIM <= n, where n is the
rank of ARRAY.

Return Type

Default integer scalar.

Return Value

The result has a value equal to the extent of dimension DIM of the actual argument associated with the actual
argument associated with ARRAY or, if DIM is absent, the total number of elements in the actual argument
associated with the actual argument associated with ARRAY.

GLOBAL_TEMPLATE

This has the same interface and behavior as the HPF inquiry subroutine HPF_TEMPLATE, but it returns
information about the global HPF array actual argument associated with the local dummy argument ARRAY,
rather than returning information about the local array.

Synopsis
GLOBAL_TEMPLATE(ARRAY, ...)

302

Appendix A. HPF_LOCAL

Arguments

Refer to HPF_TEMPLATE.

GLOBAL_TO_LOCAL

Subroutine converts a set of global coordinates within a global HPF actual argument array to an equivalent set
of local coordinates within the associated local dummy array.

Synopsis
GLOBAL_TO_LOCAL(ARRAY, G_| NDEX,
L_I NDEX, LOCAL,
NCOPI ES, PROCS)

Arguments

ARRAY may be of any type; it must be a dummy array that is associated with a global HPF array actual
argument. It is an INTENT (IN) argument.

G_INDEX must be a rank-1 integer array whose size is equal to the rank of ARRAY. It is an INTENT (IN)
argument. It contains the coordinates of an element within the global HPF array actual argument associated
with the local dummy array ARRAY.

L_INDEX (optional) must be a rank-1 integer array whose size is equal to the rank of ARRAY. It is an
INTENT (OUT) argument. It receives the coordinates within a local dummy array of the element identified
within the global actual argument array by G_INDEX. (These coordinates are identical on any processor that
holds a copy of the identified global array element.)

LOCAL (optional) must be scalar and of type LOGICAL. It is an INTENT(OUT) argument. It is set to .TRUE. if the
local array contains a copy of the global array element and to .FALSE. otherwise.

NCOPIES (optional) must be scalar and of type integer. It is an INTENT(OUT) argument. It is set to the number
of processors that hold a copy of the identified element of the global actual array.

PROCGS (optional) must be a rank-1 integer array whose size is a least the number of processors that hold
copies of the identified element of the global actual array. The identifying numbers of those processors are
placed in PROCS. The order in which they appear is implementation dependent.

GLOBAL_UBOUND

Inquiry function returns all the upper bounds or a specified upper bound of the actual HPF global array
argument associated with an HPF_LOCAL dummy array argument.

Synopsis

GLOBAL_UBOUND(ARRAY, DI M
Arguments
Optional argument. DIM

ARRAY may be of any type. It must not be a scalar. It must be a dummy array argument of an HPF_LOCAL
procedure which is argument associated with a global HPF array actual argument.

303

LOCAL_BLKCNT

DIM (optional) must be scalar and of type integer with a value in the range 1 <= DIM <= n, where n is the
rank of ARRAY. The corresponding actual argument must not be an optional dummy argument.

Return Type

The result is of type default integer. It is scalar if DIM is present; otherwise the result is an array of rank one
and size n, where n is the rank of ARRAY.

Return Value

If the actual argument associated with the actual argument associated with ARRAY is an array section or an
array expression, other than a whole array or an array structure component, GLOBAL_UBOUND (ARRAY, DIM)
has a value equal to the number of elements in the given dimension; otherwise it has a value equal to the upper
bound for subscript DIM of the actual argument associated with the actual argument associated with ARRAY, if
dimension DIM does not have size zero and has the value zero if dimension DIM has size zero.

GLOBAL_UBOUND (ARRAY) has a value whose i th component is equal to GLOBAL_UBOUND (ARRAY, i), for i =
1,2,...n where n is the rank of ARRAY.

LOCAL_BLKCNT

Pure function returns the number of blocks of elements in each dimension, or of a specific dimension of the
array on a given processor.

Synopsis

LOCAL_BLKCNT(ARRAY, DI M PRCC)
Arguments

Optional arguments. DIM, PROC.

ARRAY may be of any type; it must be a dummy array that is associated with a global HPF array actual
argument.

DIM (optional) must be scalar and of type integer with a value in the range 1<= DIM <= n where n is the
rank of ARRAY. The corresponding actual argument must not be an optional dummy argument.

PROC (optional) must be scalar and of type integer. It must be a valid processor number.

Return Type

The result is of type default integer. It is scalar if DIM is present; otherwise the result is an array of rank one
and size n, where n is the rank of ARRAY.

Return Value

The value of LOCAL_BLKCNT (ARRAY, DIM, PROC) is the number of blocks of the ultimate align target of ARRAY
in dimension DIM that are mapped to processor PROC and which have at least one element of ARRAY aligned
to them.

304

Appendix A. HPF_LOCAL

LOCAL_BLKCNT (ARRAY, DIM) returns the same value as LOCAL_BLKCNT (ARRAY, DIM,
PROC=MY_PROCESSOR()).

LOCAL_BLKCNT (ARRAY) has a value whose i th component is equal to LOCAL_BLKCNT (ARRAY, i), for i =
1,...,n, where n is the rank of ARRAY.

LOCAL_LINDEX

Pure function returns the lowest local index of all blocks of an array dummy argument in a given dimension on
a Processor.

Synopsis

LOCAL_LI NDEX(ARRAY, DI M PROC)

Arguments
Optional argument. PROC.

ARRAY may be of any type; it must be a dummy array that is associated with a global HPF array actual
argument.

DIM must be scalar and of type integer with a value in the range 1 <= DIM <= n, where n is the rank of
ARRAY.

PROC (optional) must be scalar and of type integer. It must be a valid processor number.

Return Type

The result is a rank-one array of type default integer and size 1<= DIM <= n, where n is the value returned by
LOCAL_BLKCNT (ARRAY, DIM [, PROC]).

Return Value

The value of LOCAL_LINDEX(ARRAY, DIM, PROC) has a value whose i th component is the local index of the
first element of the i th block in dimension DIM of ARRAY on processor PROC.

LOCAL_LINDEX (ARRAY, DIM) returns the same value as LOCAL_LINDEX (ARRAY, DIM,
PROC=MY_PROCESSOR()).

LOCAL_TO_GLOBAL

Subroutine converts a set of local coordinates within a local dummy array to an equivalent set of global
coordinates within the associated global HPF actual argument array.

Synopsis
LOCAL_TO GLOBAL(ARRAY, L_I NDEX,
G_| NDEX)

Arguments

ARRAY may be of any type; it must be a dummy array that is associated with a global HPF array actual
argument. It is an INTENT (IN) argument.

305

LOCAL_UINDEX

L_INDEX must be a rank-1 integer array whose size is equal to the rank of ARRAY. It is an INTENT (IN)
argument. It contains the coordinates of an element within the local dummy array ARRAY.

G_INDEX must be a rank-1 integer array whose size is equal to the rank of ARRAY. It is an INTENT (OUT)
argument. It receives the coordinates within the global HPF array actual argument of the element identified
within the local array by L_INDEX.

LOCAL_UINDEX

Pure function returns the highest local index of all blocks of an array dummy argument in a given dimension
0N a Processor.

Synopsis

LOCAL_UI NDEX(ARRAY, DI M PROC)
Arguments

Optional argument. PROC.

ARRAY may be of any type; it must be a dummy array that is associated with a global HPF array actual
argument.

DIM must be scalar and of type integer with a value in the range 1 <= DIM <= n, where n is the rank of
ARRAY.

PROC (optional) must be scalar and of type integer. It must be a valid processor number.

Return Type

The result is a rank-one array of type default integer and size b , where b is the value returned by
LOCAL_BLKCNT (ARRAY, DIM [, PROC])

Return Value

The value of LOCAL_UINDEX (ARRAY, DIM, PROC) has a value whose i th component is the local index of the
last element of the i th block in dimension DIM of ARRAY on processor PROC.

LOCAL_UINDEX(ARRAY, DIM) returns the same value as LOCAL_UINDEX (ARRAY, DIM,
PROC=MY_PROCESSOR()).

MY_PROCESSOR

Pure function returns the identifying number of the calling physical processor.

Synopsis
MY_PROCESSOR()

Return Type

The result is scalar and of type default integer.

306

Appendix A. HPF_LOCAL

Return Value

Returns the identifying number of the physical processor from which the call is made. This value is in the
range where is the value returned by NUMBER_OF_PROCESSORS().

PHYSICAL_TO_ABSTRACT

Subroutine returns coordinates for an abstract processor, relative to a global actual argument array,
corresponding to a specified physical processor. This procedure can be used only on systems where there is
a one-to-one correspondence between abstract processors and physical processors. On systems where this
correspondence is one-to-many an equivalent, system-dependent procedure should be provided.

Synopsis

PHYSI CAL_TO_ABSTRACT(ARRAY, PROC, | NDEX)

Arguments

ARRAY may be of any type; it must be a dummy array that is associated with a global HPF array actual
argument. It is an INTENT (IN) argument.

PROC must be scalar and of type default integer. It is an INTENT(IN) argument. It contains an identifying value
for a physical processor.

INDEX must be a rank-1 integer array. It is an INTENT (OUT) argument. The size of INDEX must equal the rank
of the processor arrangement onto which the global HPF array is mapped. INDEX receives the coordinates

within this processors arrangement of the abstract processor associated with the physical processor specified
by PROC.

307

308

Index

Symbols
-Miomutex, 260
-mp, 260
-Mreentrant, 260

A

ABSTRACT_TO_PHYSICAL, 300

ACCEPT, 39

ADVANCE, 140

ALIGN, 290
WITH, 290

ALLOCATABLE, 40

ALLOCATE, 40

arithmetic expressions, 9

ARRAY, 42

ARRAY attribute, 124

arrays
ARRAY attribute, 124
assumed shape, 122
assumed size, 122
CM Fortran constructors, 125
constructor extensions, 125
constructors, 124
deferred shape, 122
explicit shape, 122
sections, 123, 124
specification, 122

vector subscripts, 124
ASSIGN, 43
assignment statements, 12
assumed shape arrays, 122
assumed size arrays, 122
ATOMIC directive, 268
attribute

DIMENSION, 292

PURE, 102

B

BACKSPACE, 43
specifier
ERR, 44
T0STAT, 44
UNIT, 44
BARRIER directive, 268
Barriers
explicit, 257
implicit, 257
binary constants, 25
BLOCK, 293
BLOCKDATA, 44
BYTE, 45

C
CALL, 45
CASE, 46
character
scalar memory reference, 33
CHARACTER, 47
character constants, 22
character set
C language compatibility, 3
Clauses
directives, 260
driectives, 260
CLOSE, 48
DISPOSE specifier, 48
DISP specifier, 48

arrays, 124
CM Fortran Intrinsics, 224
CSHIFT, 225
EOSHIFT, 225
RESHAPE, 226
column formatting
continuation field, 4, 5
label field, 4, 5
statement field, 4, 5
COMMON, 49
COMPLEY, 51
complex constants, 22, 22
Conformance to standards, xxi
constants, 20
PARAMETER statement, 23
constructors, 125
CONTAINS, 52
CONTINUE, 53
Conventions, xxiii
CRITICAL directive, 268
CSHIFT
CM Fortran, 225
CYCLE, 54
CYCLIC, 293

D

DATA, 54

data types
binary constants, 25
character constants, 22
complex constants, 22, 22
constants, 20
double precision constants, 21
extensions, 18
hexadecimal constants, 25
integer constants, 20
kind parameter, 17
logical constants, 22
octal constants, 25
real constants, 21

size specification, 18
DEALLOCATE, 55

STAT specifier, 55
debug statements, 5
DECODE, 56
deferred shape arrays, 122

specification assumed shape, 122
specification assumed size, 123
specification deferred shape, 123
specification explicit shape, 122
subscripts, 123

subscript triplets, 123

ERR specifier, 48
TOSTAT specifier, 48
STATUS specifier, 48
UNIT specifier, 48
closing a file, 129
CM Fortran

309

derived types, 23
DIMENSION, 57
direct access files, 128
Directives
ATOMIC, 268
BARRIER, 268
clauses, 260, 260
CRITICAL...END CRITICAL, 268
Fortran parallization overview,
259
-Miomutex option, 260
-mp option, 260
-Mreentrant option, 260
Parallelization, 253
parallelization, 259
recognition, 260
Summary table, 266
DO, 58
DOACROSS directive, 270
DO directive, 270
DOUBLECOMPLEX, 60
DOUBLEPRECISION, 61
double precision constants, 21
DOWHILE, 59
DYNAMIC, 292

E

ELSE, 62, 79, 80
ELSEIF, 79

ELSE IF, 63, 80
ELSEWHERE, 118
ELSE WHERE, 63, 63
ENCODE, 64

END, 65
ENDBLOCKDATA, 44
ENDCASE, 46
ENDFORALL, 73
ENDFUNCTION, 75
ENDIE, 79

END IE, 80
ENDINTERFACE, 86
ENDPROGRAM, 101
ENDSUBROUTINE, 113
ENDTYPE, 115
ENDWHERE, 118
ENTRY, 68

310

Environment variables
OMP_STACK_SIZE, 286, 287
OMP_THREAD_LIMIT, 288
OMP_WAIT_POLICY, 286, 288
OpenMP, 285
OpenMP, OMP_DYNAMIC, 286
OpenMP,
OMP_MAX_ACTIVE_LEVELS, 286
OpenMP, OMP_NESTED, 286
OpenMP, OMP_NUM_THREADS,
287
OpenMP, OMP_SCHEDULE, 287
OpenMP, OMP_STACK_SIZE, 287
OpenMP, OMP_THREAD_LIMIT,
288
OpenMP, OMP_WAIT_POLICY,
288

EOSHIFT
CM Fortran, 225

EQUIVALENCE, 70

Examples
OpenMP Task in C, 258
OpenMP Task in Fortran, 258

EXIT, 71

expressions, 7

EXTERNAL, 72

EXTRINSIC, 72

F

F77 3F Routines, 227
ABORT, 228, 228
ACCESS, 228
ALARM, 229
BESSEL FUNCTIONS, 229
chdir, 230
CHMOD, 230
CTIME, 230
DATE, 230
DRANDM, 242
DSECNDS, 244
ELAPSED TIME, 231
ERROR FUNCTIONS, 231
EXIT, 231
FDATE, 232
FGETC, 232
FLUSH, 232

FORK, 232
FSTAT, 246
FSTATG4, 246
GERROR, 234
GETARG, 234
GETC, 235
GETCWD, 235
GETENV, 235
GETGID, 235
GETLOG, 236
GETPID, 236
GETUID, 236
GMTIME, 236
HOSTNM, 237
IARG, 234
IDATE, 237
IERRNO, 237
TOINIT, 237
IRAND, 242
TRANDM, 242
ISATTY, 238
ITIME, 238
KILL, 238
LINK, 238
INBLNK, 239
10C, 239
LSTAT, 246
ITIME, 239
MALLOC, 239
MCLOCK, 240
MVBITS, 240
OUTSTR, 240
PERROR, 240
PUTC, 241
PUTENV, 241
QSORT, 241
RAND, 242
RANDOM, 242
RANGE, 242
RENAME, 243
RINDEX, 243
SECNDS, 244
SETVBUE, 244
SETVBUF3E, 245
SIGNAL, 246
SLEEP, 246

SRAND, 242
STAT, 246
STIME, 247
SYMLNK, 247
SYSTEM, 247
TIME, 248
TIMES, 248
TTYNAM, 248
UNLINK, 248
WAIT, 249

F77 VAX/VMS Subroutines, 249
DATE, 249
EXIT, 250
GETARG, 250
IARGC, 250
IDATE, 250
MVBITS, 251
RAN, 251
SECNDS, 252
TIME, 252

F77 VAX Built-In Functions, 249
%LOC, 249
%REF(a), 249

F77 VAX System Subroutines, 249

F90 Functions, 194
ABS, 167
ACHAR, 167
ACOS, 168, 168
ADJUSTL, 169
ADJUSTR, 169
AIMAG, 169
AINT, 170
ALL, 170
ALLOCATED, 170
ANINT, 171
ANY, 172
ASIN, 172, 172
ASSOCIATED, 173
ATAN, 173, 174
ATAN2, 174, 174
BIT_SIZE, 175
BTEST, 175
CEILING, 175
CHAR, 176
CMPLX, 176, 181
CONJG, 177

COSH, 177, 178, 178
COUNT, 178

CSHIFT, 179
DATE_AND_TIME, 180
DBLE, 180

DIGITS, 181

DIM, 181
DOT_PRODUCT, 182
DPROD, 182

EOSHIFT, 183
EPSILON, 183

EXP, 184

EXPONENT, 184
FLOOR, 185, 187, 188, 188
FRACTION, 185

HUGE, 185, 219
TACHAR, 186

TAND, 186, 188, 191, 195, 195,
195, 196, 196

IBCLR, 187

IBITS, 171, 177, 184, 187, 204,
206, 222

INDEX, 189

INT, 188, 190, 190, 192
IOR, 190

ISHFT, 191, 198, 211, 214
ISHFTC, 191

KIND, 193

LBOUND, 194
LEN_TRIM, 194

LGE, 195

LIT, 196

10G, 196, 197

10G10, 197

LOGICAL, 197
MATMUL, 198

MAX, 199
MAXEXPONENT, 199
MAXLOC, 199

MAXVAL, 200, 202
MERGE, 201

MIN, 201
MINEXPONENT, 201
MINVAL, 202

MOD, 203

MODULO, 203

Index

MVBITS, 204
NEAREST, 204
NINT, 189, 193, 193, 205
NOT, 205
PACK, 206, 221
PRECISION, 207
PRESENT, 207
PRODUCT, 207
RADIX, 208
RANDOM_NUMBER, 208
RANDOM_SEED, 209
RANGE, 209
REAL, 210
REPEAT, 210
RESHAPE, 210
RRSPACING, 211
SCALE, 211
SCAN, 212
SELECTED_INT_KIND, 212
SELECTED _REAL_KIND, 213
SET_EXPONENT, 213
SHAPE, 213
SIGN, 214
SIN, 215, 215
SINH, 215
SIZE, 216
SPACING, 216
SPREAD, 216
SQRT, 217
SUM, 217
SYSTEM_CLOCK, 218
TAN, 218, 218
TANH, 219
TRANSFER, 219
TRANSPOSE, 220
TRIM, 220
UBOUND, 221
UNPACK, 221
VERIFY, 192, 221, 222
F95 Functions
CPU_TIME, 179
NULL, 206
file access methods, 127
fixed source form, 1, 4
FLUSH directive, 272
FORALL, 73

311

FORMAT, 74
Format control
specifier
$ specifier, 140
A specifier, 133
BN specifier, 137
B specifier, 133
D specifier, 134
end of record, 140
EN specifier, 135
E specifier, 134
ES specifier, 135
format termination, 140
F specifier, 135
G specifier, 135
H specifier, 137
I specifier, 136
L specifier, 136
0 specifier, 137, 139
P specifier, 137
Q specifier, 138
quote control, 136
slash, 140
SP specifier, 138
S specifier, 138
SS specifier, 138
TL specifier, 138
T specifier, 138
X specifier, 138
Z specifier, 137, 139
format specifications, 132
formatted data transfer, 131
Fortran 77, 145
Math Intrinsics, 149
Fortran Intrinsics, 145
Fortran Parallelization Directives
DOACROSS, 270, 270
ORDERED, 273
Fortran program unit
elements of, 1
free source form, 1, 4
comments, 4
continuation line, 4
statement labels, 4
FUNCTION, 75

312

G
GLOBAL_ALIGNMENT, 300
GLOBAL_DISTRIBUTION, 301
GLOBAL_LBOUND, 301
GLOBAL_SHAPE, 301
GLOBAL_SIZE, 302
GLOBAL_TEMPLATE, 302
GLOBAL_TO_LOCAL, 303
GLOBAL_UBOUND, 303
GOTO
Assigned, 77
Computed, 78
Unconditional, 78

H

hexadecimal constants, 25, 26
hollerith constants, 27
HPF_LOCAL Functions
ABSTRACT_TO_PHYSICAL, 300
GLOBAL_ALIGNMENT, 300
GLOBAL_DISTRIBUTION, 301
GLOBAL_LBOUND, 301
GLOBAL_SHAPE, 301
GLOBAL_SIZE, 302
GLOBAL_TEMPIATE, 302
GLOBAL_TO_LOCAL, 303
GLOBAL_UBOUND, 303
LOCAL_BLKCNT, 304
LOCAL_LINDEX, 305
LOCAL_TO_GLOBAL, 305
LOCAL_UNIDEX, 306
MY_PROCESSOR, 306
Overview, 299
PHYSICAL_TO_ABSTRACT, 307
HPF Directives
IHPF$, 289
*HPF$, 289
adding to HPE, 289
ALIGN, 290
CHPFS$, 289
DISTRIBUTE, 293
DISTRIBUTE BLOCK, 293
DISTRIBUTE CYCLIC, 293
DISTRIBUTE ONTO, 293
INDEPENDENT, 294
INHERIT, 294

NOSEQUENCE, 295
PROCESSORS, 295
REALIGN, 290
REDISTRIBUTE, 293
SEQUENCE, 296
summary table, 289
TEMPLATE, 296

I
IF
Arithmetic, 79
Block, 79
Logical, 80
IMPLICIT, 80
implied DO list, 131
INCLUDE, 6, 81
INDEPENDENT, 294
INHERIT, 294
input and output, 127
INQUIRE, 82
ACCESS specifier, 82
ACTION specifier, 82
BLANK specifier, 82
DELIM specifier, 82
DIRECT specifier, 82
ERR specifier, 82
EXIST specifier, 82
FILE specifier, 82
FORMATTED specifier, 83
FORM specifier, 83
TOSTAT specifier, 83
NAMED specifier, 83
NAME specifier, 83
NEXTREC specifier, 83
NUMBER specifier, 83
OPENED specifier, 83
PAD specifier, 83
POSITION specifier, 83
READ specifier, 83
READWRITE specifier, 83
RECL specifier, 84
SEQUENTIAL specifier, 84
STATUS specifier, 84
UNFORMATTED specifier, 84
WRITE specifier, 84
integer

scalar memory reference, 33
INTEGER, 84
integer constants, 20
INTENT, 85
INTERFACE, 86
INTRINSIC, 87
intrinsic data types, 17

L

Libraries

run-time routines, 281
list-directed formatting, 140
list-directed input, 141
list-directed output, 142
LOCAL_BLKCNT, 304
LOCAL_LINDEX, 305
LOCAL_TO_GLOBAL, 305
LOCAL_UNIDEX, 306
logical

scalar memory reference, 33
LOGICAL, 88
logical constants, 22

M

MAP@, 89

MASTER directive, 272
multiple statements, 4
MY_PROCESSOR, 306

N

NAMELIST, 91
namelist groups, 143
namelist input, 143
namelist output, 144
non-advancing i/o0, 140
NULLIFY, 92

O

obsolescent, 33

octal constants, 25, 26
OMP_DYNAMIC, 286, 286
omp_get_ancestor_thread_num(),
282

OMP_MAX_ACTIVE_LEVELS, 286,
286

OMP_NESTED, 286, 286

OMP_NUM_THREADS, 286, 287
OMP_SCHEDULE, 286, 287
OMP_STACK_SIZE, 286, 287
OMP_THREAD_LIMIT, 286, 288
OMP_WAIT POLICY, 288

ONTO, 293

OPEN, 92

ACCESS specifier, 92
ACTION specifier, 93
ASYNCHRONOUS specifier, 93
BLANK specifier, 93
DELIM specifier, 93
ERR specifier, 93

FILE specifier, 93
FORM specifier, 93
TOSTAT specifier, 93
PAD specifier, 93
POSITION specifier, 93
RECL specifier, 93
STATUS specifier, 93

opening and closing files, 128
OpenMP

barrier, 257

environment variables, 285
task, 256, 257

task scheduling, 257
taskwait, 257

OpenMP environment variables

OMP_DYNAMIC, 286, 286
OMP_MAX_ACTIVE_LEVELS, 286,
286

OMP_NESTED, 286, 286
OMP_NUM_THREADS, 286, 287
OMP_SCHEDULE, 286, 287
OMP_THREAD_LIMIT, 286

OpenMP Fortran Directives, 253

ATOMIC, 268

BARRIER, 268

CRITICAL, 268

DO, 270

FLUSH, 272

MASTER, 272

ORDERED, 273
PARALLEL, 274
PARALLEL DO, 275, 275
PARALLEL SECTIONS, 276

Index

PARALLEL WORKSHARE, 276, 277
SECTIONS, 277
SINGLE, 278
TASK, 278, 280
THREADPRIVATE, 280
WORKSHARE, 281

OpenMP Fortran Support Routines
omp_destroy_lock(), 285

omp_get_ancestor_thread_num(),

282
omp_get_dynamic(), 284
omp_get_level(), 282, 282
omp_get_max_threads(), 283
omp_get_nested(), 284
omp_get_num_procs(), 283
omp_get_num_threads(), 282
omp_get_schedule(), 284, 284
omp_get_stack_size(), 283
omp_get_team_size(), 283
omp_get_thread_num(), 282
omp_get_wtick(), 285
omp_get_wtime(), 285
omp_in_parallel(), 284
omp_init_lock(), 285
omp_set_dynamic(), 284
omp_set_lock(), 285
omp_set_nested(), 284
omp_set_num_threads(), 282
omp_set_stack_size(), 283
omp_test_lock(), 285
omp_unset_lock(), 285

option
-Mdlines, 5
-Mfreeform, 1

OPTIONAL, 96

OPTIONS, 96

ORDERED directive, 273

P
PARALLEL directive, 274
PARALLEL DO directive, 275
Parallelization
Directives, defined, 259
directives format, 259
Parallelization Directives, 253
PARALLEL SECTIONS directive, 276

313

PARALLEL WORKSHARE directive,
276

PARAMETER, 97

PAUSE, 98
PHYSICAL_TO_ABSTRACT, 307
POINTER, 98, 98

pointers, 25

precedence rules, 8

PRINT, 100

PRIVATE, 101

PROGRAM, 101

PUBLIC, 102

PURE, 102

R
READ, 103
ADVANCE specifier, 103
ASYNCHRONOUS specifier, 103,
119
END specifier, 103
EOR specifier, 104
ERR specifier, 104
FMT specifier, 103
TIOSTAT specifier, 104
NML specifier, 103
REC specifier, 104
SIZE specifier, 104
REAL, 105
real constants, 21
RFEALIGN, 290
RECORD, 106
RECURSIVE, 107
REDIMENSION, 107
REDISTRIBUTE, 293
Related Publications, xxiii
RESHAPE
CM Fortran, 226
RETURN, 108
REWIND, 109
specifier
ERR, 109
IOSTAT, 109
UNIT, 109
Run-time
library routines, 281

314

S

scalar memory reference
character, 33
integer, 33
logical, 33
SECTIONS directive, 277
SELECT, 46
SELECT CASE, 110
SINGLE directive, 278
Standard compatibility, xxi
standard preconnected units, 128
statement
obsolescent, 33
origin, 33
Statement
ACCEPT, 39
ALLOCATABLE, 40
ALLOCATE, 40
ARRAY, 42, 124
ASSIGN, 43
BACKSPACE, 43
BLOCKDATA, 44
BYTE, 45
CALL, 45
CASE, 46
CHARACTER, 47
CLOSE, 48
COMMON, 49
COMPLEX, 51
CONTAINS, 52
CONTINUE, 53
CYCLE, 54
DATA, 54
DEALLOCATE, 55
DECODE, 56
DIMENSION, 57
DO, 58
DOUBLECOMPLEX, 60
DOUBLEPRECISION, 61
DOWHILE, 59
ELSE, 62, 79, 80
ELSE IE, 63, 79, 80
ELSEWHERE, 118
ELSE WHERE, 63, 63
ENCODE, 64
END, 65

ENDBLOCKDATA, 44
ENDCASE, 46
ENDFORALL, 73
END FUNCTION, 75
END IF, 79, 80
ENDINTERFACE, 86
END PROGRAM, 101
ENDSUBROUTINE, 113
ENDTYPE, 115
ENDWHERE, 118
ENTRY, 68
EQUIVALENCE, 70
EXIT, 71
EXTERNAL, 72
EXTRINSIC, 72
FORALL, 73
FORMAT, 74
FUNCTION, 75
GOTO, 77, 78, 78
IE, 79, 79, 80
IMPLICIT, 80
INCLUDE, 81
INQUIRE, 82
INTEGER, 84
INTENT, 85
INTERFACE, 86
INTRINSIC, 87
LOGICAL, 88
MAP@, 89
NAMELIST, 91
NULLIFY, 92

OPEN, 92
OPTIONAL, 96
OPTIONS, 96
PARAMETER, 97
PAUSE, 98
POINTER, 98, 98
PRINT, 100
PRIVATE, 101
PUBLIC, 102
READ, 103

REAL, 105
RECORD, 106
RECURSIVE, 107
REDIMENSION, 107
RETURN, 108

REWIND, 109
SELECT, 46
SELECT CASE, 110
SEQUENCE, 111
STOP, 111
STRUCTURE@, 111
SUBROUTINE, 113
TARGET, 114
THEN, 79, 80, 114
TYPE, 115
UNION@, 115
USE, 117
VOLATILE, 118
WHERE, 118
WRITE, 119
Statement ordering, 2
Statements and comments, 1
STOP, 111
STRUCTURE@, 111
SUBROUTINE, 113
symbolic name scope, 12

T
tab formatting, 5
TARGET, 114
targets, 25
TASK directive, 278, 280
Tasks
C example, 258
construct, 258
Fortran example, 258
OpenMP overview, 256, 257
scheduling points, 257
taskwait call, 257
THEN, 79
THREADPRIVATE directive, 280
TYPE, 115

U

unformatted data transfer, 130, 130

UNION@, 115
USE, 117

\Y
VOLATILE, 118

W

WHERE, 118

WITH, 290

WORKSHARE directive, 281

WRITE

specifier

ADVANCE specifier, 119
ERR specifier, 119
FMT specifier, 119
TOSTAT specifier, 119
NML specifier, 120
REC specifier, 120

Index

315

316

	PGI® Fortran Reference
	Contents
	Preface
	Audience Description
	Compatibility and Conformance to Standards
	Organization
	Hardware and Software Constraints
	Conventions
	Related Publications

	Chapter 1. Language Overview
	Elements of a Fortran Program Unit
	Statements
	Free and Fixed Source
	Statement Ordering

	The Fortran Character Set
	Free Form Formatting
	Fixed Formatting
	Column Formatting
	Fixed Format Label Field
	Fixed Format Continuation Field
	Fixed Format Statement Field
	Fixed Format Debug Statements
	Tab Formatting
	Fixed Input File Format Summary

	Include Fortran Source Files
	Components of Fortran Statements
	Symbolic Names

	Expressions
	Expression Precedence Rules
	Arithmetic Expressions
	Arithmetic Elements
	Arithmetic Operators
	Operator Precedence
	Arithmetic Expression Types

	Relational Expressions
	Logical Expressions
	Character Expressions
	Character Concatenation

	Symbolic Name Scope
	Assignment Statements
	Arithmetic Assignment
	Logical Assignment
	Character Assignment

	Listing Controls
	OpenMP Directives
	HPF Directives

	Chapter 2. Fortran Data Types
	Intrinsic Data Types
	Kind Parameter
	Number of Bytes Specification

	Constants
	Integer Constants
	Binary, Octal and Hexadecimal Constants
	Real Constants
	Double Precision Constants
	Complex Constants
	Double Complex Constants
	Logical Constants
	Character Constants
	PARAMETER Constants

	Derived Types
	Arrays
	Array Declaration Element
	Deferred Shape Arrays
	Subscripts
	Character Substring

	Fortran Pointers and Targets
	Fortran Binary, Octal and Hexadecimal Constants
	Octal and Hexadecimal Constants - Alternate Forms

	Hollerith Constants
	Structures
	Records
	UNION and MAP Declarations
	Data Initialization

	Pointer Variables
	Restrictions

	Chapter 3. Fortran Statements
	Statement Format Overview
	Definition of Statement-related Terms
	Origin of Statement
	List-related Notation

	Fortran Statement Summary Table
	ACCEPT
	ALLOCATABLE
	ALLOCATE
	ARRAY
	ASSIGN
	BACKSPACE
	BLOCK DATA
	BYTE
	CALL
	CASE
	CHARACTER
	CLOSE
	COMMON
	COMPLEX
	CONTAINS
	CONTINUE
	CYCLE
	DATA
	DEALLOCATE
	DECODE
	DIMENSION
	DO (Iterative)
	DO WHILE
	DOUBLE COMPLEX
	DOUBLE PRECISION
	ELSE
	ELSE IF
	ELSE WHERE
	ENCODE
	END
	END DO
	END FILE
	END IF
	END MAP
	END SELECT
	END STRUCTURE
	END UNION
	END WHERE
	ENTRY
	EQUIVALENCE
	EXIT
	EXTERNAL
	EXTRINSIC
	FORALL
	FORMAT
	FUNCTION
	GOTO (Assigned)
	GOTO (Computed)
	GOTO (Unconditional)
	IF (Arithmetic)
	IF (Block)
	IF (Logical)
	IMPLICIT
	INCLUDE
	INQUIRE
	INTEGER
	INTENT
	INTERFACE
	INTRINSIC
	LOGICAL
	MAP
	MODULE
	NAMELIST
	NULLIFY
	OPEN
	OPTIONAL
	OPTIONS
	PARAMETER
	PAUSE
	POINTER
	POINTER (Cray)
	PRINT
	PRIVATE
	PROGRAM
	PUBLIC
	PURE
	READ
	REAL
	RECORD
	RECURSIVE
	REDIMENSION
	RETURN
	REWIND
	SAVE
	SELECT CASE
	SEQUENCE
	STOP
	STRUCTURE
	SUBROUTINE
	TARGET
	THEN
	TYPE
	UNION
	USE
	VOLATILE
	WHERE
	WRITE

	Chapter 4. Fortran Arrays
	Array Types
	Explicit Shape Arrays
	Assumed Shape Arrays
	Deferred Shape Arrays
	Assumed Size Arrays

	Array Specification
	Explicit Shape Arrays
	Assumed Shape Arrays
	Deferred Shape Arrays
	Assumed Size Arrays

	Array Subscripts and Access
	Array Sections and Subscript Triplets
	Array Sections and Vector Subscripts

	Array Constructors
	CM Fortran Extensions
	The ARRAY Attribute §
	Array Constructors Extensions §

	Chapter 5. Input and Output
	File Access Methods
	Standard Preconnected Units

	Opening and Closing Files
	Direct Access Files
	Closing a File

	Data Transfer Statements
	Unformatted Data Transfer
	Formatted Data Transfer
	Implied DO List Input Output List
	Format Specifications
	A Format Control – Character Data
	B Format Control – Binary Data
	D Format Control – Real Double Precision Data with Exponent
	E Format Control – Real Single Precision Data with Exponent
	EN Format Control
	ES Format Control
	F Format Control - Real Single Precision Data
	G Format Control
	I Format Control – Integer Data
	L Format Control – Logical Data
	Quote Format Control
	BN Format Control – Blank Control
	H Format Control – Hollerith Control
	O Format Control Octal Values
	P Format Specifier – Scale Control
	Q Format Control - Quantity
	S Format Control – Sign Control
	T, TL and X Format Controls – Spaces and Tab Controls
	Z Format Control Hexadecimal Values
	Slash Format Control / – End of Record
	The : Format Specifier – Format Termination
	$ Format Control

	Variable Format Expressions

	Non-advancing Input and Output
	List-directed formatting
	List-directed input
	List-directed output
	Commas in External Field

	Namelist Groups
	Namelist Input
	Namelist Output

	Chapter 6. Fortran Intrinsics
	FORTRAN 77 and Fortran 90/95 Intrinsics by Category
	FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions
	Intrinsic Summary Table

	ABS
	ACHAR
	ACOS
	ACOSD
	ADJUSTL
	ADJUSTR
	AIMAG
	AINT
	ALL
	ALLOCATED
	AND
	ANINT
	ANY
	ASIN
	ASIND
	ASSOCIATED
	ATAN
	ATAN2
	ATAN2D
	ATAND
	BIT_SIZE
	BTEST
	CEILING
	CHAR
	CMPLX
	COMPL
	CONJG
	COS
	COSD
	COSH
	COUNT
	CPU_TIME
	CSHIFT
	DATE_AND_TIME
	DBLE
	DCMPLX
	DIGITS
	DIM
	DOT_PRODUCT
	DPROD
	EOSHIFT
	EPSILON
	EQV
	EXP
	EXPONENT
	FLOOR
	FRACTION
	HUGE
	IACHAR
	IAND
	IBCLR
	IBITS
	IBSET
	ICHAR
	IEOR
	IINT
	INDEX
	ININT
	INT
	INT8
	IOR
	ISHFT
	ISHFTC
	IZEXT
	JINT
	JNINT
	KIND
	KNINT
	LBOUND
	LEN
	LEN_TRIM
	LGE
	LGT
	LLE
	LLT
	LOC
	LOG
	LOG10
	LOGICAL
	LSHIFT
	MATMUL
	MAX
	MAXEXPONENT
	MAXLOC
	MAXVAL
	MERGE
	MIN
	MINEXPONENT
	MINLOC
	MINVAL
	MOD
	MODULO
	MVBITS
	NEAREST
	NEQV
	NINT
	NOT
	NULL
	OR
	PACK
	PRECISION
	PRESENT
	PRODUCT
	RADIX
	RANDOM_NUMBER
	RANDOM_SEED
	RANGE
	REAL
	REPEAT
	RESHAPE
	RRSPACING
	RSHIFT
	SCALE
	SCAN
	SELECTED_INT_KIND
	SELECTED_REAL_KIND
	SET_EXPONENT
	SHAPE
	SHIFT
	SIGN
	SIN
	SIND
	SINH
	SIZE
	SPACING
	SPREAD
	SQRT
	SUM
	SYSTEM_CLOCK
	TAN
	TAND
	TANH
	TINY
	TRANSFER
	TRANSPOSE
	TRIM
	UBOUND
	UNPACK
	VERIFY
	XOR
	ZEXT
	Supported HPF Intrinsics
	CM Fortran Intrinsics
	CSHIFT
	EOSHIFT
	RESHAPE

	Chapter 7. 3F Functions and VAX Subroutines
	3F Routines
	abort
	abort
	access
	alarm
	Bessel functions
	chdir
	chmod
	ctime
	date
	error functions
	etime, dtime
	exit
	fdate
	fgetc
	flush
	fork
	fputc
	free
	fseek
	ftell
	gerror
	getarg
	iargc
	getc
	getcwd
	getenv
	getgid
	getlog
	getpid
	getuid
	gmtime
	hostnm
	idate
	ierrno
	ioinit
	isatty
	itime
	kill
	link
	lnblnk
	loc
	ltime
	malloc
	mclock
	mvbits
	outstr
	perror
	putc
	putenv
	qsort
	rand, irand, srand
	random, irandm, drandm
	range
	rename
	rindex
	secnds, dsecnds
	setvbuf
	setvbuf3f
	signal
	sleep
	stat, lstat, fstat, fstat64
	stime
	symlnk
	system
	time
	times
	ttynam
	unlink
	wait
	VAX System Subroutines
	Built-In Functions
	VAX/VMS System Subroutines

	Chapter 8. OpenMP Directives for Fortran
	OpenMP Overview
	OpenMP Shared-Memory Parallel Programming Model
	Terminology
	OpenMP Example

	Task Overview
	Tasks
	Task Characteristics and Activities
	Task Scheduling Points
	Task Construct

	Parallelization Directives
	Directive Recognition
	Directive Clauses
	COLLAPSE (n)
	COPYIN (list)
	COPYPRIVATE(list)
	DEFAULT
	FIRSTPRIVATE(list)
	IF()
	LASTPRIVATE(list)
	NOWAIT
	NUM_THREADS
	ORDERED
	PRIVATE
	REDUCTION
	SCHEDULE
	SHARED
	UNTIED

	Directive Summary Table
	ATOMIC
	BARRIER
	CRITICAL ... END CRITICAL
	C$DOACROSS
	DO...END DO
	FLUSH
	MASTER ... END MASTER
	ORDERED
	PARALLEL ... END PARALLEL
	PARALLEL DO
	PARALLEL SECTIONS
	PARALLEL WORKSHARE
	SECTIONS … END SECTIONS
	SINGLE ... END SINGLE
	TASK
	TASKWAIT
	THREADPRIVATE
	WORKSHARE ... END WORKSHARE
	Run-time Library Routines
	OpenMP Environment Variables
	OMP_DYNAMIC
	OMP_NESTED
	OMP_MAX_ACTIVE_LEVELS
	OMP_NUM_THREADS
	OMP_SCHEDULE
	OMP_STACKSIZE
	OMP_THREAD_LIMIT
	OMP_WAIT_POLICY

	Chapter 9. HPF Directives
	Adding HPF Directives to Programs
	HPF Directive Summary
	ALIGN - REALIGN
	DIMENSION
	DYNAMIC
	DISTRIBUTE - REDISTRIBUTE
	INDEPENDENT
	INHERIT
	PROCESSORS
	NO SEQUENCE
	SEQUENCE
	TEMPLATE

	Appendix A. HPF_LOCAL
	ABSTRACT_TO_PHYSICAL
	GLOBAL_ALIGNMENT
	GLOBAL_DISTRIBUTION
	GLOBAL_LBOUND
	GLOBAL_SHAPE
	GLOBAL_SIZE
	GLOBAL_TEMPLATE
	GLOBAL_TO_LOCAL
	GLOBAL_UBOUND
	LOCAL_BLKCNT
	LOCAL_LINDEX
	LOCAL_TO_GLOBAL
	LOCAL_UINDEX
	MY_PROCESSOR
	PHYSICAL_TO_ABSTRACT

	Index

